يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"Martínez-Enriquez, Laura Camila"', وقت الاستعلام: 0.32s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Dissertation/ Thesis

    المساهمون: Parra López, Carlos Alberto, Inmunología y Medicina Traslacional, Martinez Enriquez, Laura Camila 0000-0003-0799-942X, Martínez Enríquez, Laura Camila 0001705413

    وصف الملف: 144 páginas; application/pdf

    Relation: 1. Pfister, S. and A. Ashworth, Marked for Death: Targeting Epigenetic Changes in Cancer. Nature reviews. Drug discovery, 2017. 16(4).; 2. Schreiber, R., L. Old, and M. Smyth, Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science (New York, N.Y.), 2011. 331(6024).; 3. Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians, 2021. 71(3).; 4. Wang, Z. and Y. Cao, Adoptive Cell Therapy Targeting Neoantigens: A Frontier for Cancer Research. Frontiers in immunology, 2020. 11; 5. Peng, M., et al., Neoantigen vaccine: an emerging tumor immunotherapy. Molecular cancer, 2019. 18(1).; 6. Kim, S., et al., Adoptive Cellular Therapy with Autologous Tumor-Infiltrating Lymphocytes and T-cell Receptor-Engineered T Cells Targeting Common p53 Neoantigens in Human Solid Tumors. Cancer immunology research, 2022. 10(8).; 7. Tran, E., et al., T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer. The New England journal of medicine, 2016. 375(23).; 8. Sahin, U., et al., Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017. 547(7662).; 9. Keskin, D., et al., Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature, 2019. 565(7738).; 11. Ott, P., et al., An immunogenic personal neoantigen vaccine for patients with melanoma. Nature, 2017. 547(7662).; 12. Carreno, B., et al., Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science (New York, N.Y.), 2015. 348(6236).; 13. Jiang, T., et al., Tumor Neoantigens: From Basic Research to Clinical Applications. Journal of hematology & oncology, 2019. 12(1).; 14. Coulie, P., et al., Tumour Antigens Recognized by T Lymphocytes: At the Core of Cancer Immunotherapy. Nature reviews. Cancer, 2014. 14(2).; 15. Garcia-Garijo, A., C.A. Fajardo, and A. Gros, Determinants for Neoantigen Identification. Front Immunol, 2019. 10: p. 1392.; 16. Schumacher, T.N., W. Scheper, and P. Kvistborg, Cancer Neoantigens. Annu Rev Immunol, 2019. 37: p. 173-200.; 17. Karpanen, T. and J. Olweus, The Potential of Donor T-Cell Repertoires in Neoantigen-Targeted Cancer Immunotherapy. Front Immunol, 2017. 8: p. 1718; 18. Wells, D., et al., Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction. Cell, 2020. 183(3).; 19. Bradley, P. and P. Thomas, Using T Cell Receptor Repertoires to Understand the Principles of Adaptive Immune Recognition. Annual review of immunology, 2019. 37.; 20. Baitsch, L., et al., The three main stumbling blocks for anticancer T cells. Trends Immunol, 2012. 33(7): p. 364-72.; 21. Salo-Ahen, O., et al., Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development. Processes, 2020. 9(1): p. 71; 22. Stronen, E., et al., Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science, 2016. 352(6291): p. 1337-41.; 23. Rosenberg, S., et al., Adoptive Cell Transfer: A Clinical Path to Effective Cancer Immunotherapy. Nature reviews. Cancer, 2008. 8(4).; 24. Ott, P., et al., An Update on Adoptive T-Cell Therapy and Neoantigen Vaccines. American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting, 2019. 39.; 25. Vigneron, N., Human Tumor Antigens and Cancer Immunotherapy. BioMed Research International, 2015. 2015.; 26. Pan, R., et al., Recent Development and Clinical Application of Cancer Vaccine: Targeting Neoantigens. Journal of immunology research, 2018. 2018; 27. Hutchison, S. and A. Pritchard, Identifying Neoantigens for Use in Immunotherapy. Mammalian genome : official journal of the International Mammalian Genome Society, 2018. 29(11-12).; 28. Bräunlein, E. and A. Krackhardt, Identification and Characterization of Neoantigens As Well As Respective Immune Responses in Cancer Patients. Frontiers in immunology, 2017. 