يعرض 1 - 20 نتائج من 263 نتيجة بحث عن '"Mansour, Romany F."', وقت الاستعلام: 0.81s تنقيح النتائج
  1. 1
    Report
  2. 2
    Report
  3. 3
    Academic Journal

    وصف الملف: 16 páginas; application/pdf

    Relation: Computers, Materials and Continua; [1] S. Sadhana, S. Pandiarajan, E. Sivaraman and D. Daniel, “AI-based power screening solution for SARSCOV2 infection: A sociodemographic survey and COVID-19 cough detector,”Procedia Computer Science, vol. 194, no. 9, pp. 255–271, 2021.; [2] E. Mahase, “Coronavirus: COVID-19 has killed more people than SARS and MERS combined, despite lower case fatality rate,” BMJ, vol. 368, pp. m641, 2020.; [3] U. Rani and R. K. Dhir, “Platform work and the COVID-19 pandemic,” The Indian Journal of Labour Economics, vol. 63, no. S1, pp. 163–171, 2020.; [4] M. Ahmadi, A. Sharifi, S. Dorosti, S. J. Ghoushchi and N. Ghanbari, “Investigation of effective climatology parameters on COVID-19 outbreak in Iran,” Science of the Total Environment, vol. 729, no. 8, pp. 138705, 2020.; [5] Y. Fang, H. Zhang, J. Xie, M. Lin, L. Ying et al., “Sensitivity of chest CT for COVID-19: Comparison to RT-PCR,” Radiology, vol. 296, no. 2, pp. E115–E117, 2020.; [6] M. N. Ikeda, K. Imai, S. Tabata, K. Miyoshi, N. Murahara et al., “Clinical evaluation of self-collected saliva by quantitative reverse transcription-PCR (RT-qPCR), direct RT-qPCR, reverse transcription-loopmediated isothermal amplification, and a rapid antigen test to diagnose COVID-19,” Journal of Clinical Microbiology, vol. 58, no. 9, pp. e01438-20, 2020.; [7] M. L. Bastos, G. Tavaziva, S. K. Abidi, J. R. Campbell, L. P. Haraoui et al., “Diagnostic accuracy of serological tests for COVID-19: Systematic review and meta-analysis,” BMJ, vol. 370, pp. 1–13, 2020.; [8] M. Rahimzadeh, A. Attar and S. M. Sakhaei, “A fully automated deep learning-based network for detecting COVID-19 from a new and large lung CT scan dataset,”Biomedical Signal Processing and Control, vol. 68, no. 1, pp. 102588, 2021.; [9] D. Li, D. Wang, J. Dong, N. Wang, H. Huang et al., “False-negative results of real-time reverse-transcriptase polymerase chain reaction for severe acute respiratory syndrome coronavirus 2: Role of deep-learning-based CT diagnosis and insights from two cases,” Korean Journal of Radiology, vol. 21, no. 4, pp. 505, 2020.; [10] F. Shi, J. Wang, J. Shi, Z. Wu, Q. Wang et al., “Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19,” IEEE Reviews in Biomedical Engineering, vol. 14, pp. 4–15, 2020.; [11] G. Wang, X. Liu, C. Li, Z. Xu, J. Ruan et al., “A noise-robust framework for automatic segmentation of COVID-19 pneumonia lesions from CT images,” IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp. 2653–2663, 2020.; [12] A. A. Ardakani, A. R. Kanafi, U. R. Acharya, N. Khadem, A. Mohammadi et al., “Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks,” Computers in Biology and Medicine, vol. 121, no. 10229, pp. 103795, 2020.; [13] L. Zhou, Z. Li, J. Zhou, H. Li, Y. Chen et al., “A rapid, accurate and machine-agnostic segmentation and quantification method for CT-based COVID-19 diagnosis,” IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp. 2638–2652, 2020.; [14] R. Ranjbarzadeh and S. B. Saadi, “Automated liver and tumor segmentation based on concave and convex points using fuzzy C-means and mean shift clustering,” Measurement, vol. 150, no. 2, pp. 107086, 2020.; [15] X. Ouyang, J. Huo, L. Xia, F. Shan, J. Liu et al., “Dual-sampling attention network for diagnosis of COVID19 from community acquired pneumonia,” IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp. 2595– 2605, 2020.; [16] V. Rajinikanth, N. Dey, A. N. J. Raj, A. E. Hassanien, K. C. Santosh et al., “Harmony-search and otsu based system for coronavirus disease (COVID-19) detection using lung CT scan images,” arXiv preprint arXiv:2004.03431, 2004.; [17] S. Minaee, R. Kafieh, M. Sonka, S. Yazdani, G. J. Soufi et al., “Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning,”Medical Image Analysis, vol. 65, no. 12, pp. 101794, 2020.; [18] D. P. Fan, T. Zhou, G. P. Ji, Y. Zhou, G. Chen et al., “Inf-Net: Automatic COVID-19 lung infection segmentation from CT images,” IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp. 2626–2637, 2020.; [19] X. Wang, X. Deng, Q. Fu, Q. Zhou, J. Feng et al., “A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT,” IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp. 2615–2625, 2020.; [20] M. Barstugan, U. Ozkaya and S. Ozturk, “Coronavirus (COVID-19) classification using CT images by machine learning methods,” arXiv preprint arXiv:2003.09424, 2020.; [21] H. Panwar, P. K. Gupta, M. K. Siddiqui, R. M. Menendez, V. Singh et al., “Application of deep learning for fast detection of COVID-19 in X-rays using nCOVnet,” Chaos, Solitons & Fractals, vol. 128, no. 3, pp. 109944, 2020.; [22] S. Toraman, T. B. Alakus and I. Turkoglu, “Convolutional CapsNet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks,” Chaos, Solitons & Fractals, vol. 140, no. 18, pp. 110122, 2020.; [23] M. Nour, Z. Cömert and K. Polat, “A novel medical diagnosis model for COVID-19 infection detection based on deep features and Bayesian optimization,”Applied Soft Computing, vol. 97, no. Part A, pp. 106580, 2020.; [24] R. F. Mansour, J. Escorcia-Gutierrez, M. Gamarra, D. Gupta, O. Castillo et al., “Unsupervised deep learning based variational autoencoder model for COVID-19 diagnosis and classification,” Pattern Recognition Letters, vol. 151, no. 151, pp. 267–274, 2021.; [25] S. Ahuja, B. K. Panigrahi, N. Dey, V. Rajinikanth, T. K. Gandhi et al., “Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices,” Applied Intelligence, vol. 51, no. 1, pp. 571– 585, 2021.; [26] T. Kaur, T. K. Gandhi and B. K. Panigrahi, “Automated diagnosis of COVID-19 using deep features and parameter free BAT optimization,” IEEE Journal of Translational Engineering in Health and Medicine, vol. 9, pp. 1–9, 2021.; [27] K. K. Singh and A. Singh, “Diagnosis of COVID-19 from chest X-ray images using wavelets-based depthwise convolution network,” Big Data Mining and Analytics, vol. 4, no. 2, pp. 84–93, 2021.; [28] A. Shamsi, H. Asgharnezhad, S. S. Jokandan, A. Khosravi, P. M. Kebria et al., “An uncertainty-aware transfer learning-based framework for COVID-19 diagnosis,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 4, pp. 1408–1417, 2021.; [29] Y. H. Wu, S. H. Gao, J. Mei, J. Xu, D. P. Fan et al., “JCS: An explainable COVID-19 diagnosis system by joint classification and segmentation,” IEEE Transactions on Image Processing, vol. 30, pp. 3113–3126, 2021.; [30] M. Ragab, S. Alshehri, N. A. Alhakamy, W. Alsaggaf, H. A. Alhadrami et al., “Machine learning with quantum seagull optimization model for COVID-19 chest X-ray image classification,” Journal of Healthcare Engineering, vol. 2022, no. 1, pp. 1–13, 2022.; [31] K. Shankar and E. Perumal, “A novel hand-crafted with deep learning features based fusion model for COVID-19 diagnosis and classification using chest X-ray images,” Complex & Intelligent Systems, vol. 7, no. 3, pp. 1277–1293, 2020.; [32] D. Nandan, J. Kanungo and A. Mahajan, “An error-efficient Gaussian filter for image processing by using the expanded operand decomposition logarithm multiplication,” Journal of Ambient Intelligence and Humanized Computing, 2018. https://doi.org/10.1007/s12652-018-0933-x; [33] K. Shankar, E. Perumal, M. Elhoseny, F. Taher, B. B. Gupta et al., “Synergic deep learning for smart health diagnosis of COVID-19 for connected living and smart cities,” ACM Transactions on Internet Technology, vol. 22, no. 3, pp. 1–14, 2022.; [34] K. Shankar, E. Perumal, V. G. Díaz, P. Tiwari, D. Gupta et al., “An optimal cascaded recurrent neural network for intelligent COVID-19 detection using chest X-ray images,” Applied Soft Computing, vol. 113, no. Part A, pp. 1–13, 2021.; [35] C. S. S. Anupama, M. Sivaram, E. L. Lydia, D. Gupta and K. Shankar, “Synergic deep learning model-based automated detection and classification of brain intracranial hemorrhage images in wearable networks,” Personal and Ubiquitous Computing, 2020. https://doi.org/10.1007/s00779-020-01492-2; [36] H. Jia, X. Peng and C. Lang, “Remora optimization algorithm,” Expert Systems with Applications, vol. 185, no. 2, pp. 115665, 2021.; 5270; 5255; 75; J. Escorcia-Gutierrez, M. Gamarra, R. Soto-Diaz, S. Alsafari, A. Yafoz et al., "Optimal synergic deep learning for covid-19 classification using chest x-ray images," Computers, Materials & Continua, vol. 75, no.3, pp. 5255–5270, 2023. https://doi.org/10.32604/cmc.2023.033731; https://hdl.handle.net/11323/10601; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/