8.; 29. Smith, C.C., et al., Alternative tumour-specific antigens. Nat Rev Cancer, 2019. 19(8): p. 465-78.; 30. Turajlic, S., et al., Insertion-and-deletion-derived Tumour-Specific Neoantigens and the Immunogenic Phenotype: A Pan-Cancer Analysis. The Lancet. Oncology, 2017. 18(8).; 31. van der Lee, D., et al., Mutated Nucleophosmin 1 as Immunotherapy Target in Acute Myeloid Leukemia. The Journal of clinical investigation, 2019. 129(2).; 32. Inderberg, E., et al., T cell therapy targeting a public neoantigen in microsatellite instable colon cancer reduces in vivo tumor growth. Oncoimmunology, 2017. 6(4).; 33. Saeterdal, I., et al., A TGF betaRII frameshift-mutation-derived CTL epitope recognised by HLA-A2-restricted CD8+ T cells. Cancer immunology, immunotherapy : CII, 2001. 50(9).; 34. Koster, J. and R. Plasterk, A Library of Neo Open Reading Frame Peptides (NOPs) as a Sustainable Resource of Common Neoantigens in Up to 50% of Cancer Patients. Scientific reports, 2019. 9(1).; 35. PM, A., Cellular Therapy Against Public Neoantigens. The Journal of clinical investigation, 2019. 129(2).; 36. Verdon, D. and M. Jenkins, Identification and Targeting of Mutant Peptide Neoantigens in Cancer Immunotherapy. Cancers, 2021. 13(16).; 37. Yossef, R., et al., Enhanced Detection of Neoantigen-Reactive T Cells Targeting Unique and Shared Oncogenes for Personalized Cancer Immunotherapy. JCI insight, 2018. 3(19).; 38. Zhou, J., et al., Neoantigens Derived from Recurrently Mutated Genes as Potential Immunotherapy Targets for Gastric Cancer. BioMed Research International, 2019. 2019.; 39. Olivera, I., et al., Exploiting TCR Recognition of Shared Hotspot Oncogene-encoded Neoantigens. Clinical cancer research : an official journal of the American Association for Cancer Research, 2020. 26(6).; 40. Cafri, G., et al., Memory T Cells Targeting Oncogenic Mutations Detected in Peripheral Blood of Epithelial Cancer Patients. Nature communications, 2019. 10(1).; 41. Schultz, N., et al., Frequencies and Prognostic Role of KRAS and BRAF Mutations in Patients With Localized Pancreatic and Ampullary Adenocarcinomas. Pancreas, 2012. 41(5).; 42. Chen, F., et al., Neoantigen Identification Strategies Enable Personalized Immunotherapy in Refractory Solid Tumors. The Journal of clinical investigation, 2019.; 43. McGranahan, N., et al., Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science (New York, N.Y.), 2016. 351(6280).; 44. Wolf, Y., et al., UVB-Induced Tumor Heterogeneity Diminishes Immune Response in Melanoma. Cell, 2019. 179(1).; 45. Klebanoff, C. and J. Wolchok, Shared Cancer Neoantigens: Making Private Matters Public. The Journal of experimental medicine, 2018. 215(1).; 46. Lugli, E., P. Kvistborg, and G. Galletti, Cancer Neoantigens Targeted by Adoptive T Cell Transfer: Private No More. The Journal of clinical investigation, 2019. 129(3).; 47. Pearlman, A., et al., Targeting public neoantigens for cancer immunotherapy. Nature cancer, 2021. 2(5).; 48. Castle, J., et al., Mutation-Derived Neoantigens for Cancer Immunotherapy. Frontiers in immunology, 2019. 10.; 49. Bassani-Sternberg, M., Mass Spectrometry Based Immunopeptidomics for the Discovery of Cancer Neoantigens. Methods in molecular biology (Clifton, N.J.), 2018. 1719.; 50. Yavad, M., et al., Predicting Immunogenic Tumour Mutations by Combining Mass Spectrometry and Exome Sequencing. Nature, 2014. 515(7528).; 51. Trolle, T. and M. Nielsen, NetTepi: An Integrated Method for the Prediction of T Cell Epitopes. Immunogenetics, 2014. 66(7-8).; 52. Hundal, J., et al., pVACtools: A Computational Toolkit to Identify and Visualize Cancer Neoantigens. Cancer immunology research, 2020. 8(3).; 53. Lee, C., et al., Update on Tumor Neoantigens and Their Utility: Why It Is Good to Be Different. Trends in immunology, 2018. 39(7).; 54. Nonomura, C., et al., Identification of a neoantigen epitope in a melanoma patient with good response to anti-PD-1 antibody therapy. Immunol Lett, 2019. 