  4. 4
    Academic Journal

    مصطلحات موضوعية: Genetics, Computational bioinformatics, Algorithms

    وصف الملف: 39 páginas; application/pdf

    Relation: iScience; 1 M. Ye, W. Wang, C. Yao, R. Fan, P. Wang Gene selection method for microarray data classification using particle swarm optimization and neighborhood rough set Curr. Bioinf., 14 (2019), pp. 422-431, 10.2174/1574893614666190204150918; 2 S. Wang, W. Aorigele Kong, W. Kong, W. Zeng, X. Hong Hybrid binary imperialist competition algorithm and tabu search approach for feature selection using gene expression data BioMed Res. Int., 2016 (2016), p. 9721713, 10.1155/2016/9721713; 3 S. Jana, N. Balakrishnan, D. von Rosen, J.S. Hamid High dimensional extension of the growth curve model and its application in genetics Stat. Methods Appt., 26 (2016), pp. 273-292, 10.1007/s10260-016-0369-4; 4 K. Uthayan A novel microarray gene selection and classification using intelligent dynamic grey wolf optimization Genetika, 51 (2019), pp. 805-828, 10.2298/GENSR1903805U; 5 A.K. Shukla, P. Singh, M. Vardhan Gene selection for cancer types classification using novel hybrid metaheuristics approach Swarm Evol. Comput., 54 (2020), p. 100661, 10.1016/j.swevo.2020.100661; 6 A. Sharma, R. Rani C-HMOSHSSA: gene selection for cancer classification using multi-objective meta-heuristic and machine learning methods Comput. Methods Progr. Biomed., 178 (2019), pp. 219-235, 10.1016/j.cmpb.2019.06.029; 7 M.S. Mohamad, S. Omatu, S. Deris, M. Yoshioka, A. Abdullah, Z. Ibrahim An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes Algorithm Mol. Biol., 8 (2013), p. 15, 10.1186/1748-7188-8-15; 8 A.M. Mabu, R. Prasad, R. Yadav Gene expression dataset classification using artificial neural network and clustering-based feature selection Int. J. Swarm Intell. Res. (IJSIR), 11 (2020), pp. 65-86, 10.4018/IJSIR.2020010104; 9 C. Jin, S.W. Jin Gene selection approach based on improved swarm intelligent optimisation algorithm for tumour classification IET Syst. Biol., 10 (2016), pp. 107-115, 10.1049/iet-syb.2015.0064; 10 A. Dabba, A. Tari, S. Meftali, R. Mokhtari Gene selection and classification of microarray data method based on mutual information and moth flame algorithm Expert Syst. Appl., 166 (2021), p. 114012, 10.1016/j.eswa.2020.114012; 11 A. Dabba, A. Tari, S. Meftali Hybridization of Moth flame optimization algorithm and quantum computing for gene selection in microarray data J. Ambient Intell. Hum. Comput., 12 (2021), pp. 2731-2750, 10.1007/s12652-020-02434-9; 12 X. Xu, J. Li, H.-l. Chen Enhanced Support Vector Machine Using Parallel Particle Swarm Optimization IEEE (2014), pp. 41-46; 13 H. Alshamlan, G. Badr, Y. Alohali mRMR-ABC: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling BioMed Res. Int., 2015 (2015), p. 604910, 10.1155/2015/604910; 14 H.M. Alshamlan, G.H. Badr, Y.A. Alohali Genetic Bee Colony (GBC) algorithm: a new gene selection method for microarray cancer classification Comput. Biol. Chem., 56 (2015), pp. 49-60, 10.1016/j.compbiolchem.2015.03.001; 15 H. Nematzadeh, J. García-Nieto, I. Navas-Delgado, J.F. Aldana-Montes Automatic frequency-based feature selection using discrete weighted evolution strategy Appl. Soft Comput., 130 (2022), p. 109699, 10.1016/j.asoc.2022.109699; 16 C.-Q. Huang, F. Jiang, Q.-H. Huang, X.-Z. Wang, Z.-M. Han, W.-Y. Huang Dual-graph attention convolution network for 3-D point cloud classification IEEE Transact. Neural Networks Learn. Syst. (2022), pp. 1-13; 17 Y. Ban, Y. Wang, S. Liu, B. Yang, M. Liu, L. Yin, W. Zheng 2D/3D multimode medical image alignment based on spatial histograms Appl. Sci., 12 (2022), p. 8261; 18 M. Rostami, S. Forouzandeh, K. Berahmand, M. Soltani Integration of multi-objective PSO based feature selection and node centrality for medical datasets Genomics, 112 (2020), pp. 4370-4384, 10.1016/j.ygeno.2020.07.027; 19 O. Tarkhaneh, T.T. Nguyen, S. Mazaheri A novel wrapper-based feature subset selection method using modified binary differential evolution algorithm Inf. Sci., 565 (2021), pp. 278-305, 10.1016/j.ins.2021.02.061; 20 A. Jiménez-Cordero, J.M. Morales, S. Pineda A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification Eur. J. Oper. Res., 293 (2021), pp. 24-35, 10.1016/j.ejor.2020.12.009; 21 S. Abasabadi, H. Nematzadeh, H. Motameni, E. Akbari Automatic ensemble feature selection using fast non-dominated sorting Inf. Syst., 100 (2021), p. 101760, 10.1016/j.is.2021.101760; 22 Z. Sadeghian, E. Akbari, H. Nematzadeh A hybrid feature selection method based on information theory and binary butterfly optimization algorithm Eng. Appl. Artif. Intell., 97 (2021), 10.1016/j.engappai.2020.104079; 23 N. Singh, P. Singh A hybrid ensemble-filter wrapper feature selection approach for medical data classification Chemometr. Intell. Lab. Syst., 217 (2021), p. 104396, 10.1016/j.chemolab.2021.104396; 24 J. Cai, J. Luo, S. Wang, S. Yang Feature selection in machine learning: a new perspective Neurocomputing, 300 (2018), pp. 70-79, 10.1016/j.neucom.2017.11.077; 25 X. Xie, B. Xie, D. Xiong, M. Hou, J. Zuo, G. Wei, J. Chevallier New theoretical ISM-K2 Bayesian network model for evaluating vaccination effectiveness J. Ambient Intell. Hum. Comput. (2022), pp. 1-17; 26 M.M. Mafarja, S. Mirjalili Hybrid Whale Optimization Algorithm with simulated annealing for feature selection Neurocomputing, 260 (2017), pp. 302-312, 10.1016/j.neucom.2017.04.053; 27 J. Too, S. Mirjalili A hyper learning binary dragonfly algorithm for feature selection: a COVID-19 case study Knowl. Base Syst., 212 (2021), 10.1016/j.knosys.2020.106553; 28 N.S. Altman An introduction to kernel and nearest-neighbor nonparametric regression Am. Statistician, 46 (1992), pp. 175-185, 10.1080/00031305.1992.10475879; 29 J. Hu, H. Chen, A.A. Heidari, M. Wang, X. Zhang, Y. Chen, Z. Pan Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection Knowl. Base Syst., 213 (2021), p. 106684, 10.1016/j.knosys.2020.106684; 30 M. Shafipour, A. Rashno, S. Fadaei Particle distance rank feature selection by particle swarm optimization Expert Syst. Appl., 185 (2021), p. 115620, 10.1016/j.eswa.2021.115620; 31 K. Zhang, Z. Wang, G. Chen, L. Zhang, Y. Yang, C. Yao, J. Wang, J. Yao Training effective deep reinforcement learning agents for real-time life-cycle production optimization J. Petrol. Sci. Eng., 208 (2022), p. 109766; 32 X. Xu, Z. Lin, X. Li, C. Shang, Q. Shen Multi-objective robust optimisation model for MDVRPLS in refined oil distribution Int. J. Prod. Res., 60 (2022), pp. 6772-6792; 33 J. Tian, M. Hou, H. Bian, J. Li Variable surrogate model-based particle swarm optimization for high-dimensional expensive problems Complex & Intelligent Systems (2022), pp. 1-49; 34 F.A. Hashim, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany, S. Mirjalili Henry gas solubility optimization: a novel physics-based algorithm Future Generat. Comput. Syst., 101 (2019), pp. 646-667, 10.1016/j.future.2019.07.015; 35 F.A. Hashim, K. Hussain, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems Appl. Intell., 51 (2021), pp. 1531-1551, 10.1007/s10489-020-01893-z; 36 F.A. Hashim, E.H. Houssein, K. Hussain, M.S. Mabrouk, W. Al-Atabany Honey Badger Algorithm: new metaheuristic algorithm for solving optimization problems Math. Comput. Simulat., 192 (2022), pp. 84-110, 10.1016/j.matcom.2021.08.013; 37 H. Chen, C. Li, M. Mafarja, A.A. Heidari, Y. Chen, Z. Cai Slime mould algorithm: a comprehensive review of recent variants and applications Int. J. Syst. Sci., 54 (2022), pp. 204-235; 38 M. Li, A. Cao, R. Wang, Z. Li, S. Li, J. Wang Slime mould algorithm: a new method for stochastic optimization BMC Plant Biol., 20 (2020), pp. 300-323; 39 I. Ahmadianfar, A.A. Heidari, A.H. Gandomi, X. Chu, H. Chen RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method Expert Syst. Appl., 181 (2021), p. 115079, 10.1016/j.eswa.2021.115079; 40 J. Tu, H. Chen, M. Wang, A.H. Gandomi The colony predation algorithm J. Bionic Eng., 18 (2021), pp. 674-710, 10.1007/s42235-021-0050-y; 41 I. Ahmadianfar, A.A. Heidari, S. Noshadian, H. Chen, A.H. Gandomi INFO: an efficient optimization algorithm based on weighted mean of vectors Expert Syst. Appl., 195 (2022), p. 116516, 10.1016/j.eswa.2022.116516; 42 H. Su, D. Zhao, A. Asghar Heidari, L. Liu, X. Zhang, M. Mafarja, H. Chen RIME: a physics-based optimization Neurocomputing, 532 (2023), pp. 183-214, 10.1016/j.neucom.2023.02.010; 43 A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen Harris hawks optimization: algorithm and applications Future Generat. Comput. Syst., 97 (2019), pp. 849-872, 10.1016/j.future.2019.02.028; 44 E. Çelik A powerful variant of symbiotic organisms search algorithm for global optimization Eng. Appl. Artif. Intell., 87 (2020), p. 103294, 10.1016/j.engappai.2019.103294; 45 E. Çelik, N. Öztürk, Y. Arya Advancement of the search process of salp swarm algorithm for global optimization problems Expert Syst. Appl., 182 (2021), p. 115292, 10.1016/j.eswa.2021.115292; 46 E.H. Houssein, D. Oliva, E. Çelik, M.M. Emam, R.M. Ghoniem Boosted sooty tern optimization algorithm for global optimization and feature selection Expert Syst. Appl., 213 (2023), p. 119015, 10.1016/j.eswa.2022.119015; 47 E. Çelik IEGQO-AOA: information-exchanged Gaussian arithmetic optimization algorithm with quasi-opposition learning Knowl. Base Syst., 260 (2023), p. 110169, 10.1016/j.knosys.2022.110169; 48 Y. Zhang, R. Liu, A.A. Heidari, X. Wang, Y. Chen, M. Wang, H. Chen Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis Neurocomputing, 430 (2021), pp. 185-212; 49 X. Wen, K. Wang, H. Li, H. Sun, H. Wang, L. Jin A two-dlstage solution method based on NSGA-II for Green Multi-Objective integrated process planning and scheduling in a battery packaging machinery workshop Swarm Evol. Comput., 61 (2021), p. 100820, 10.1016/j.swevo.2020.100820; 50 G. Wang, E. Fan, G. Zheng, K. Li, H. Huang Research on vessel speed heading and collision detection method based on AIS data Mobile Information Systems (2022); 51 R. Dong, H. Chen, A.A. Heidari, H. Turabieh, M. Mafarja, S. Wang Boosted kernel search: framework, analysis and case studies on the economic emission dispatch problem Knowl. Base Syst., 233 (2021), p. 107529, 10.1016/j.knosys.2021.107529; 52 C. Zhao, Y. Zhou, X. Lai An integrated framework with evolutionary algorithm for multi-scenario multi-objective optimization problems Inf. Sci., 600 (2022), pp. 342-361, 10.1016/j.ins.2022.03.093; 53 Y. Xue, Y. Tong, F. Neri An ensemble of differential evolution and Adam for training feed-forward neural networks Inf. Sci., 608 (2022), pp. 453-471, 10.1016/j.ins.2022.06.036; 54 K. Yu, D. Zhang, J. Liang, K. Chen, C. Yue, K. Qiao, L. Wang A correlation-guided layered prediction approach for evolutionary dynamic multiobjective optimization IEEE Trans. Evol. Comput., 1 (2022), p. 1, 10.1109/TEVC.2022.3193287; 55 C. Huang, X. Zhou, X. Ran, Y. Liu, W. Deng, W. Deng Co-evolutionary competitive swarm optimizer with three-phase for large-scale complex optimization problem Inf. Sci., 619 (2023), pp. 2-18, 10.1016/j.ins.2022.11.019; 56 J. Liang, K. Qiao, K. Yu, B. Qu, C. Yue, W. Guo, L. Wang Utilizing the relationship between unconstrained and constrained pareto fronts for constrained multiobjective optimization IEEE Trans. Cybern. (2022), pp. 1-14, 10.1109/TCYB.2022.3163759; 57 W. Deng, J. Xu, X.Z. Gao, H. Zhao An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems IEEE Trans. Syst. Man Cybern. Syst., 52 (2022), pp. 1578-1587, 10.1109/TSMC.2020.3030792; 58 Y. Liu, H. Cui, X. Xu, W. Liang, H. Chen, Z. Pan, A. Alsufyani, S. Bourouis Simulated annealing-based dynamic step shuffled frog leaping algorithm: optimal performance design and feature selection Neurocomputing, 20 (2022), pp. 325-362, 10.1016/j.neucom.2022.06.075; 59 Y. Xue, B. Xue, M. Zhang Self-adaptive particle swarm optimization for large-scale feature selection in classification ACM Trans. Knowl. Discov. Data, 13 (2019), pp. 1-27; 60 Y. Xue, X. Cai, F. Neri A multi-objective evolutionary algorithm with interval based initialization and self-adaptive crossover operator for large-scale feature selection in classification Appl. Soft Comput., 127 (2022), p. 109420; 61 A.I. Hammouri, M. Mafarja, M.A. Al-Betar, M.A. Awadallah, I. Abu-Doush An Improved Dragonfly Algorithm for Feature Selection Knowl. Base Syst., 203 (2020), p. 106131, 10.1016/j.knosys.2020.106131; 62 M. Tahir, A. Tubaishat, F. Al-Obeidat, B. Shah, Z. Halim, M. Waqas A novel binary chaotic genetic algorithm for feature selection and its utility in affective computing and healthcare Neural Comput. Appl., 34 (2020), pp. 11453-11474, 10.1007/s00521-020-05347-y; 63 R.A. Ibrahim, M.A. Elaziz, D. Oliva, E. Cuevas, S. Lu An opposition-based social spider optimization for feature selection Soft Comput., 23 (2019), pp. 13547-13567, 10.1007/s00500-019-03891-x; 64 M. Tubishat, N. Idris, L. Shuib, M.A. Abushariah, S. Mirjalili Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection Expert Syst. Appl., 145 (2020), p. 113122, 10.1016/j.eswa.2019.113122; 65 B. Xue, M. Zhang, W.N. Browne, X. Yao A survey on evolutionary computation approaches to feature selection IEEE Trans. Evol. Comput., 20 (2016), pp. 606-626, 10.1109/tevc.2015.2504420; 66 S. Mirjalili, A. Lewis The whale optimization algorithm Adv. Eng. Software, 95 (2016), pp. 51-67, 10.1016/j.advengsoft.2016.01.008; 67 W. Zhao, Z. Zhang, L. Wang Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications Eng. Appl. Artif. Intell., 87 (2020), p. 103300, 10.1016/j.engappai.2019.103300; 68 S. Ahmed, K.K. Ghosh, S. Mirjalili, R. Sarkar AIEOU: automata-based improved equilibrium optimizer with U-shaped transfer function for feature selection Knowl. Base Syst., 228 (2021), p. 107283, 10.1016/j.knosys.2021.107283; 69 Y. Yang, H. Chen, A.A. Heidari, A.H. Gandomi Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts Expert Syst. Appl., 177 (2021), p. 114864, 10.1016/j.eswa.2021.114864; 70 Y.O. Shaker, D. Yousri, A. Osama, A. Al-Gindy, E. Tag-Eldin, D. Allam Optimal charging/discharging decision of energy storage community in grid-connected microgrid using multi-objective hunger game search optimizer IEEE Access, 9 (2021), pp. 120774-120794, 10.1109/ACCESS.2021.3101839; 71 H. Nguyen, X.