208: p. 52-59.; 55. Wells, D., et al., Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction. Cell, 2020. 183(3).; 57. Richters, M., et al., Best practices for bioinformatic characterization of neoantigens for clinical utility. Genome medicine, 2019. 11(1).; 58. Vitiello, A. and M. Zanetti, Neoantigen Prediction and the Need for Validation. Nature biotechnology, 2017. 35(9).; 59. Kim, Y., et al., Dataset size and composition impact the reliability of performance benchmarks for peptide-MHC binding predictions. BMC bioinformatics, 2014. 15(1).; 60. Capietto, A., S. Jhunjhunwala, and L. Delamarre, Characterizing neoantigens for personalized cancer immunotherapy. Current opinion in immunology, 2017. 46.; 61. Kishton, R., R. Lynn, and N. Restifo, Strength in Numbers: Identifying Neoantigen Targets for Cancer Immunotherapy. Cell, 2020. 183(3).; 62. Roerden, M., A. Nelde, and J. Walz, Neoantigens in Hematological Malignancies-Ultimate Targets for Immunotherapy? Frontiers in immunology, 2019. 10; 63. Wagner, S., C.S. Mullins, and M. Linnebacher, Colorectal cancer vaccines: Tumor-associated antigens vs neoantigens. World J Gastroenterol, 2018. 24(48): p. 5418-32.; 64. Biernacki, M. and M. Bleakley, Neoantigens in Hematologic Malignancies. Frontiers in immunology, 2020. 11.; 65. Peng, S., et al., Sensitive Detection and Analysis of Neoantigen-Specific T Cell Populations From Tumors and Blood. Cell reports, 2019. 28(10).; 66. Bentzen, A. and S. Hadrup, Evolution of MHC-based Technologies Used for Detection of Antigen-Responsive T Cells. Cancer immunology, immunotherapy : CII, 2017. 66(5).; 67. Arnaud, M., et al., Biotechnologies to Tackle the Challenge of Neoantigen Identification. Current opinion in biotechnology, 2020. 65.; 68. Kato, T., et al., Effective Screening of T Cells Recognizing Neoantigens and Construction of T-cell Receptor-Engineered T Cells. Oncotarget, 2018. 9(13).; 69. Reading, J., et al., The Function and Dysfunction of Memory CD8 + T Cells in Tumor Immunity. Immunological reviews, 2018. 283(1); 70. Ali, M., et al., Induction of neoantigen-reactive T cells from healthy donors. Nat Protoc, 2019. 14(6): p. 1926-1943.; 71. Yadav, M. and L. Delamarre, IMMUNOTHERAPY. Outsourcing the Immune Response to Cancer. Science (New York, N.Y.), 2016. 352(6291).; 72. Yamamoto, T.N., R.J. Kishton, and N.P. Restifo, Developing neoantigen-targeted T cell-based treatments for solid tumors. Nat Med, 2019. 25(10): p. 1488-1499; 73. Chapuis, A., et al., Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients. Science translational medicine, 2013. 5(174).; 74. Ohminami, H., M. Yasukawa, and S. Fujita, HLA class I-restricted lysis of leukemia cells by a CD8(+) cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood, 2000. 95(1).; 75. Barnes, E., et al., Ultra-sensitive Class I Tetramer Analysis Reveals Previously Undetectable Populations of Antiviral CD8+ T Cells. European journal of immunology, 2004. 34(6).; 76. Koning, D., et al., In Vitro Expansion of Antigen-Specific CD8(+) T Cells Distorts the T-cell Repertoire. Journal of immunological methods, 2014. 405.; 77. Montes, M., et al., Optimum in Vitro Expansion of Human Antigen-Specific CD8 T Cells for Adoptive Transfer Therapy. Clinical and experimental immunology, 2005. 142(2).; 78. Dwyer, C., et al., Fueling Cancer Immunotherapy With Common Gamma Chain Cytokines. Frontiers in immunology, 2019. 10.; 79. Wölfl, M. and P. Greenberg, Antigen-specific Activation and Cytokine-Facilitated Expansion of Naive, Human CD8+ T Cells. Nature protocols, 2014. 9(4).; 80. Shevach, E., Mechanisms of foxp3+ T Regulatory Cell-Mediated Suppression. Immunity, 2009. 30(5).; 81. Gao, J., et al., Mechanism of Action of IL-7 and Its Potential Applications and Limitations in Cancer Immunotherapy, in Int J Mol Sci. 2015. p. 10267-80.; 82. Steel, J., T. Waldmann, and J. Morris, Interleukin-15 Biology and Its Therapeutic Implications in Cancer. Trends in pharmacological sciences, 2012. 33(1).; 83. Li, Y. and C. Yee, IL-21 Mediated Foxp3 Suppression Leads to Enhanced Generation of Antigen-Specific CD8+ Cytotoxic T Lymphocytes. Blood, 2008. 111(1).; 84. Wherry, E.J. and M. Kurachi, Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol, 2015. 15(8): p. 486-99.; 85. Legat, A., et al., Inhibitory Receptor Expression Depends More Dominantly on Differentiation and Activation Than "Exhaustion" of Human CD8 T Cells. Frontiers in immunology, 2013. 4.; 86. Thommen, D. and T. Schumacher, T Cell Dysfunction in Cancer. Cancer cell, 2018. 33(4).; 87. Gonzalez, M. and M. Kann, Chapter 4: Protein interactions and disease. PLoS computational biology, 2012. 8(12).; 88. London, N., B. Raveh, and O. Schueler-Furman, Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how. Current opinion in structural biology, 2013. 23(6).; 89. Janes, M., et al., Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor. Cell, 2018. 172(3).; 90. Ferreira, L., et al., Molecular docking and structure-based drug design strategies. Molecules (Basel, Switzerland), 2015. 20(7).; 91. Graves, J., et al., A Review of Deep Learning Methods for Antibodies. Antibodies (Basel, Switzerland), 2020. 9(2).; 92. Lengauer, T. and M. Rarey, Computational methods for biomolecular docking. Current opinion in structural biology, 1996. 6(3).; 93. Pinzi, L. and G. Rastelli, Molecular Docking: Shifting Paradigms in Drug Discovery. International journal of molecular sciences, 2019. 20(18).; 94. Ciemny, M., et al., Protein-peptide docking: opportunities and challenges. Drug discovery today, 2018. 23(8).; 95. Mahapatra, S., et al., Immunoinformatics and molecular docking studies reveal a novel Multi-Epitope peptide vaccine against pneumonia infection. Vaccine, 2021. 39(42).; 96. Krüger, D., et al., Structure-Based Design of Non-natural Macrocyclic Peptides That Inhibit Protein-Protein Interactions. Journal of medicinal chemistry, 2017. 60(21).; 97. Salmaso, V. and S. Moro, Bridging Molecular Docking to Molecular Dynamics in Exploring Ligand-Protein Recognition Process: An Overview. Frontiers in pharmacology, 2018. 9.; 98. Bitencourt-Ferreira, G. and W. de Azevedo, Molecular Dynamics Simulations with NAMD2. Methods in molecular biology (Clifton, N.J.), 2019. 2053; 99. Wang, J., et al., Improved Modeling of Peptide-Protein Binding Through Global Docking and Accelerated Molecular Dynamics Simulations. Frontiers in molecular biosciences, 2019. 6.; 100. Hollingsworth, S. and R. Dror, Molecular Dynamics Simulation for All. Neuron, 2018. 99(6).; 101. Kumar, N. and D. Mohanty, Structure-based identification of MHC binding peptides: Benchmarking of prediction accuracy. 2010.; 102. Mei, X., et al., The Use of Molecular Dynamics Simulation Method to Quantitatively Evaluate the Affinity between HBV Antigen T Cell Epitope Peptides and HLA-A Molecules. International journal of molecular sciences, 2022. 23(9).; 103. Mirza, M., et al., Towards peptide vaccines against Zika virus: Immunoinformatics combined with molecular dynamics simulations to predict antigenic epitopes of Zika viral proteins. Scientific reports, 2016. 6.; 104. Rantam, F., et al., Molecular docking and dynamic simulation of conserved B cell epitope of SARS-CoV-2 glycoprotein Indonesian isolates: an immunoinformatic approach. F1000Research, 2021. 10.; 105. Riley, T., et al., Structure Based Prediction of Neoantigen Immunogenicity. Frontiers in immunology, 2019. 10; 106. Pang, Y., et al., Peptide-Binding Groove Contraction Linked to the Lack of T Cell Response: Using Complex Structure and Energy To Identify Neoantigens. ImmunoHorizons, 2018. 2(7).; 107. Tram, C., O. Hrytsenko, and M. Stanford, Optimization of the T2 HLA-A2 shift assay for testing of the biological activity of immunotherapies.; 108. Kessler, J., et al., Competition-based Cellular Peptide Binding Assay for HLA Class I. Current protocols in immunology, 2004. Chapter 18.; 109. Alanio, C., et al., Enumeration of human antigen-specific naive CD8+ T cells reveals conserved precursor frequencies. Blood, 2010. 