-N. Bui A novel hunger games search optimization-based artificial neural network for predicting ground vibration intensity induced by mine blasting Nat. Resour. Res., 30 (2021), pp. 3865-3880, 10.1007/s11053-021-09903-8; 72 X. Zhou, W. Gui, A.A. Heidari, Z. Cai, H. Elmannai, M. Hamdi, G. Liang, H. Chen Advanced orthogonal learning and Gaussian barebone hunger games for engineering design J. Comput. Des. Eng., 9 (2022), pp. 1699-1736, 10.1093/jcde/qwac075; 73 R. Li, X. Wu, H. Tian, N. Yu, C. Wang Hybrid memetic pretrained factor analysis-based deep belief networks for transient electromagnetic inversion IEEE Trans. Geosci. Rem. Sens., 60 (2022), pp. 1-20; 74 S. Chakraborty, A.K. Saha, R. Chakraborty, M. Saha, S. Nama HSWOA: an ensemble of hunger games search and whale optimization algorithm for global optimization Int. J. Intell. Syst., 37 (2022), pp. 52-104, 10.1002/int.22617; 75 S. Li, X. Li, H. Chen, Y. Zhao, J. Dong A novel hybrid hunger games search algorithm with differential evolution for improving the behaviors of non-cooperative animals IEEE Access, 9 (2021), pp. 164188-164205, 10.1109/ACCESS.2021.3132617; 76 R. Liang, T. Le-Hung, T. Nguyen-Thoi Energy consumption prediction of air-conditioning systems in eco-buildings using hunger games search optimization-based artificial neural network model J. Build. Eng., 59 (2022), p. 105087, 10.1016/j.jobe.2022.105087; 77 S. Yu, A.A. Heidari, C. He, Z. Cai, M.M. Althobaiti, R.F. Mansour, G. Liang, H. Chen Parameter estimation of static solar photovoltaic models using Laplacian Nelder-Mead hunger games search Sol. Energy, 242 (2022), pp. 79-104, 10.1016/j.solener.2022.06.046; 78 R. Manjula Devi, M. Premkumar, P. Jangir, B. Santhosh Kumar, D. Alrowaili, K. Sooppy Nisar BHGSO: binary hunger games search optimization algorithm for feature selection problem Comput. Mater. Continua (CMC), 70 (2022), pp. 557-579, 10.32604/cmc.2022.019611; 79 Houssein, E.H., Hosney, M.E., Mohamed, W.M., Ali, A.A., and Younis, E.M.G. Fuzzy-based hunger games search algorithm for global optimization and feature selection using medical data. Neural Comput. Appl. 10.1007/s00521-022-07916-9; 80 B.J. Ma, S. Liu, A.A. Heidari Multi-strategy ensemble binary hunger games search for feature selection Knowl. Base Syst., 248 (2022), p. 108787, 10.1016/j.knosys.2022.108787; 81 T. Blackwell A study of collapse in bare bones particle swarm optimization IEEE Trans. Evol. Comput., 16 (2012), pp. 354-372, 10.1109/TEVC.2011.2136347; 82 X. Chen, H. Huang, A.A. Heidari, C. Sun, Y. Lv, W. Gui, G. Liang, Z. Gu, H. Chen, C. Li, P. Chen An efficient multilevel thresholding image segmentation method based on the slime mould algorithm with bee foraging mechanism: a real case with lupus nephritis images Comput. Biol. Med., 142 (2022), p. 105179, 10.1016/j.compbiomed.2021.105179; 83 W. Cao, X. Wang, Z. Ming, J. Gao A review on neural networks with random weights Neurocomputing, 275 (2018), pp. 278-287, 10.1016/j.neucom.2017.08.040; 84 W. Cao, Z. Xie, J. Li, Z. Xu, Z. Ming, X. Wang Bidirectional stochastic configuration network for regression problems Neural Network., 140 (2021), pp. 237-246, 10.1016/j.neunet.2021.03.016; 85 S. Jadhav, H. He, K. Jenkins Information gain directed genetic algorithm wrapper feature selection for credit rating Appl. Soft Comput., 69 (2018), pp. 541-553, 10.1016/j.asoc.2018.04.033; 86 F. Tempola, R. Rosihan, R. Adawiyah Holdout validation for comparison classfication naïve bayes and KNN of recipient kartu Indonesia pintar IOP Conf. Ser. Mater. Sci. Eng., 1125 (2021); 87 H.K. Jeon, C.S. Yang Enhancement of ship type classification from a combination of CNN and KNN Electronics, 10 (2021), p. 1169; 88 F. Zhu, X. Jia-kun, W. Zhong-yu, L. Pei-Chen, Q. Shu-jun, H. Lei Image classification method based on improved KNN algorithm J. Phys. Conf. (2021); 89 M.H. Nadimi-Shahraki, H. Zamani, S. Mirjalili Enhanced whale optimization algorithm for medical feature selection: a COVID-19 case study Comput. Biol. Med., 148 (2022), p. 105858, 10.1016/j.compbiomed.2022.105858; 90 J. Yedukondalu, L.D. Sharma Cognitive load detection using circulant singular spectrum analysis and Binary Harris Hawks Optimization based feature selection Biomed. Signal Process Control, 79 (2022), p. 104006, 10.1016/j.bspc.2022.104006; 91 E. Emary, H.M. Zawbaa, A.E. Hassanien Binary grey wolf optimization approaches for feature selection Neurocomputing, 172 (2016), pp. 371-381, 10.1016/j.neucom.2015.06.083; 92 J. Hu, W. Gui, A.A. Heidari, Z. Cai, G. Liang, H. Chen, Z. Pan Dispersed foraging slime mould algorithm: continuous and binary variants for global optimization and wrapper-based feature selection Knowl. Base Syst., 237 (2022), p. 107761, 10.1016/j.knosys.2021.107761; 93 W. Zhou, P. Wang, A.A. Heidari, X. Zhao, H. Chen Spiral Gaussian mutation sine cosine algorithm: framework and comprehensive performance optimization Expert Syst. Appl., 209 (2022), p. 118372, 10.1016/j.eswa.2022.118372; 94 H. Ren, J. Li, H. Chen, C. Li Adaptive levy-assisted salp swarm algorithm: analysis and optimization case studies Math. Comput. Simulat., 181 (2021), pp. 380-409; 95 D. Xu, N. Ning, Y. Xu, B. Wang, Q. Cui, Z. Liu, X. Wang, D. Liu, H. Chen, M.G. Kong An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks Cancer Cell Int., 19 (2019), pp. 135-155, 10.1016/j.eswa.2019.03.043; 96 A.A. Heidari, R. Ali Abbaspour, H. Chen Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training Appl. Soft Comput., 81 (2019), p. 105521, 10.1016/j.asoc.2019.105521; 97 P. Civicioglu, E. Besdok, M.A. Gunen, U.H. Atasever Weighted differential evolution algorithm for numerical function optimization: a comparative study with cuckoo search, artificial bee colony, adaptive differential evolution, and backtracking search optimization algorithms Neural Comput. Appl., 32 (2020), pp. 3923-3937, 10.1007/s00521-018-3822-5; 98 M.M. Dehshibi, M. Sourizaei, M. Fazlali, O. Talaee, H. Samadyar, J. Shanbehzadeh A hybrid bio-inspired learning algorithm for image segmentation using multilevel thresholding Multimed. Tool. Appl., 76 (2017), pp. 15951-15986, 10.1007/s11042-016-3891-3; 99 H. Nenavath, R.K. Jatoth Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking Appl. Soft Comput., 62 (2018), pp. 1019-1043, 10.1016/j.asoc.2017.09.039; 100 Y. Zhou, J. Xie, L. Li, M. Ma Cloud model bat algorithm Sci. World J., 2014 (2014), p. 237102, 10.1155/2014/237102; 101 X. Xie, B. Xie, D. Xiong, M. Hou, J. Zuo, G. Wei, J. Chevallier Deduction of sudden rainstorm scenarios: integrating decision makers' emotions, dynamic Bayesian network and DS evidence theory Nat. Hazards (2022), pp. 1-17; 102 S. Xiong, B. Li, S. Zhu DCGNN: a single-stage 3D object detection network based on density clustering and graph neural network Complex Intell. Systems (2022), pp. 1-10; 103 X. Chen, Y. Xu, L. Meng, X. Chen, L. Yuan, Q. Cai, W. Shi, G. Huang Non-parametric partial least squares–discriminant analysis model based on sum of ranking difference algorithm for tea grade identification using electronic tongue data Sensor. Actuator. B Chem., 311 (2020), p. 127924; 104 X. Zenggang, Z. Mingyang, Z. Xuemin, Z. Sanyuan, X. Fang, Z. Xiaochao, W. Yunyun, L. Xiang Social similarity routing algorithm based on socially aware networks in the big data environment J. Signal Process. Syst., 94 (2022), pp. 1253-1267; 105 J. Xu, S. Pan, P.Z.H. Sun, S. Hyeong Park, K. Guo Human-Factors-in-Driving-Loop: driver identification and verification via a deep learning approach using psychological behavioral data IEEE Trans. Intell. Transport. Syst., 24 (2023), pp. 3383-3394; 106 X. Qin, Z. Liu, Y. Liu, S. Liu, B. Yang, L. Yin, M. Liu, W. Zheng User OCEAN personality model construction method using a BP neural network Electronics, 11 (2022), p. 3022 View article CrossRefView in ScopusGoogle Scholar; 107 B. Li, Y. Lu, W. Pang, H. Xu Image Colorization using CycleGAN with semantic and spatial rationality Multimed. Tool. Appl. (2023), pp. 1-15; 108 Q. Xu, Y. Zeng, W. Tang, W. Peng, T. Xia, Z. Li, F. Teng, W. Li, J. Guo Multi-task joint learning model for segmenting and classifying tongue images using a deep neural network IEEE J. Biomed. Health Inform., 24 (2020), pp. 2481-2489; 109 X.-F. Wang, P. Gao, Y.-F. Liu, H.-F. Li, F. Lu Predicting thermophilic proteins by machine learning Curr. Bioinf., 15 (2020), pp. 493-502; 110 A. Seifi, M. Ehteram, V.P. Singh, A. Mosavi Modeling and uncertainty analysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN Sustainability, 12 (2020), p. 4023; 111 F. Yang, H. Moayedi, A. Mosavi Predicting the degree of dissolved oxygen using three types of multi-layer perceptron-based artificial neural networks Sustainability, 13 (2021), p. 9898; 112 C. Zhao, H. Wang, H. Chen, W. Shi, Y. Feng, Y. Wang, H. Xiao, J. Zheng JAMSNet: a remote pulse extraction network based on joint attention and multi-scale fusion Crit. Rev. Food Sci. Nutr. (2022), pp. 1-19, 10.1109/TCSVT.2022.3227348 View article Google Scholar; 113 J. Lv, G. Li, X. Tong, W. Chen, J. Huang, C. Wang, G. Yang Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction Comput. Biol. Med., 134 (2021), p. 104504, 10.1016/j.compbiomed.2021.104504; 114 S. Wang, B. Wang, Z. Zhang, A.A. Heidari, H. Chen, X. Wang, L.P. Wang, Y.B. Fu Class-aware sample reweighting optimal transport for multi-source domain adaptation Neurocomputing, 523 (2023), pp. 213-223, 10.1016/j.neucom.2022.12.048; 115 Z. Wu, S. Xuan, J. Xie, C. Lin, C. Lu How to ensure the confidentiality of electronic medical records on the cloud: a technical perspective Comput. Biol. Med., 147 (2022), p. 105726, 10.1016/j.compbiomed.2022.105726; 116 Z. Wu, G. Li, S. Shen, X. Lian, E. Chen, G. Xu Constructing dummy query sequences to protect location privacy and query privacy in location-based services World Wide Web, 24 (2021), pp. 25-49, 10.1007/s11280-020-00830-x; 117 B. Yan, Y. Li, L. Li, X. Yang, T.-q. Li, G. Yang, M. Jiang Quantifying the impact of Pyramid Squeeze Attention mechanism and filtering approaches on Alzheimer's disease classification Comput. Biol. Med., 148 (2022), p. 105944, 10.1016/j.compbiomed.2022.105944; 118 X. Sun, X. Cao, B. Zeng, Q. Zhai, X. Guan Multistage dynamic planning of integrated hydrogen-electrical microgrids under multiscale uncertainties IEEE Trans. Smart Grid (2022), p. 1, 10.1109/TSG.2022.3232545; 119 Z. Wu, S. Shen, X. Lian, X. Su, E. Chen A dummy-based user privacy protection approach for text information retrieval Knowl. Base Syst., 195 (2020), p. 105679, 10.1016/j.knosys.2020.105679; 120 Z. Wu, S. Shen, H. Li, H. Zhou, C. Lu A basic framework for privacy protection in personalized information retrieval: an effective framework for user privacy protection J. Organ. End User Comput., 33 (2022), pp. 1-26; 121 Z. Wu, S. Shen, H. Zhou, H. Li, C. Lu, D. Zou An effective approach for the protection of user commodity viewing privacy in e-commerce website Knowl. Base Syst., 220 (2021), p. 106952, 10.1016/j.knosys.2021.106952; 122 Z. Wu, J. Xie, S. Shen, C. Lin, G. Xu, E. Chen A confusion method for the protection of user topic privacy in Chinese keyword based book retrieval ACM Transactions on Asian and Low-Resource Language Information Processing (2023); 123 X. Cao, T. Cao, Z. Xu, B. Zeng, F. Gao, X. Guan Resilience constrained scheduling of mobile emergency resources in electricity-hydrogen distribution network IEEE Trans. Sustain. Energy, 14 (2023), pp. 1269-1284, 10.1109/TSTE.2022.3217514; 124 Y. Dai, J. Wu, Y. Fan, J. Wang, J. Niu, F. Gu, S. Shen MSEva: a musculoskeletal rehabilitation evaluation system based on EMG signals ACM Trans. Sens. Netw., 19 (2022), pp. 1-23; 125 J. Zhou, X. Zhang, Z. Jiang Recognition of imbalanced epileptic EEG signals by a graph-based extreme learning machine Wireless Commun. Mobile Comput., 2021 (2021), pp. 1-12, 10.1155/2021/5871684; 126 J. Chen, X. Zhu, H. Liu A mutual neighbor-based clustering method and its medical applications Comput. Biol. Med., 150 (2022), p. 106184, 10.1016/j.compbiomed.2022.106184; 127 Y. Chen, Y. Zhang, Y. Wang, S. Ta, M. Shi, Y. Zhou, M. Li, J. Fu, L. Wang, X. Liu, et al. Accurate iris segmentation and recognition using an end-to-end unified framework based on MADNet and DSANet J. Diabetes, 15 (2023), pp. 264-274; 128 Y. Li, Y. Zhang, W. Cui, B. Lei, X. Kuang, T. Zhang Dual encoder-based dynamic-channel graph convolutional network with edge enhancement for retinal vessel segmentation IEEE Trans. Med. Imag., 41 (2022), pp. 1975-1989, 10.1109/TMI.2022.3151666; 129 L. Abualigah, M.A. Elaziz, P. Sumari, Z.W. Geem, A.H. Gandomi Reptile Search Algorithm (RSA): a nature-inspired meta-heuristic optimizer Expert Syst. Appl., 191 (2022), p. 116158, 10.1016/j.eswa.2021.116158; 130 C. Kumar, T.D. Raj, M. Premkumar, T.D. Raj A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters Optik, 223 (2020), p. 165277, 10.1016/j.ijleo.2020.165277; 131 E. Zorarpacı, S.A. Özel A hybrid approach of differential evolution and artificial bee colony for feature selection Expert Syst. Appl., 62 (2016), pp. 91-103, 10.1016/j.eswa.2016.06.004; 39; 26; https://hdl.handle.net/11323/10499; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/