115(18).; 110. McLaughlin-Taylor, E., et al., Identification of the major late human cytomegalovirus matrix protein pp65 as a target antigen for CD8+ virus-specific cytotoxic T lymphocytes. Journal of medical virology, 1994. 43(1).; 111. Martinuzzi, E., et al., acDCs enhance human antigen-specific T-cell responses. Blood, 2011. 118(8).; 112. Kuranda, K., et al., In Vitro Expansion of Anti-viral T Cells from Cord Blood by Accelerated Co-cultured Dendritic Cells. Molecular therapy. Methods & clinical development, 2018. 13.; 113. Berman, H.M., et al., The Protein Data Bank. Nucleic Acids Research, 2000. 28(1): p. 235-242.; 114. Raveh, B., et al., Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PloS one, 2011. 6(4).; 115. Leaver-Fay, A., et al., ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods in enzymology, 2011. 487.; 116. Humphrey, W., A. Dalke, and K. Schulten, VMD: visual molecular dynamics. Journal of molecular graphics, 1996. 14(1).; 117. Phillips, J., et al., Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of chemical physics, 2020. 153(4).; 118. Huang, J. and A. MacKerell, CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. Journal of computational chemistry, 2013. 34(25).; 119. Bayarri, G., A. Hospital, and M. Orozco, 3dRS, a Web-Based Tool to Share Interactive Representations of 3D Biomolecular Structures and Molecular Dynamics Trajectories. Frontiers in molecular biosciences, 2021. 8.; 120. Scheurer, M., et al., PyContact: Rapid, Customizable, and Visual Analysis of Noncovalent Interactions in MD Simulations. Biophysical journal, 2018. 114(3).; 121. Choi, J., et al., Systematic discovery and validation of T cell targets directed against oncogenic KRAS mutations. Cell reports methods, 2021. 1(5).; 122. Lo, W., et al., Immunologic Recognition of a Shared p53 Mutated Neoantigen in a Patient with Metastatic Colorectal Cancer. Cancer immunology research, 2019. 7(4).; 123. Malekzadeh, P., et al., Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. The Journal of clinical investigation, 2019. 129(3).; 124. Chamucero-Millares, J., D. Bernal-Estévez, and C. Parra-López, Usefulness of IL-21, IL-7, and IL-15 conditioned media for expansion of antigen-specific CD8+ T cells from healthy donor-PBMCs suitable for immunotherapy. Cellular immunology, 2021. 360; 125. Rico, A., et al., Epidemiology of cytomegalovirus Infection among mothers and infants in Colombia. Journal of medical virology, 2021. 93(11).; 126. Feng-Qin, F., et al., Incidence of Cytomegalovirus Infection in Shanghai, China. 2009.; 127. Mueller, D., M. Jenkins, and R. Schwartz, Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annual review of immunology, 1989. 7.; 128. Chen, L. and D. Flies, Molecular mechanisms of T cell co-stimulation and co-inhibition. Nature reviews. Immunology, 2013. 13(4).; 129. Cui, W. and S. Kaech, Generation of effector CD8+ T cells and their conversion to memory T cells. Immunological reviews, 2010. 236.; 130. Kalia, V. and S. Sarkar, Regulation of Effector and Memory CD8 T Cell Differentiation by IL-2-A Balancing Act. Frontiers in immunology, 2018. 9.; 131. Drijfhout, J., et al., Detailed motifs for peptide binding to HLA-A*0201 derived from large random sets of peptides using a cellular binding assay. Human immunology, 1995. 43(1).; 132. Jou, J., et al., The Changing Landscape of Therapeutic Cancer Vaccines-Novel Platforms and Neoantigen Identification. Clinical cancer research : an official journal of the American Association for Cancer Research, 2021. 27(3).; 133. Blass, E. and P. Ott, Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nature reviews. Clinical oncology, 2021. 18(4).; 134. Jurtz, V., et al., NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data. Journal of immunology (Baltimore, Md. : 1950), 2017. 199(9).; 135. O'Donnell, T., et al., MHCflurry: Open-Source Class I MHC Binding Affinity Prediction. Cell systems, 2018. 