  5. 5
    Academic Journal

    وصف الملف: 17 páginas; application/pdf

    Relation: Computer Systems Science and Engineering; [1] T. Rahman, A. Khandakar, M. A. Kadir, K. R. Islam, K. F. Islam et al., “Reliable tuberculosis detection using chest x-ray with deep learning, segmentation and visualization,” IEEE Access, vol. 8, pp. 191191–191586, 2020.; [2] N. Baghdadi, A. S. Maklad, A. Malki and M. A. Deif, “Reliable sarcoidosis detection using chest x-rays with efficientnets and stain-normalization techniques,” Sensors, vol. 22, no. 10, pp. 3846, 2022.; [3] L. An, K. Peng, X. Yang, P. Huang, Y. Luo et al., “E-TBNet: Light deep neural network for automatic detection of tuberculosis with x-ray dr imaging,” Sensors, vol. 22, no. 3, pp. 821, 2022.; [4] E. Showkatian, M. Salehi, H. Ghaffari, R. Reiazi, N. Sadighi et al., “Deep learning-based automatic detection of tuberculosis disease in chest X-ray images,” Polish Journal of Radiology, vol. 87, no. 1, pp. 118, 2022.; [5] T. Khatibi, A. Shahsavari and A. Farahani, “Proposing a novel multi-instance learning model for tuberculosis recognition from chest X-ray images based on CNNs, complex networks and stacked ensemble,” Physical and Engineering Sciences in Medicine, vol. 44, no. 1, pp. 291–311, 2021.; [6] A. S. Becker, C. Blüthgen, C. S. Wiltshire, B. Castelnuovo, A. Kambugu et al., “Detection of tuberculosis patterns in digital photographs of chest X-ray images using deep learning: Feasibility study,” The International Journal of Tuberculosis and Lung Disease, vol. 22, no. 3, pp. 328–335, 2018.; [7] S. Rajaraman and S. K. Antani, “Modality-specific deep learning model ensembles toward improving tb detection in chest radiographs,” IEEE Access, vol. 8, pp. 27318–27327, 2020.; [8] R. O. Panicker, K. S. Kalmady, J. Rajan and M. K. Sabu, “Automatic detection of tuberculosis bacilli from microscopic sputum smear images using deep learning methods,” Biocybernetics and Biomedical Engineering, vol. 38, no. 3, pp. 691–699, 2018.; [9] G. Tavaziva, M. Harris, S. K. Abidi, C. Geric, M. Breuninger et al., “Chest x-ray analysis with deep learningbased software as a triage test for pulmonary tuberculosis: An individual patient data meta-analysis of diagnostic accuracy,” Clinical Infectious Diseases, vol. 74, no. 8, pp. 1390–1400, 2021.; [10] J. Escorcia-Gutierrez, K. Beleño, J. Jimenez-Cabas, M. Elhoseny, M. Dahman Alshehri et al., “An automated deep learning enabled brain signal classification for epileptic seizure detection on complex measurement systems,” Measurement, vol. 195, no. 10, pp. 111226, 2022.; [11] S. P. Kale, J. Patil, A. Kshirsagar and V. Bendre, “Early lungs tuberculosis detection using deep learning,” in Intelligent Sustainable Systems. Lecture Notes in Networks and Systems book series, vol. 333. Singapore: Springer, pp. 287–294, 2022.; [12] J. Escorcia-Gutierrez, J. Cuello, C. Barraza, M. Gamarra, P. Romero-Aroca et al., “Analysis of pre-trained convolutional neural network models in diabetic retinopathy detection through retinal fundus images,” in Int. Conf. on Computer Information Systems and Industrial Management, Barranquilla, Colombia, vol. 13293, pp. 202–213, 2022.; [13] J. Escorcia-Gutierrez, R. F. Mansour, K. Beleño, J. Jiménez-Cabas, M. Pérez et al., “Automated deep learning empowered breast cancer diagnosis using biomedical mammogram images,” Computers, Materials and Continua, vol. 71, no. 3, pp. 4221–4235, 2022.; [14] K. Muthumayil, S. Manikandan, S. Srinivasan, J. Escorcia-Gutierrez, M. Gamarra et al., “Diagnosis of leukemia disease based on enhanced virtual neural network,” Computers, Materials and Continua, vol. 69, no. 2, pp. 2031–2044, 2021.; [15] S. Althubiti, J. Escorcia-Gutierrez, M. Gamarra, R. Soto-Diaz, R. F. Mansour et al., “Improved metaheuristics with machine learning enabled medical decision support system,” Computers, Materials and Continua, vol. 73, no. 2, pp. 2423–2439, 2022.; [16] S. Manikandan, S. Srinivasan, J. Escorcia-Gutiérrez, M. Gamarra and R. F. Mansour, “Diagnosis of leukemia disease based on enhanced virtual neural network,” Computers, Materials and Continua, vol. 69, no. 2, pp. 2031–2044, 2021.; [17] Q. H. Nguyen, B. P. Nguyen, S. D. Dao, B. Unnikrishnan, R. Dhingra et al., “Deep learning models for tuberculosis detection from chest x-ray images,” in 26th Int. Conf. on Telecommunications (ICT), Hanoi, Vietnam, pp. 381–385, 2019.; [18] S. J. Heo, Y. Kim, S. Yun, S. S. Lim, J. Kim et al., “Deep learning algorithms with demographic information help to detect tuberculosis in chest radiographs in annual workers’ health examination data,” International Journal of Environmental Research and Public Health, vol. 16, no. 2, pp. 250, 2019.; [19] M. H. A. Hijazi, S. K. T. Hwa, A. Bade, R. Yaakob and M. S. Jeffree, “Ensemble deep learning for tuberculosis detection using chest X-ray and canny edge detected images,” IAES International Journal of Artificial Intelligence, vol. 8, no. 4, pp. 429, 2019.; [20] J. Escorcia-Gutierrez, J. Torrents-Barrena, M. Gamarra, P. Romero-Aroca, A. Valls et al., “Convexity shape constraints for retinal blood vessel segmentation and foveal avascular zone detection,” Computers in Biology and Medicine, vol. 127, pp. 104049, 2020.; [21] S. Dey, R. Roychoudhury, S. Malakar and R. Sarkar, “An optimized fuzzy ensemble of convolutional neural networks for detecting tuberculosis from Chest X-ray images,” Applied Soft Computing, vol. 114, no. 2, pp. 108094, 2022.; [22] E. Tasci, C. Uluturk and A. Ugur, “A voting-based ensemble deep learning method focusing on image augmentation and preprocessing variations for tuberculosis detection,” Neural Computing and Applications, vol. 33, no. 22, pp. 15541–15555, 2021.; [23] S. K. T. Hwa, A. Bade, M. H. A. Hijazi and M. Saffree Jeffree, “Tuberculosis detection using deep learning and contrastenhanced canny edge detected X-Ray images,” IAES International Journal of Artificial Intelligence, vol. 9, no. 4, pp. 713, 2020.; [24] A. T. Sahlol, M. A. Elaziz, A. T. Jamal, R. Damaševičius and O. Farouk Hassan, “A novel method for detection of tuberculosis in chest radiographs using artificial ecosystem-based optimisation of deep neural network features,” Symmetry, vol. 12, no. 7, pp. 1146, 2020.; [25] C. Dasanayaka and M. B. Dissanayake, “Deep learning methods for screening pulmonary tuberculosis using chest x-rays,” Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, vol. 9, no. 1, pp. 39–49, 2021.; [26] A. Haq, J. Li, S. Ahmad, S. Khan, M. Alshara et al., “Diagnostic approach for accurate diagnosis of covid19 employing deep learning and transfer learning techniques through chest x-ray images clinical data in ehealthcare,” Sensors, vol. 21, no. 24, pp. 8219, 2021.; [27] R. F. Mansour, J. Escorcia-Gutierrez, M. Gamarra, D. Gupta, O. Castillo et al., “Unsupervised deep learning based variational autoencoder model for COVID-19 diagnosis and classification,” Pattern Recognition Letters, vol. 151, no. 6, pp. 267–274, 2021.; [28] H. Okut, “Deep learning for subtyping and prediction of diseases: Long-short term memory,” in Deep Learning Applications. United Kingdom: IntechOpen, 2021.; [29] R. Karthick, A. Senthilselvi, P. Meenalochini and S. S. Pandi, “Design and analysis of linear phase finite impulse response filter using water strider optimization algorithm in FPGA,” Circuits, Systems, and Signal Processing, vol. 41, no. 9, pp. 5254–5282, 2022.; 1353; 1337; 46; J. Escorcia-Gutierrez, R. Soto-Diaz, N. Madera, C. Soto, F. Burgos-Florez et al., "Computer-aided diagnosis for tuberculosis classification with water strider optimization algorithm," Computer Systems Science and Engineering, vol. 46, no.2, pp. 1337–1353, 2023. https://doi.org/10.32604/csse.2023.035253; https://hdl.handle.net/11323/10111; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/

  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
  14. 14
    Academic Journal