7(1).; 136. Zhang, H., O. Lund, and M. Nielsen, The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding. Bioinformatics (Oxford, England), 2009. 25(10).; 137. Jørgensen, K., et al., NetMHCstab - predicting stability of peptide-MHC-I complexes; impacts for cytotoxic T lymphocyte epitope discovery. Immunology, 2014. 141(1).; 138. Chandran, S., et al., Immunogenicity and therapeutic targeting of a public neoantigen derived from mutated PIK3CA. Nature medicine, 2022. 28(5).; 139. Páez-Gutiérrez, I., et al., HLA-A, -B, -C, -DRB1 and -DQB1 allele and haplotype frequencies of 1463 umbilical cord blood units typed in high resolution from Bogotá, Colombia. Human immunology, 2019. 80(7).; 140. Gonzalez-Galarza, F., et al., Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucleic acids research, 2020. 48(D1).; 141. Akazawa, Y., et al., Efficacy of immunotherapy targeting the neoantigen derived from epidermal growth factor receptor T790M/C797S mutation in non-small cell lung cancer. Cancer science, 2020. 111(8).; 142. Yamada, T., et al., EGFR T790M mutation as a possible target for immunotherapy; identification of HLA-A*0201-restricted T cell epitopes derived from the EGFR T790M mutation. PloS one, 2013. 8(11).; 143. Holmström, M. and M. Andersen, Healthy Donors Harbor Memory T Cell Responses to RAS Neo-Antigens. Cancers, 2020. 12(10).; 144. Holmström, M., et al., High frequencies of circulating memory T cells specific for calreticulin exon 9 mutations in healthy individuals. Blood cancer journal, 2019. 9(2).; 145. Wu, Y., et al., HLA-A2-Restricted Epitopes Identified from MTA1 Could Elicit Antigen-Specific Cytotoxic T Lymphocyte Response. Journal of immunology research, 2018. 2018.; 146. Hu, Z., et al., A cloning and expression system to probe T-cell receptor specificity and assess functional avidity to neoantigens. Blood, 2018. 132(18).; 147. Chheda, Z., et al., Novel and shared neoantigen derived from histone 3 variant H3.3K27M mutation for glioma T cell therapy. The Journal of experimental medicine, 2018. 215(1).; 148. Han, K., et al., Streamlined selection of cancer antigens for vaccine development through integrative multi-omics and high-content cell imaging. Scientific reports, 2020. 10(1).; 149. Flatmark, K., et al., Peptide vaccine targeting mutated GNAS: a potential novel treatment for pseudomyxoma peritonei. Journal for immunotherapy of cancer, 2021. 9(10).; 150. Wang, Z., et al., Identification of HLA-A2-Restricted Mutant Epitopes from Neoantigens of Esophageal Squamous Cell Carcinoma. Vaccines, 2021. 9(10).; 151. Iiizumi, S., et al., Identification of Novel HLA Class II-Restricted Neoantigens Derived from Driver Mutations. Cancers, 2019. 11(2).; 152. Nielsen, J., et al., Mapping the human T cell repertoire to recurrent driver mutations in MYD88 and EZH2 in lymphoma. Oncoimmunology, 2017. 6(7).; 153. Rivero-Hinojosa, S., et al., Proteogenomic discovery of neoantigens facilitates personalized multi-antigen targeted T cell immunotherapy for brain tumors. Nature communications, 2021. 12(1).; 154. Shi, R., et al., Screening and identification of HLA-A2-restricted neoepitopes for immunotherapy of non-microsatellite instability-high colorectal cancer. Science China. Life sciences, 2022. 65(3).; 155. Tang, Y., et al., The co-stimulation of anti-CD28 and IL-2 enhances the sensitivity of ELISPOT assays for detection of neoantigen-specific T cells in PBMC. Journal of immunological methods, 2020. 484-485.; 156. Galloway, S., et al., Peptide Super-Agonist Enhances T-Cell Responses to Melanoma. Frontiers in immunology, 2019. 10.; 157. Greiner, J., et al., Mutated regions of nucleophosmin 1 elicit both CD4(+) and CD8(+) T-cell responses in patients with acute myeloid leukemia. Blood, 2012. 120(6).; 158. Matsuda, T., et al., Induction of Neoantigen-Specific Cytotoxic T Cells and Construction of T-cell Receptor-Engineered T Cells for Ovarian Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 2018. 