    وصف الملف: 15 páginas; application/pdf

    Relation: Computers, Materials and Continua; [1] S. K. Lakshmanaprabu, S. N. Mohanty, K. Shankar, N. Arunkumar and G. Ramireze, “Optimal deep learning model for classification of lung cancer on CT images,” Future Generation Computer Systems, vol.92, no. 1, pp. 374–382, 2019.; [2] I. V. Pustokhina, D. A. Pustokhin, T. Vaiyapuri, D. Gupta, S. Kumar et al., “An automated deep learning based anomaly detection in pedestrian walkways for vulnerable road users safety,”Safety Science, vol. 142, pp. 105356, 2021.; [3] K. Shankar, E. Perumal, P. Tiwari, M. Shorfuzzaman and D. Gupta, “Deep learning and evolutionary intelligence with fusion-based feature extraction for detection of COVID-19 from chest X-ray images,” Multimedia Systems, vol. 66, no. 2, pp. 1921, 2021.; [4] I. V. Pustokhina, D. A. Pustokhin, P. K. Pareek, D. Gupta, A. Khanna et al., “Energy-efficient clusterbased unmanned aerial vehicle networks with deep learning-based scene classification model,”International Journal of Communication Systems, vol. 34, no. 8, pp. 1–16, 2021.; [5] T. Vaiyapuri, S. N. Mohanty, M. Sivaram, I. V. Pustokhina, D. A. Pustokhin et al., “Automatic vehicle license plate recognition using optimal deep learning model,” Computers, Materials & Continua, vol. 67, no. 2, pp. 1881–1897, 2021.; [6] R. F. Mansour, A. El Amraoui, I. Nouaouri, V. G. Díaz, D. Gupta et al., “Artificial intelligence and internet of things enabled disease diagnosis model for smart healthcare systems,” IEEE Access, vol. 9, pp. 45137– 45146, 2021.; [7] L. Li, L. Sun, Y. Xue, S. Li, X. Huang et al., “Fuzzy multilevel image thresholding based on improved coyote optimization algorithm,” IEEE Access, vol. 9, pp. 33595–33607, 2021.; [8] R. F. Mansour, J. E. Gutierrez, M. Gamarra, V. García, D. Gupta et al., “Artificial intelligence with big data analytics-based brain intracranial hemorrhage e-diagnosis using CT images,” Neural Computing and Applications, pp. 1–13, 2021. https://doi.org/10.1007/s00521-021-06240-y.; [9] R. F. Mansour, “A robust deep neural network based breast cancer detection and classification,” International Journal of Computational Intelligence and Applications, vol. 19, no. 1, pp. 2050007, 2020.; [10] R. F. Mansour, “Evolutionary computing enriched ridge regression model for craniofacial reconstruction,” Multimedia Tools and Applications, vol. 79, no. 31, pp. 22065–22082, 2020.; [11] C. Zhang, J. Zhao, J. Niu and D. Li, “New convolutional neural network model for screening and diagnosis of mammograms,” PLoS ONE, vol. 15, no. 8, pp. e0237674, 2020.; [12] M. Altaf, “A hybrid deep learning model for breast cancer diagnosis based on transfer learning and pulsecoupled neural networks,” Mathematical Biosciences and Engineering, vol. 18, no. 5, pp. 5029–5046, 2021.; [13] A. Yala, C. Lehman, T. Schuster, T. Portnoi and R. Barzilay, “A deep learning mammography-based model for improved breast cancer risk prediction,” Radiology, vol. 292, no. 1, pp. 60–66, 2019.; [14] L. Shen, L. R. Margolies, J. H. Rothstein, E. Fluder, R. McBride et al., “Deep learning to improve breast cancer detection on screening mammography,” Scientific Reports, vol. 9, no. 1, pp. 12495, 2019.; [15] A. Kumar, S. Mukherjee and A. K. Luhach, “Deep learning with perspective modeling for early detection of malignancy in mammograms,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 22, no. 4, pp. 627–643, 2019.; [16] P. Kaur, G. Singh and P. Kaur, “Intellectual detection and validation of automated mammogram breast cancer images by multi-class SVM using deep learning classification,” Informatics in Medicine Unlocked, vol. 16, no. 1, pp. 100239, 2019.; [17] S. S. Aboutalib, A. A. Mohamed, W. A. Berg, M. L. Zuley, J. H. Sumkin et al., “Deep learning to distinguish recalled but benign mammography images in breast cancer screening,” Clinical Cancer Research, vol. 24, no. 23, pp. 5902–5909, 2018.; [18] M. A. A. Masni, M. A. A. Antari, J. M. Park, G. Gi, T. Y. Kim et al., “Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system,” Computer Methods and Programs in Biomedicine, vol. 157, no. 1, pp. 85–94, 2018.; [19] M. A. Al-antari, S. M. Han and T. S. Kim, “Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms,” Computer Methods and Programs in Biomedicine, vol. 196, pp. 105584, 2020.; [20] S. Punitha, A. Amuthan and K. S. Joseph, “Benign and malignant breast cancer segmentation using optimized region growing technique,” Future Computing and Informatics Journal, vol. 3, no. 2, pp. 348– 358, 2018.; [21] V. Rajinikanth, S. C. Satapathy, S. L. Fernandes and S. Nachiappan, “Entropy based segmentation of tumor from brain MR images–A study with teaching learning based optimization,” Pattern Recognition Letters, vol. 94, no. 1, pp. 87–95, 2017.; [22] A. Helwan, M. K. S. Ma”aitah, R. H. Abiyev, S. Uzelaltinbulat and B. Sonyel, “Deep learning based on residual networks for automatic sorting of bananas,” Journal of Food Quality, vol. 2021, pp. 1–11, 2021.; [23] A. A. Nahid, M. A. Mehrabi and Y. Kong, “Histopathological breast cancer image classification by deep neural network techniques guided by local clustering,”BioMed Research International, vol. 2018, pp. 1–20, 2018.; [24] M. Khishe and M. R. Mosavi, “Classification of underwater acoustical dataset using neural network trained by chimp optimization algorithm,” Applied Acoustics, vol. 157, no. 13, pp. 107005, 2020.; [25] L. L. S. Linhares, A. I. R. Fontes, A. M. Martins, F. M. U. Araújo and L. F. Q. Silveira, “Fuzzy wavelet neural network using a correntropy criterion for nonlinear system identification,” Mathematical Problems in Engineering, vol. 2015, no. 5, pp. 1–12, 2015.; [26] Dataset. [Online]. Available: http://peipa.essex.ac.uk/info/mias.html.; 4221; 71; 4235; Escorcia-Gutierrez, J., Mansour, R. F., Beleño, K., Jiménez-Cabas, J., Pérez, M. et al. (2022). Automated Deep Learning Empowered Breast Cancer Diagnosis Using Biomedical Mammogram Images. CMC-Computers, Materials & Continua, 71(3), 4221–4235.; https://hdl.handle.net/11323/9076; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/

  15. 15
    Academic Journal

    وصف الملف: 17 páginas; application/pdf

    Relation: Computers, Materials and Continua; [1] M. W. L. Moreira, J. J. P. C. Rodrigues, V. Korotaev, J. Al-Muhtadi and N. Kumar, “A comprehensive review on smart decision support systems for health care,” IEEE Systems Journal, vol. 13, no. 3, pp. 3536–3545, 2019.; [2] E. S. Kumar and P. S. Jayadev, “Deep learning for clinical decision support systems: A review from the panorama of smart healthcare,” Deep Learning Techniques for Biomedical and Health Informatics, Studies in Big Data Book Series, vol. 68, pp. 79–99, 2020.; [3] W. Sun, G. Z. Dai, X. R. Zhang, X. Z. He and X. Chen, “TBE-Net: A three-branch embedding network with part-aware ability and feature complementary learning for vehicle re-identification,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–13, 2021.; [4] W. Sun, L. Dai, X. R. Zhang, P. S. Chang and X. Z. He, “RSOD: Real-time small object detection algorithm in UAV-based traffic monitoring,” Applied Intelligence, vol. 92, no. 6, pp. 1–16, 2021.; [5] C. A. Kontovas, “The green ship routing and scheduling problem (GSRSP): A conceptual approach,” Transportation Research Part D: Transport and Environment, vol. 31, no. 3, pp. 61–69, 2014.; [6] S. Ganguly, “Multi-objective distributed generation penetration planning with load model using particle SWARM optimization,” Decision Making: Applications in Management and Engineering, vol. 3, no. 1, pp. 30–42, 2020.; [7] H. Engqvist, T. Z. Parris, J. Biermann, E. W. Rönnerman, P. Larsson et al., “Integrative genomics approach identifies molecular features associated with early-stage ovarian carcinoma histotypes,” Scientific Reports, vol. 10, no. 1, pp. 1–13, 2020.; [8] M. Akazawa and K. Hashimoto, “Artificial intelligence in ovarian cancer diagnosis,” Anticancer Research, vol. 40, no. 8, pp. 4795–4800, 2020.; [9] R. F. Mansour, J. Escorcia-Gutierrez, M. Gamarra, V. García, D. Gupta et al., “Artificial intelligence with big data analytics-based brain intracranial hemorrhage e-diagnosis using CT images,” Neural Computing and Applications, vol. 11, no. 1, pp. 1–13, 2021.; [10] K. Muthumayil, S. Manikandan, K. Srinivasan, J. Escorcia-Gutierrez, M. Gamarra et al., “Diagnosis of leukemia disease based on enhanced virtual neural network, Computers, Materials & Continua, vol. 69, no. 2, pp. 2031–2044, 2021.; [11] J. Escorcia-Gutierrez, J. Torrents-Barrena, M. Gamarra, N. Madera, P. Romero-Aroca et al., “A feature selection strategy to optimize retinal vasculature segmentation,” Computers, Materials & Continua, vol. 70, no. 2, pp. 2971–2989, 2021.; [12] J. Escorcia-Gutierrez, R. F. Mansour, K. Beleño, J. Jiménez-Cabas, M. Pérez et al., “Automated deep learning empowered breast cancer diagnosis using biomedical mammogram images,”Computers, Materials & Continua, vol. 71, no. 2, pp. 4221–4235, 2022.; [13] L. Zhang, J. Huang and L. Liu, “Improved deep learning network based in combination with cost-sensitive learning for early detection of ovarian cancer in color ultrasound detecting system,” Journal of MedicalSystems, vol. 43, no. 8, pp. 1–9, 2019.; [14] M. Wu, C. Yan, H. Liu and Q. Liu, “Automatic classification of ovarian cancer types from cytological images using deep convolutional neural networks,” Bioscience Reports, vol. 38, no. 3, pp. 1–11, 2018.; [15] A. Consiglio, G. Casalino, G. Castellano, G. Grillo, E. Perlino et al., “Explaining ovarian cancer gene expression profiles with fuzzy rules and genetic algorithms,” Electronics, vol. 10, no. 4, pp. 1–13, 2021.; [16] J. H. Bae, M. Kim, J. S. Lim and Z. W. Geem, “Feature selection for colon cancer detection using k-means clustering and modified harmony search algorithm,” Mathematics, vol. 9, no. 5, pp. 1–14, 2021.; [17] S. Sujamol, E. R. Vimina and U. Krishnakumar, “Improving recurrence prediction accuracy of ovarian cancer using multi-phase feature selection methodology,” Applied Artificial Intelligence, vol. 35, no. 3, pp. 206–226, 2021.; [18] E. S. Paik, J. W. Lee, J. Y. Park, J. H. Kim, M. Kim et al., “Prediction of survival outcomes in patients with epithelial ovarian cancer using machine learning methods,” Journal of Gynecologic Oncology, vol. 30, no.4, pp. 1–13, 2019.; [19] A. Arfiani and Z. Rustam, “Ovarian cancer data classification using bagging and random forest,” AIP Conference Proceedings, vol. 2168, no. 1, pp. 1–6, 2019.; [20] M. Elhoseny, G. B. Bian, S. K. Lakshmanaprabu, K. Shankar, A. K. Singh et al., “Effective features to classify ovarian cancer data in internet of medical things,” Computer Networks, vol. 159, no. 17, pp. 147–156, 2019.; [21] Y. E. Manzalawy, T. Y. Hsieh, M. Shivakumar, D. Kim and V. Honavar, “Min-redundancy and maxrelevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data,”BMC Medical Genomics, vol. 11, no. S3, pp. 20–31, 2018.; [22] U. Ahmed, R. Mumtaz, H. Anwar, A. A. Shah, R. Irfan et al., “Efficient water quality prediction using supervised machine learning,” Water, vol. 11, no. 11, pp. 1–14, 2019.; [23] V. Hayyolalam and A. A. P. Kazem, “Black widow optimization algorithm: A novel meta-heuristic approach for solving engineering optimization problems,” Engineering Applications of Artificial Intelligence, vol. 87, no. 1, pp. 1–28, 2020.; [24] L. T. Brady, C. L. Baldwin, A. Bapat, Y. Kharkov and A. V. Gorshkov, “Optimal protocols in quantum annealing and quantum approximate optimization algorithm problems,” Physical Review Letters, vol. 126, no. 7, pp. 1–11, 2021.; [25] V. B. Semwal, N. Gaud and G. C. Nandi, “Human gait state prediction using cellular automata and classification using ELM,” in Machine Intelligence and Signal Analysis, Advances in Intelligent Systems and Computing Book Series, vol. 748, Singapore: Springer, pp. 135–145, 2019.; [26] A. E. Ezugwu and D. Prayogo, “Symbiotic organisms search algorithm: Theory, recent advances and applications,” Expert Systems with Applications, vol. 119, no. 6, pp. 184–209, 2019.; 2439; 2423; 73; S. A. Althubiti, J. Escorcia-Gutierrez, M. Gamarra, R. Soto-Diaz, R. F. Mansour et al., "Improved metaheuristics with machine learning enabled medical decision support system," Computers, Materials & Continua, vol. 73, no.2, pp. 2423–2439, 2022.; https://hdl.handle.net/11323/9382; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/