24(21).; 159. Paret, C., et al., Identification of an Immunogenic Medulloblastoma-Specific Fusion Involving EPC2 and GULP1. Cancers, 2021. 13(22).; 160. Biernacki, M., et al., CBFB-MYH11 fusion neoantigen enables T cell recognition and killing of acute myeloid leukemia. The Journal of clinical investigation, 2020. 130(10).; 161. Bear, A.S., et al., Biochemical and functional characterization of mutant KRAS epitopes validates this oncoprotein for immunological targeting. Nature Communications, 2021. 12(1): p. 1-16.; 162. Shinkawa, T., et al., Characterization of CD8 + T-cell responses to non-anchor-type HLA class I neoantigens with single amino-acid substitutions. Oncoimmunology, 2021. 10(1).; 163. Çınar, Ö., et al., High-affinity T-cell receptor specific for MyD88 L265P mutation for adoptive T-cell therapy of B-cell malignancies. Journal for immunotherapy of cancer, 2021. 9(7).; 164. Lazdun, Y., et al., A New Pipeline to Predict and Confirm Tumor Neoantigens Predict Better Response to Immune Checkpoint Blockade. Molecular cancer research : MCR, 2021. 19(3).; 165. Colugnati, F., et al., Incidence of cytomegalovirus infection among the general population and pregnant women in the United States. BMC infectious diseases, 2007. 7.; 166. Tokars, J.I., et al., Seasonal Incidence of Symptomatic Influenza in the United States. Clinical Infectious Diseases, 2018. 66(10): p. 1511-1518.; 167. Wills, M., et al., The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. Journal of virology, 1996. 70(11).; 168. Gamadia, L., et al., Differentiation of cytomegalovirus-specific CD8(+) T cells in healthy and immunosuppressed virus carriers. Blood, 2001. 98(3).; 169. He, X., et al., High frequencies cytomegalovirus pp65(495-503)-specific CD8+ T cells in healthy young and elderly Chinese donors: characterization of their phenotypes and TCR Vbeta usage. Journal of clinical immunology, 2006. 26(5).; 170. Choo, J., et al., The immunodominant influenza A virus M158-66 cytotoxic T lymphocyte epitope exhibits degenerate class I major histocompatibility complex restriction in humans. Journal of virology, 2014. 88(18).; 171. Soema, P., et al., Whole-Inactivated Influenza Virus Is a Potent Adjuvant for Influenza Peptides Containing CD8 + T Cell Epitopes. Frontiers in immunology, 2018. 9.; 172. Sridhar, S., et al., Cellular immune correlates of protection against symptomatic pandemic influenza. Nature medicine, 2013. 19(10).; 173. Jin, X., et al., High frequency of cytomegalovirus-specific cytotoxic T-effector cells in HLA-A*0201-positive subjects during multiple viral coinfections. The Journal of infectious diseases, 2000. 181(1).; 174. Cimen Bozkus, C., et al., Immune Checkpoint Blockade Enhances Shared Neoantigen-Induced T-cell Immunity Directed against Mutated Calreticulin in Myeloproliferative Neoplasms. Cancer discovery, 2019. 9(9).; 175. Ott, P., et al., A Phase Ib Trial of Personalized Neoantigen Therapy Plus Anti-PD-1 in Patients with Advanced Melanoma, Non-small Cell Lung Cancer, or Bladder Cancer. Cell, 2020. 183(2).; 176. Pittet, M., et al., High frequencies of naive Melan-A/MART-1-specific CD8(+) T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. The Journal of experimental medicine, 1999. 190(5).; 177. Hinrichs, C., et al., IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood, 2008. 111(11).; 178. Hondowicz, B., et al., Discovery of T cell antigens by high-throughput screening of synthetic minigene libraries. PloS one, 2012. 7(1).; 179. Grunert, C., et al., Isolation of Neoantigen-Specific Human T Cell Receptors from Different Human and Murine Repertoires. Cancers, 2022. 14(7).; 180. Roudko, V., et al., Shared Immunogenic Poly-Epitope Frameshift Mutations in Microsatellite Unstable Tumors. Cell, 2020. 183(6).; 181. Arstila, T., et al., A direct estimate of the human alphabeta T cell receptor diversity. Science (New York, N.Y.), 1999. 286(5441).; 182. Cieri, N., et al., IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood, 2013. 