  16. 16
    Academic Journal

    وصف الملف: 16 páginas; application/pdf

    Relation: Agriculture (Switzerland); 1. Patel, H.; Patel, D. A brief survey of data mining techniques applied to agricultural data. Int. J. Comput. Appl. 2014, 95, 80–83. [CrossRef]; 2. Padarian, J.; Minasny, B.; McBratney, A.B. Using deep learning to predict soil properties from regional spectral data. Geoderma Reg. 2019, 16, e00198. [CrossRef]; 3. Ji, C.; Liu, H.; Cha, Z.; Lin, Q.; Feng, G. Spatial-Temporal Variation of N, P, and K Stoichiometry in Cropland of Hainan Island. Agriculture 2021, 12, 39. [CrossRef]; 4. Kayad, A.; Sozzi, M.; Gatto, S.; Whelan, B.; Sartori, L.; Marinello, F. Ten years of corn yield dynamics at field scale under digital agriculture solutions: A case study from North Italy. Comput. Electron. Agric. 2021, 185, 106126. [CrossRef]; 5. Taghizadeh-Mehrjardi, R.; Khademi, H.; Khayamim, F.; Zeraatpisheh, M.; Heung, B.; Scholten, T. A Comparison of Model Averaging Techniques to Predict the Spatial Distribution of Soil Properties. Remote Sens. 2022, 14, 472. [CrossRef]; 6. Zeraatpisheh, M.; Garosi, Y.; Owliaie, H.R.; Ayoubi, S.; Taghizadeh-Mehrjardi, R.; Scholten, T.; Xu, M. Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates. Catena 2022, 208, 105723. [CrossRef]; 7. Davenport, J.; Jabro, J. Assessment of hand held ion selective electrode technology for direct measurement of soil chemical properties. Commun. Soil Sci. Plant Anal. 2011, 32, 3077–3085. [CrossRef]; 8. Yang, M.; Xu, D.; Chen, S.; Li, H.; Shi, Z. Evaluation of Machine Learning Approaches to Predict Soil Organic Matter and pH Using vis-NIR Spectra. Sensors 2019, 19, 263. [CrossRef]; 9. Yu, H.; Liu, D.; Chen, G.; Wan, B.; Wang, S.; Yang, B. A neural network ensemble method for precision fertilization modeling. Math. Comput. Model. 2010, 51, 1375–1382. [CrossRef]; 11. Chambers, O. Machine Learning Strategy for Soil Nutrients Prediction Using Spectroscopic Method. Sensors 2021, 21, 4208.; 12. Wu, C.; Chen, Y.; Hong, X.; Liu, Z.; Peng, C. Evaluating soil nutrients of Dacrydium pectinatum in China using machine learning techniques. For. Ecosyst. 2020, 7, 30. [CrossRef]; 13. Rose, S.; Nickolas, S.; Sangeetha, S. Machine Learning and Statistical Approaches used in Estimating Parameters that Affect the Soil Fertility Status: A Survey. In Proceedings of the 2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT), Karnataka, India, 16–18 August 2018; IEEE: New York, NY, USA, 2018; pp. 381–385.; 14. Rajamanickam, J. Predictive model construction for prediction of soil fertility using decision tree machine learning algorithm. INFOCOMP J. Comput. Sci. 2021, 20, 49–55.; 15. Rajamanickam, J.; Mani, S.D. Kullback chi square and Gustafson Kessel probabilistic neural network based soil fertility prediction. Concurr. Comput. Pract. Exp. 2021, 33, e6460. [CrossRef]; 16. Sirsat, M.S.; Cernadas, E.; Fernández-Delgado, M.; Barro, S. Automatic prediction of village-wise soil fertility for several nutrients in India using a wide range of regression methods. Comput. Electron. Agric. 2018, 154, 120–133. [CrossRef]; 17. Ning, J.; Sheng, M.; Yi, X.; Wang, Y.; Hou, Z.; Zhang, Z.; Gu, X. Rapid evaluation of soil fertility in tea plantation based on near-infrared spectroscopy. Spectrosc. Lett. 2018, 51, 463–471. [CrossRef]; 18. Wang, J.; Wang, Y.; Yang, J. Forecasting of Significant Wave Height Based on Gated Recurrent Unit Network in the Taiwan Straitand Its Adjacent Waters. Water 2021, 13, 86. [CrossRef]; 19. Hinton, G.E. Deep belief network. Scholarpedia 2009, 4, 5947. [CrossRef]; 20. Sokkhey, P.; Okazaki, T. Development and Optimization of Deep Belief Networks Applied for Academic Performance Prediction with Larger Datasets. IEIE Trans. Smart Process. Comput. 2020, 9, 298–311. [CrossRef]; 21. Minh-Tuan, N.; Kim, Y.H. Bidirectional Long Short-Term Memory Neural Networks for Linear Sum Assignment Problems. Appl. Sci. 2019, 9, 3470. [CrossRef]; 22. Hemeida, M.G.; Ibrahim, A.A.; Mohamed, A.A.A.; Alkhalaf, S.; El-Dine, A.M.B. Optimal allocation of distributed generators DG based Manta Ray Foraging Optimization algorithm (MRFO). Ain Shams Eng. J. 2021, 12, 609–619. [CrossRef]; 23. Livieris, I.E.; Kanavos, A.; Tampakas, V.; Pintelas, P. A weighted voting ensemble self-labeled algorithm for the detection of lung abnormalities from X-rays. Algorithms 2019, 12, 64. [CrossRef]; 16; 12; Escorcia-Gutierrez, J.; Gamarra, M.; Soto-Diaz, R.; Pérez, M.; Madera, N.; Mansour, R.F. Intelligent Agricultural Modelling of Soil Nutrients and pH Classification Using Ensemble Deep Learning Techniques. Agriculture 2022, 12, 977. https://doi.org/10.3390/agriculture12070977; https://hdl.handle.net/11323/9384; https://doi.org/10.3390/agriculture12070977; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/

  17. 17
    Academic Journal

    وصف الملف: 32 páginas; application/pdf

    Relation: Journal of Computational Design and Engineering; Abd Elaziz, M., Oliva, D., & Xiong, S. (2017). An improved oppositionbased sine cosine algorithm for global optimization. Expert Systems with Applications, 90, 484–500. https://doi.org/10.1016/j.eswa .2017.07.043.; Abdelaziz, A. Y., & Fathy, A. (2017). A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks. Engineering Science and Technology, an International Journal, 20(2), 391–402. https://doi.org/10.1016/j.jestch.2017.02.004.; Agrawal, P., Abutarboush, H. F., Ganesh, T., & Mohamed, A.W. (2021a). Metaheuristic algorithms on feature selection: A survey of one decade of research (2009–2019).IEEE Access, 9, 26766–26791.https: //doi.org/10.1109/ACCESS.2021.3056407.; Agrawal, P., Ganesh, T., & Mohamed, A. W. (2021b). A novel binary gaining–sharing knowledge-based optimization algorithm for feature selection. Neural Computing and Applications, 33(11), 5989–6008. https://doi.org/10.1007/s005 21-020-05375-8.; Ahmadianfar, I., Asghar Heidari, A., Gandomi, A. H., Chu, X., & Chen, H. (2021). RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications, 181, 115079. https://doi.org/https://doi.org/10.1016/j.es wa.2021.115079.; Ahmadianfar, I., Asghar Heidari, A., Noshadian, S., Chen, H., & Gandomi, A. H. (2022). INFO: An efficient optimization algorithm based on weighted mean of vectors. Expert Systems with Applications, 195, 116516. https://doi.org/https://doi.org/10.1016/j.eswa .2022.116516.; Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Computers & Structures, 169, 1–12. https://doi.org/10.1016/ j.compstruc.2016.03.001.; Attia, A. F., El Sehiemy, R. A., & Hasanien, H. M. (2018). Optimal power flow solution in power systems using a novel sine-cosine algorithm. International Journal of Electrical Power & Energy Systems, 99, 331–343. https://doi.org/10.1016/j.ijepes.2018.01.024.; Awad, N. H., Ali, M. Z., Liang, J. J., Quv, B. Y., & Suganthan, P. N. (2016). Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained realparameter numerical optimization. Technical report. Nanyang Technological University. http://www.ntu.edu.sg/home/epnsugan/.; Bureerat, S., & Pholdee, N. (2017). Adaptive sine cosine algorithm integrated with differential evolution for structural damage detection. In International Conference on Computational Science and Its Applications(pp. 71–86). https://doi.org/10.1007/978-3-319-62392- 4_6.; Cai, J., Luo, J., Wang, S., & Yang, S. (2018a). Feature selection in machine learning: A new perspective. Neurocomputing, 300, 70–79. https://doi.org/10.1016/j.neucom.2017.11.077.; Cai, Z., Gu, J., Wen, C., Zhao, D., Huang, C., Huang, H., & Chen, H. (2018b). An intelligent Parkinson’s disease diagnostic system based on a chaotic bacterial foraging optimization enhanced fuzzy KNN approach. Computational and Mathematical Methods in Medicine, 2018, 2396952. https://doi.org/10.1155/2018/2396952.; Cao, B., Zhao, J., Lv, Z., & Yang, P. (2020). Diversified personalized recommendation optimization based on mobile data. IEEE Transactions on Intelligent Transportation Systems, 22(4), 2133–2139. https: //doi.org/10.1109/TITS.2020.3040909.; Cao, B., Li, M., Liu, X., Zhao, J., Cao, W., & Lv, Z. (2021a). Many-objective deployment optimization for a drone-assisted camera network. IEEE Transactions on Network Science and Engineering, 8(4), 2756– 2764. https://doi.org/10.1109/TNSE.2021.3057915.; Cao, B., Sun, Z., Zhang, J., & Gu, Y. (2021b). Resource allocation in 5G IoV architecture based on SDN and fog-cloud computing. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3832–3840. https://doi.org/10.1109/TITS.2020.3048844.; Cao, B., Fan, S., Zhao, J., Tian, S., Zheng, Z., Yan, Y., & Yang, P. (2021c). Large-scale many-objective deployment optimization of edge servers. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3841–3849. https://doi.org/10.1109/TITS.2021.3059455.; Cao, X., Sun, X., Xu, Z., Zeng, B., & Guan, X. (2022). Hydrogen-based networked microgrids planning through two-stage stochastic programming with mixed-integer conic recourse. IEEE Transactions on Automation Science and Engineering, 19, 3672–3685. https: //doi.org/10.1109/TASE.2021.3130179.; Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16–28. https:// doi.org/10.1016/j.compeleceng.2013.11.024.; Chantar, H., Mafarja, M., Alsawalqah, H., Heidari, A. A., Aljarah, I., & Faris, H. (2020). Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text classification. Neural Computing and Applications, 32(16), 12201–12220. https://do i.org/10.1007/s00521-019-04368-6.; Chen, H. L., Yang, B., Wang, S. J., Wang, G., Liu, D. Y., Li, H. Z., & Liu, W. B. (2014). Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy. Applied Mathematics and Computation, 239, 180–197. https://doi.org/10.101 6/j.amc.2014.04.039.; Chen, H., Jiao, S., Heidari, A. A., Wang, M., Chen, X., & Zhao, X. (2019). An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models. Energy Conversion and Management, 195, 927–942. https://doi.org/10.1016/j.enconm an.2019.05.057.; Chen, H., Heidari, A. A., Zhao, X., Zhang, L., & Chen, H. (2020a). Advanced orthogonal learning-driven multi-swarm sine cosine optimization: Framework and case studies. Expert Systems with Applications, 144, 113113. https://doi.org/10.1016/j.eswa.2019.113113.; Chen, H., Wang, M., & Zhao, X. (2020b). A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems. Applied Mathematics and Computation, 369, 124872. https://doi.org/10.1016/j.amc.2019.124872.; Chen, C., Wang, X., Yu, H., Zhao, N., Wang, M., & Chen, H. (2020c). An enhanced comprehensive learning particle swarm optimizer with the elite-based dominance scheme. Complexity, 2020, 4968063. https://doi.org/10.1155/2020/4968063.; Chen, H., Xiong, Y., Li, S., Song, Z., Hu, Z., & Liu, F. (2022). Multisensor data driven with PARAFAC-IPSO-PNN for identification of mechanical nonstationary multi-fault mode. Machines, 10(2), 155. https://doi.org/10.3390/machines10020155.; Dara, S., & Banka, H. (2014). A binary PSO feature selection algorithm for gene expression data. In Proceedings of the 2014 International Conference on Advances in Communication and Computing Technologies(pp. 1–6). https://doi.org/10.1109/EIC.2015.7230734.; Deng, W., Xu, J., Song, Y., & Zhao, H. (2020). An effective improved co-evolution ant colony optimisation algorithm with multistrategies and its application. International Journal of Bio-Inspired Computation, 16(3), 158–170. https://doi.org/10.1504/IJBIC.2020.1 11267.; Deng, W., Xu, J., Zhao, H., & Song, Y. (2022). A novel gate resource allocation method using improved PSO-based QEA. IEEE Transactions on Intelligent Transportation Systems, 23, 1737–1745. https: //doi.org/10.1109/TITS.2020.3025796.; Deng, W., Zhang, X., Zhou, Y., Liu, Y., Zhou, X., Chen, H., & Zhao, H. (2022). An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems. Information Sciences, 585, 441–453. https://doi.org/https://doi.org/10.1016/j.ins.2021.1 1.052.; Díaz, P., Pérez-Cisneros, M., Cuevas, E., Avalos, O., Gálvez, J., Hinojosa, S., & Zaldivar, D. (2018). An improved crow search algorithm applied to energy problems. Energies, 11(3), 571. https://doi.org/10.3 390/en11030571.; Dong, J., Cong, Y., Sun, G., Fang, Z., & Ding, Z. (2021). Where and how to transfer: Knowledge aggregation-induced transferability perception for unsupervised domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/TPAMI.2021.3128560.; Dong, R., Chen, H., Heidari, A. A., Turabieh, H., Mafarja, M., & Wang, S. (2021). Boosted kernel search: Framework, analysis and case studies on the economic emission dispatch problem. KnowledgeBased Systems, 233, 107529. https://doi.org/https://doi.org/10.1016/j.knosys.2021.107529.; Ewees, A. A., Abd Elaziz, M., Al-Qaness, M. A., Khalil, H. A., & Kim, S. (2020). Improved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentation. IEEE Access, 8, 26304–26315. https://doi.org/10.1109/ACCESS.202 0.2971249.; Faris, H., Mafarja, M. M., Heidari, A. A., Aljarah, I., Ala’M, A. Z., Mirjalili, S., & Fujita, H. (2018). An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowledge Based Systems, 154, 43–67. https://doi.org/10.1016/j.knosys.2018.05.009.; Gao, D., Wang, G. G., & Pedrycz, W. (2020). Solving fuzzy job-shop scheduling problem using DE algorithm improved by a selection mechanism. IEEE Transactions On Fuzzy Systems, 28(12), 3265–3275. https://doi.org/10.1109/TFUZZ.2020.3003506.; Guan, R., Zhang, H., Liang, Y., Giunchiglia, F., Huang, L., & Feng, X. (2022a). Deep feature-based text clustering and its explanation. IEEE Transactions on Knowledge and Data Engineering, 34, 3669–3680. https://doi.org/10.1109/TKDE.2020.3028943.; Guan, Q., Chen, Y., Wei, Z., Heidari, A. A., Hu, H., Yang, X. H., & Chen, F. (2022b). Medical image augmentation for lesion detection using a texture-constrained multichannel progressive GAN. Computers in Biology and Medicine, 145, 105444. https://doi.org/https://doi.or g/10.1016/j.compbiomed.2022.105444.; Gupta, S., & Deep, K. (2019a). A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Systems with Applications, 119, 210–230. https://doi.org/10.1016/j.eswa.2018.10.050.; Gupta, S., & Deep, K. (2019b). Improved sine cosine algorithm with crossover scheme for global optimization. Knowledge-Based Systems, 165, 374–406. https://doi.org/https://doi.org/10.1016/j.knos ys.2018.12.008.; Gupta, S., Deep, K., & Engelbrecht, A. P. (2020). A memory guided sine cosine algorithm for global optimization. Engineering Applications of Artificial Intelligence, 93, 103718. https://doi.org/10.1016/j.enga ppai.2020.103718.; Hall, M. A. (1999). Correlation-based feature selection for machine learning. Ph.D. Thesis, The University of Waikato. https://hdl.handle.net/1 0289/15043.; Han, X., Han, Y., Chen, Q., Li, J., Sang, H., Liu, Y., & Nojima, Y. (2021). Distributed flow shop scheduling with sequence-dependent setup times using an improved iterated greedy algorithm. Complex System Modeling and Simulation, 1(3), 198–217. https://doi.org/ 10.23919/CSMS.2021.0018.; Hassan, B. A. (2021). CSCF: A chaotic sine cosine firefly algorithm for practical application problems. Neural Computing and Applications, 33(12), 7011–7030. https://doi.org/10.1007/s00521-020-05474-6.; He, Z., Yen, G. G., & Yi, Z. (2018). Robust multiobjective optimization via evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 23(2), 316–330. https://doi.org/10.1109/TEVC.2018.2859 638.; He, Z., Yen, G. G., & Lv, J. (2019). Evolutionary multiobjective optimization with robustness enhancement. IEEE Transactions on Evolutionary Computation, 24(3), 494–507. https://doi.org/10.1109/TEVC.201 9.2933444.; He, Z., Yen, G. G., & Ding, J. (2020). Knee-based decision making and visualization in many-objective optimization. IEEE Transactions on Evolutionary Computation, 25(2), 292–306. https://doi.org/10.1109/ TEVC.2020.3027620.; Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems-the International Journal of Escience, 97, 849–872. https://doi.org/10.1016/j.future.2019.02.0 28.; Heidari, A. A., Aljarah, I., Faris, H., Chen, H., Luo, J., & Mirjalili, S. (2020). An enhanced associative learning-based exploratory whale optimizer for global optimization. Neural Computing and Applications, 32, 5185–5211. https://doi.org/10.1007/s00521-019-04015-0.; Hu, Z., Wang, J., Zhang, C., Luo, Z., Luo, X., Xiao, L., & Shi, J. (2022). Uncertainty modeling for multicenter autism spectrum disorder classification using Takagi–Sugeno–Kang fuzzy systems. IEEE Transactions on Cognitive and Developmental Systems, 14(2), 730–739. https://doi.org/10.1109/TCDS.2021.3073368.; Hua, Y., Liu, Q., Hao, K., & Jin, Y. (2021). A survey of evolutionary algorithms for multi-objective optimization problems with irregular Pareto fronts. IEEE/CAA Journal of Automatica Sinica, 8(2), 303–318. https://doi.org/10.1109/JAS.2021.1003817.; Huang, H., Heidari, A. A., Xu, Y., Wang, M., Liang, G., Chen, H., & Cai, X. (2020). Rationalized sine cosine optimization with efficient searching patterns. IEEE Access, 8, 61471–61490. https://doi.org/10 .1109/ACCESS.2020.2983451.; Hussien, A. G., Heidari, A. A., Ye, X., Liang, G., Chen, H., & Pan, Z. (2022). Boosting whale optimization with evolution strategy and Gaussian random walks: An image segmentation method. Engineering with Computers. https://doi.org/10.1007/s00366-021-01542-0.; Islam, M. R., Ali, S. M., Fathollahi-Fard, A. M., & Kabir, G. (2021). A novel particle swarm optimization-based grey model for the prediction of warehouse performance. Journal of Computational Design and Engineering, 8(2), 705–727. https://doi.org/10.1093/jcde/qwab009.; Issa, M., Hassanien, A. E., Oliva, D., Helmi, A., Ziedan, I., & Alzohairy, A. (2018). ASCA-PSO: Adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment. Expert Systems with Applications, 99, 56–70. https://doi.org/ 10.1016/j.eswa.2018.01.019.; Ji, Y., Tu, J., Zhou, H., Gui, W., Liang, G., Chen, H., & Wang, M. (2020). An adaptive chaotic sine cosine algorithm for constrained and unconstrained optimization. Complexity, 2020, 6084917. https:// doi.org/10.1155/2020/6084917.; Kale, G. A., & Yüzgeç, U. (2022). Advanced strategies on update mechanism of sine cosine optimization algorithm for feature selection in classification problems. Engineering Applications of Artificial Intelligence, 107, 104506. https://doi.org/10.1016/j.engappai.2021.10 4506.; Kaveh, A., & Mahdavi, V. R. (2019). Multi-objective colliding bodies optimization algorithm for design of trusses. Journal of Computational Design and Engineering, 6(1), 49–59. https://doi.org/10.1016/j. jcde.2018.04.001.; Khalid, S., Khalil, T., & Nasreen, S. (2014). A survey of feature selection and feature extraction techniques in machine learning. In Proceedings of the 2014 Science and Information Conference(pp. 372– 378). https://doi.org/10.1109/SAI.2014.6918213.; Kira, K., & Rendell, L. A. (1992). A practical approach to feature selection. In Machine learning proceedings 1992(pp. 249–256). Morgan Kaufmann. https://doi.org/10.1016/B978-1-55860-247-2.50037-1.; Kumar, N., Hussain, I., Singh, B., & Panigrahi, B. K. (2017). Single sensor-based MPPT of partially shaded PV system for battery charging by using Cauchy and Gaussian sine cosine optimization. IEEE Transactions on Energy Conversion, 32(3), 983–992. https: //doi.org/10.1109/TEC.2017.2669518.; Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., & Guibas, L. (2017a). Grass: Generative recursive autoencoders for shape structures. ACM Transactions on Graphics (TOG), 36(4), 1–14. https://doi.org/10 .1145/3072959.3073637.; Li, J., Chen, C., Chen, H., & Tong, C. (2017b). Towards context-aware social recommendation via individual trust. Knowledge-Based Systems, 127, 58–66. https://doi.org/https://doi.org/10.1016/j.knosys .2017.02.032.; Li, J., & Lin, J. (2020). A probability distribution detection based hybrid ensemble QoS prediction approach. Information Sciences, 519, 289– 305. https://doi.org/https://doi.org/10.1016/j.ins.2020.01.046.; Li, J., Zheng, X. L., Chen, S. T., Song, W. W., & Chen, D. R. (2014). An efficient and reliable approach for quality-of-service-aware service composition. Information Sciences, 269, 238–254. https://doi.org/ht tps://doi.org/10.1016/j.ins.2013.12.015.; Li, Q., Chen, H., Huang, H., Zhao, X., Cai, Z., Tong, C., & Tian, X. (2017). An enhanced grey wolf optimization based feature selec tion wrapped kernel extreme learning machine for medical diagnosis. Computational and Mathematical Methods in Medicine, 2017, 9512741. https://doi.org/10.1155/2017/9512741.; Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems, 111, 300–323. https://doi.org/10 .1016/j.future.2020.03.055.; Li, S., Liu, C. H., Lin, Q., Wen, Q., Su, L., Huang, G., & Ding, Z. (2020). Deep residual correction network for partial domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(7), 2329–2344. https://doi.org/10.1109/TPAMI.2020.2964173.; Liang, J., Qu, B., Suganthan, P. N., & Hernández-Díaz, A. G. (2013). Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report, 201212(34), 281– 295.; Liang, H., Liu, Y., Shen, Y., Li, F., & Man, Y. (2018). A hybrid bat algorithm for economic dispatch with random wind power. IEEE Transactions on Power Systems, 33(5), 5052–5061. https://doi.org/10 .1109/TPWRS.2018.2812711.; Liang, X., Cai, Z., Wang, M., Zhao, X., Chen, H., & Li, C. (2022). Chaotic oppositional sine–cosine method for solving global optimization problems. Engineering with Computers, 38, 1223–1239. https://doi. org/10.1007/s00366-020-01083-y.; Lin, A., Wu, Q., Heidari, A. A., Xu, Y., Chen, H., Geng, W., & Li, C. (2019). Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy K-nearest neighbor classifier. IEEE Access, 7, 67235–67248. https://doi.org/10.1109/ACCESS .2019.2918026.; Liu, G., Jia, W., Wang, M., Heidari, A. A., Chen, H., Luo, Y., & Li, C. (2020). Predicting cervical hyperextension injury: A covariance guided sine cosine support vector machine. IEEE Access, 8, 46895–46908. https://doi.org/10.1109/ACCESS.2020.2978102.; Liu, X., Zhao, J., Li, J., Cao, B., & Lv, Z. (2022). Federated neural architecture search for medical data security.IEEE Transactions on Industrial Informatics, 18(8), 5628–5636. https://doi.org/10.1109/TII.2022.314 4016.; Long, W., Wu, T., Liang, X., & Xu, S. (2019). Solving high-dimensional global optimization problems using an improved sine cosine algorithm. Expert Systems with Applications, 123, 108–126. https://do i.org/10.1016/j.eswa.2018.11.032.; Mafarja, M., Heidari, A. A., Habib, M., Faris, H., Thaher, T., & Aljarah, I. (2020). Augmented whale feature selection for IoT attacks: Structure, analysis and applications. Future Generation Computer Systems, 112, 18–40. https://doi.org/10.1016/j.future.202 0.05.020.; Mahdad, B., & Srairi, K. (2018). A new interactive sine cosine algorithm for loading margin stability improvement under contingency. Electrical Engineering, 100(2), 913–933. https://doi.org/10.100 7/s00202-017-0539-x.; Meng, A.-b., Chen, Y.-c., Yin, H., & Chen, S.-z. (2014). Crisscross optimization algorithm and its application. Knowledge-Based Systems, 67, 218–229. https://doi.org/10.1016/j.knosys.2014.05.004.; Meng, A., Zeng, C., Wang, P., Chen, D., Zhou, T., Zheng, X., & Yin, H. (2021). A high-performance crisscross search based grey wolf optimizer for solving optimal power flow problem. Energy, 225, 120211. https://doi.org/10.1016/j.energy.2021.120211.; Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120–133. https: //doi.org/10.1016/j.knosys.2015.12.022.; Mirjalili, S., Dong, J. S., & Lewis, A. (2019). Nature-inspired optimizers: Theories, literature reviews and applications(Vol. 811). Springer.; Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67. https://doi.org/10.1016/j. advengsoft.2016.01.008.; Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.101 6/j.advengsoft.2013.12.007.; Mohamed, A. W., Hadi, A. A., & Mohamed, A. K. (2020). Gainingsharing knowledge based algorithm for solving optimization problems: A novel nature-inspired algorithm. International Journal of Machine Learning and Cybernetics, 11(7), 1501–1529. https: //doi.org/10.1007/s13042-019-01053-x.; Mohammadi, F., & Abdi, H. (2018). A modified crow search algorithm (MCSA) for solving economic load dispatch problem. Applied Soft Computing, 71, 51–65. https://doi.org/10.1016/j.asoc.2018.06.0 40.; Mou, J., Duan, P., Gao, L., Liu, X., & Li, J. (2022). An effective hybrid collaborative algorithm for energy-efficient distributed permutation flow-shop inverse scheduling. Future Generation Computer Systems, 128, 521–537. https://doi.org/10.1016/j.future.2021.10.003.; Nenavath, H., & Jatoth, R. K. (2018). Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Applied Soft Computing, 62, 1019–1043. https://doi.or g/10.1016/j.asoc.2017.09.039.; Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1), 33–57.https://doi.org/10.1007/s11721 -007-0002-0.; Qi, A., Zhao, D., Yu, F., Heidari, A. A., Chen, H., & Xiao, L. (2022). Directional mutation and crossover for immature performance of whale algorithm with application to engineering optimization. Journal of Computational Design and Engineering, 9(2), 519–563. https://doi.org/10.1093/jcde/qwac014.; Qiao, S., Yu, H., Heidari, A. A., El-Saleh, A. A., Cai, Z., Xu, X., & Chen, H. (2022). Individual disturbance and neighborhood mutation search enhanced whale optimization: Performance design for engineering problems. Journal of Computational Design and Engineering, 9, 1817–1851. https://doi.org/10.1093/jcde/qwac081.; Qiu, S., Zhao, H., Jiang, N., Wang, Z., Liu, L., An, Y., & Fortino, G. (2022). Multi-sensor information fusion based on machine learning for real applications in human activity recognition: State-of-the-art and research challenges. Information Fusion, 80, 241–265. https:// doi.org/10.1016/j.inffus.2021.11.006.; Shahabi, F., Pourahangarian, F., & Beheshti, H. (2019). A multilevel image thresholding approach based on crow search algorithm and Otsu method. Journal of Decisions and Operations Research, 4(1), 33– 41. https://doi.org/10.22105/dmor.2019.88580.; Shan, W., Qiao, Z., Heidari, A. A., Chen, H., Turabieh, H., & Teng, Y. (2021). Double adaptive weights for stabilization of moth flame optimizer: Balance analysis, engineering cases, and medical diagnosis. Knowledge-Based Systems, 214, 106728. https://doi.org/10 .1016/j.knosys.2020.106728.; Shan, W., Hu, H., Cai, Z., Chen, H., Liu, H., Wang, M., & Teng, Y. (2022a). Multi-strategies boosted mutative crow search algorithm for global tasks: Cases of continuous and discrete optimization. Journal of Bionic Engineering, 19, 1830–1849. https://doi.org/10.100 7/s42235-022-00228-7.; Shan, W., Qiao, Z., Heidari, A. A., Gui, W., Chen, H., Teng, Y., & Lv, T. (2022b). An efficient rotational direction heap-based optimization with orthogonal structure for medical diagnosis. Computers in Biology and Medicine, 146, 105563. https://doi.org/10.1016/j.compbi omed.2022.105563.; Song, J., Chen, C., Heidari, A. A., Liu, J., Yu, H., & Chen, H. (2022). Performance optimization of annealing salp swarm algorithm: Frameworks and applications for engineering design. Journal of Computational Design and Engineering, 9(2), 633–669. https://doi.org/10.1 093/jcde/qwac021.; Tang, D. (2019). Spherical evolution for solving continuous optimization problems. Applied Soft Computing, 81, 105499. https://doi.org/ 10.1016/j.asoc.2019.105499.; Taradeh, M., Mafarja, M., Heidari, A. A., Faris, H., Aljarah, I., Mirjalili, S., & Fujita, H. (2019). An evolutionary gravitational search-based feature selection. Information Sciences, 497, 219–239. https://doi.or g/10.1016/j.ins.2019.05.038.; Tu, J., Chen, H., Wang, M., & Gandomi, A. H. (2021). The colony predation algorithm. Journal of Bionic Engineering, 18(3), 674–710. https: //doi.org/10.1007/s42235-021-0050-y.; Wang, D., Liang, Y., Xu, D., Feng, X., & Guan, R. J. K. B. S. (2018a). A content-based recommender system for computer science publications. Knowledge-Based Systems, 157, 1–9. https://doi.org/10.1 016/j.knosys.2018.05.001.; Wang, J., Yang, W., Du, P., & Niu, T. (2018b). A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm. Energy Conversion and Management, 163, 134–150. https://doi.org/10.1016/j.enconman.2018.02.012.; Wang, H., Gao, Q., Li, H., Wang, H., Yan, L., & Liu, G. (2020). A structural evolution-based anomaly detection method for generalized evolving social networks. The Computer Journal, 65(5), 1189–1199. https://doi.org/10.1093/comjnl/bxaa168.; Wang, G., Gui, W., Liang, G., Zhao, X., Wang, M., Mafarja, M., & Ma, X. (2021). Spiral motion enhanced elite whale optimizer for global tasks. Complexity, 2021, 8130378. https://doi.org/10.1155/2021/8 130378.; Wang, G. G., Gao, D., & Pedrycz, W. (2022). Solving multi-objective fuzzy job-shop scheduling problem by a hybrid adaptive differential evolution algorithm. IEEE Transactions on Industrial Informatics, 18, 8519–8528. https://doi.org/10.1109/TII.2022.3165636.; Wang, S. H., & Zhang, Y. D. (2020). DenseNet-201-based deep neural network with composite learning factor and precomputation for multiple sclerosis classification. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 16(2s), 1–19. https://doi.org/10.1145/3341095.; Wang, Y., Wang, H., Zhou, B., & Fu, H. (2021). Multi-dimensional prediction method based on Bi-LSTMC for ship roll. Ocean Engineering, 242, 110106. https://doi.org/10.1016/j.oceaneng.2021.110106.; Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82. https://doi.org/10.1109/4235.585893.; Wu, Z., Wang, R., Li, Q., Lian, X., & Xu, G. (2020a). A location privacypreserving system based on query range cover-up for locationbased services. IEEE Transactions on Vehicular Technology, 69, 5244– 5254. https://doi.org/10.1109/TVT.2020.2981633.; Wu, Z., Li, R., Xie, J., Zhou, Z., Guo, J., & Xu, X. (2020b). A user sensitive subject protection approach for book search service. Journal of the Association for Information Science and Technology, 71(2), 183–195. ht tps://doi.org/10.1002/asi.24227.; Wu, Z., Shen, S., Lian, X., Su, X., & Chen, E. (2020c). A dummy-based user privacy protection approach for text information retrieval. Knowledge-Based Systems, 195, 105679. https://doi.org/10.1016/j. knosys.2020.105679.; Wu, Z., Li, G., Shen, S., Cui, Z., Lian, X., & Xu, G. (2021a). Constructing dummy query sequences to protect location privacy and query privacy in location-based services. World Wide Web, 24(1), 25–49. https://doi.org/10.1007/s11280-020-00830-x.; Wu, Z., Shen, S., Zhou, H., Li, H., Lu, C., & Zou, D. (2021b). An effective approach for the protection of user commodity viewing privacy in e-commerce website.Knowledge-Based Systems, 220, 106952.https: //doi.org/10.1016/j.knosys.2021.106952.; Wu, X., Zheng, W., Xia, X., & Lo, D. (2022). Data quality matters: A case study on data label correctness for security bug report prediction. IEEE Transactions on Software Engineering, 48, 2541–2556. https://do i.org/10.1109/TSE.2021.3063727.; Xia, J., Yang, D., Zhou, H., Chen, Y., Zhang, H., Liu, T., & Pan, Z. (2022). Evolving kernel extreme learning machine for medical diagnosis via a disperse foraging sine cosine algorithm. Computers in Biology and Medicine, 141, 105137. https://doi.org/10.1016/j.compbiomed .2021.105137.; Xiao, Y., Zuo, X., Huang, J., Konak, A., & Xu, Y. (2020). The continuous pollution routing problem. Applied Mathematics and Computation, 387, 125072. https://doi.org/10.1016/j.amc.2020.125072.; Xiao, Y., Zhang, Y., Kaku, I., Kang, R., & Pan, X. (2021). Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption. Renewable and Sustainable Energy Reviews, 151, 111567. https: //doi.org/10.1016/j.rser.2021.111567.; Xiong, G., Yuan, X., Mohamed, A. W., Chen, J., & Zhang, J. (2022). Improved binary gaining–sharing knowledge-based algorithm with mutation for fault section location in distribution networks. Journal of Computational Design and Engineering, 9(2), 393–405. https: //doi.org/10.1093/jcde/qwac007.; Yang, Y., Chen, H., Heidari, A. A., & Gandomi, A. H. (2021). Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems with Applications, 177, 114864. https://doi.org/10.1016/j.eswa.202 1.114864.; Yang, Z., Chen, H., Zhang, J., & Chang, Y. (2022). Context-aware attentive multi-level feature fusion for named entity recognition. IEEE Transactions on Neural Networks and Learning Systems. https: //doi.org/10.1109/TNNLS.2022.3178522.; Ye, X., Liu, W., Li, H., Wang, M., Chi, C., Liang, G., & Huang, H. (2021). Modified whale optimization algorithm for solar cell and PV module parameter identification. Complexity, 2021, 8878686. https: //doi.org/10.1155/2021/8878686.; Yu, H., Yuan, K., Li, W., Zhao, N., Chen, W., Huang, C., & Wang, M. (2021). Improved butterfly optimizer-configured extreme learning machine for fault diagnosis. Complexity, 2021, 6315010. https://do i.org/10.1155/2021/6315010.; Yu, H., Qiao, S., Heidari, A. A., El-Saleh, A. A., Bi, C.,Mafarja,M., & Chen, H. (2022a). Laplace crossover and random replacement strategy boosted Harris hawks optimization: Performance optimization and analysis. Journal of Computational Design and Engineering, 9, 1879–1916. https://doi.org/10.1093/jcde/qwac085.; Yu, H., Qiao, S., Heidari, A. A., Bi, C., & Chen, H. (2022b). Individual disturbance and attraction repulsion strategy enhanced seagull optimization for engineering design. Mathematics, 10(2), 276. http s://doi.org/10.3390/math10020276.; Yu, H., Cheng, X., Chen, C., Heidari, A. A., Liu, J., Cai, Z., & Chen, H. (2022c). Apple leaf disease recognition method with improved residual network. Multimedia Tools and Applications, 81, 7759–7782. https://doi.org/10.1007/s11042-022-11915-2.; Yu, H., Song, J., Chen, C., Heidari, A. A., Liu, J., Chen, H., & Mafarja, M. (2022d). Image segmentation of leaf spot diseases on maize using multi-stage Cauchy-enabled grey wolf algorithm. Engineering Applications of Artificial Intelligence, 109, 104653. https://doi.org/https: //doi.org/10.1016/j.engappai.2021.104653.; Yu, S., Chen, Z., Heidari, A. A., Zhou, W., Chen, H., & Xiao, L. (2022). Parameter identification of photovoltaic models using a sine cosine differential gradient based optimizer. IET Renewable Power Generation 16, 1535–1561. https://doi.org/10.1049/rpg2.12451.; Zhang, M., Chen, Y., & Lin, J. (2021). A privacy-preserving optimization of neighborhood-based recommendation for medical-aided diagnosis and treatment. IEEE Internet of Things Journal, 8(13), 10830– 10842. https://doi.org/10.1109/JIOT.2021.3051060.; Zhang, X. Q., Hu, W. M., Xie, N. H., Bao, H. J., & Maybank, S. (2015). A robust tracking system for low frame rate video. International Journal of Computer Vision, 115(3), 279–304. https://doi.org/10.100 7/s11263-015-0819-8.; Zhang, Y. D., Dong, Z., Wang, S. H., Yu, X., Yao, X., Zhou, Q., & Gorriz, J. M. (2020). Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation. Information Fusion, 64, 149–187. https://doi.org/10.1016/j.inffus.2 020.07.006.; Zhang, Y., Liu, F., Fang, Z., Yuan, B., Zhang, G., & Lu, J. (2021). Learning from a complementary-label source domain: theory and algorithms. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2021.3086093.; Zhao, W., Shi, T., Wang, L., Cao, Q., & Zhang, H. (2021). An adaptive hybrid atom search optimization with particle swarm optimization and its application to optimal no-load PID design of hydro-turbine governor. Journal of Computational Design and Engineering, 8(5), 1204–1233. https://doi.org/10.1093/jcde/qwa b041.; Zhao, D., Liu, L., Yu, F., Heidari, A. A., Wang, M., Chen, H., & Muhammad, K. (2022). Opposition-based ant colony optimization with all-dimension neighborhood search for engineering design. Journal of Computational Design and Engineering, 9(3), 1007–1044. https: //doi.org/10.1093/jcde/qwac038.; Zhong, L., Fang, Z., Liu, F., Yuan, B., Zhang, G., & Lu, J. (2021). Bridging the theoretical bound and deep algorithms for open set domain adaptation. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2021.3119965.; Zhou, W., Liu, J., Lei, J., Yu, L., & Hwang, J. N. (2021a). GMNet: Graded-feature multilabel-learning network for RGB-thermal urban scene semantic segmentation. IEEE Transactions on Image Processing, 30, 7790–7802. https://doi.org/10.1109/TIP.2021.3109518.; Zhou, W., Wang, P., Heidari, A. A., Wang, M., Zhao, X., & Chen, H. (2021b). Multi-core sine cosine optimization: Methods and inclusive analysis. Expert Systems with Applications, 164, 113974. https: //doi.org/10.1016/j.eswa.2020.113974.; Zhou, X., Gui, W., Heidari, A. A., Cai, Z., Elmannai, H., Hamdi, M., & Chen, H. (2022). Advanced orthogonal learning and Gaussian barebone hunger games for engineering design. Journal of Computational Design and Engineering, 9(5), 1699–1736. https://doi.org/10 .1093/jcde/qwac075.; Zhu, W., Ma, C., Zhao, X., Wang, M., Heidari, A. A., Chen, H., & Li, C. (2020). Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine. IEEE Access, 8, 61107–61123. https://doi.org/10.1109/AC CESS.2020.2981968.; Zou, Q., Li, A., He, X., & Wang, X. (2018). Optimal operation of cascade hydropower stations based on chaos cultural sine cosine algorithm. IOP Conference Series: Materials Science and Engineering, 366(1), 012005. https://doi.org/10.1088/1757-899X/366/1/012005.; 2555; 2524; Hanyu Hu, Weifeng Shan, Yixiang Tang, Ali Asghar Heidari, Huiling Chen, Haijun Liu, Maofa Wang, José Escorcia-Gutierrez, Romany F Mansour, Jun Chen, Horizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection, Journal of Computational Design and Engineering, Volume 9, Issue 6, December 2022, Pages 2524–2555, https://doi.org/10.1093/jcde/qwac119; https://hdl.handle.net/11323/10112; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/

  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20
    Academic Journal