121(4).; 183. Gattinoni, L., et al., T memory stem cells in health and disease. Nature medicine, 2017. 23(1).; 184. Blackburn, S.D., et al., Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nature Immunology, 2008. 10(1): p. 29-37.; 185. Zhao, Y., Q. Shao, and G. Peng, Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cellular & molecular immunology, 2020. 17(1).; 186. Fuertes Marraco, S., et al., Inhibitory Receptors Beyond T Cell Exhaustion. Frontiers in immunology, 2015. 6.; 187. Bruniquel, D., et al., Regulation of expression of the human lymphocyte activation gene-3 (LAG-3) molecule, a ligand for MHC class II. Immunogenetics, 1998. 48(2).; 188. Annunziato, F., et al., Expression and release of LAG-3-encoded protein by human CD4+ T cells are associated with IFN-gamma production. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 1996. 10(7).; 189. Kinter, A., et al., The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. Journal of immunology (Baltimore, Md. : 1950), 2008. 181(10).; 190. Andreatta, M. and M. Nielsen, Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics (Oxford, England), 2016. 32(4).; 191. Perez, M., et al., Structural Prediction of Peptide-MHC Binding Modes. Methods in molecular biology (Clifton, N.J.), 2022. 2405.; 192. Brennick, C., et al., An unbiased approach to defining bona fide cancer neoepitopes that elicit immune-mediated cancer rejection. The Journal of clinical investigation, 2021. 131(3).; 193. Hellman, L., et al., Improving T Cell Receptor On-Target Specificity via Structure-Guided Design. Molecular therapy : the journal of the American Society of Gene Therapy, 2019. 27(2).; 194. Wu, D., et al., Structural basis for oligoclonal T cell recognition of a shared p53 cancer neoantigen. Nature Communications, 2020. 11(1): p. 1-12.; 195. Bai, P., et al., Rational discovery of a cancer neoepitope harboring the KRAS G12D driver mutation. Science China. Life sciences, 2021. 64(12).; 196. Garboczi, D., et al., Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature, 1996. 384(6605).; 197. Malonis, R., J. Lai, and O. Vergnolle, Peptide-Based Vaccines: Current Progress and Future Challenges. Chemical reviews, 2020. 120(6).; 198. Duan, F., et al., Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. The Journal of experimental medicine, 2014. 211(11).; 199. Sarkizova, S., et al., A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nature biotechnology, 2020. 38(2).; 200. Devlin, J., et al., Structural dissimilarity from self drives neoepitope escape from immune tolerance. Nature chemical biology, 2020. 16(11).; 201. Sharma, A., et al., Class I major histocompatibility complex anchor substitutions alter the conformation of T cell receptor contacts. The Journal of biological chemistry, 2001. 276(24).; 202. Borbulevych, O., et al., Structures of MART-126/27-35 Peptide/HLA-A2 complexes reveal a remarkable disconnect between antigen structural homology and T cell recognition. Journal of molecular biology, 2007. 372(5).; 203. Theodossis, A., et al., Constraints within major histocompatibility complex class I restricted peptides: presentation and consequences for T-cell recognition. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(12).; 204. Harndahl, M., et al., Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. European journal of immunology, 2012. 42(6).; 205. van der Burg, S., et al., Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. Journal of immunology (Baltimore, Md. : 1950), 1996. 156(9).; 206. Capietto, A., et al., Mutation position is an important determinant for predicting cancer neoantigens. The Journal of experimental medicine, 2020. 217(4).; 207. Feltkamp, M., et al., Efficient MHC class I-peptide binding is required but does not ensure MHC class I-restricted immunogenicity. Molecular immunology, 1994. 31(18).; https://repositorio.unal.edu.co/handle/unal/82934; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/