-
1Academic Journal
المساهمون: Université du Québec à Montréal = University of Québec in Montréal (UQAM), Statistique pour le Vivant et l’Homme (SVH), Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP), Université Grenoble Alpes (UGA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP), Université Grenoble Alpes (UGA), GIPSA Pôle Géométrie, Apprentissage, Information et Algorithmes (GIPSA-GAIA), Grenoble Images Parole Signal Automatique (GIPSA-lab), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP), ANR-15-IDEX-0002,UGA,IDEX UGA(2015)
المصدر: ISSN: 2211-6753 ; Spatial Statistics ; https://hal.science/hal-02990859 ; Spatial Statistics, 2020, 38, pp.100437. ⟨10.1016/j.spasta.2020.100437⟩.
مصطلحات موضوعية: spatial point processes, pair correlation function, Ripley's function, space-filling design, 2000 MSC:60G55, 62K99, [MATH]Mathematics [math]
-
2Academic Journal
المؤلفون: Petráková, Martina
مصطلحات موضوعية: keyword:infinite-volume Gibbs measure, keyword:existence, keyword:Gibbs facet process, keyword:Gibbs–Laguerre tessellation, msc:60D05, msc:60G55
وصف الملف: application/pdf
Relation: mr:MR4567845; zbl:Zbl 07675646; reference:[1] Dereudre, D.: The existence of quermass-interaction processes for nonlocally stable interaction and nonbounded convex grains.Adv. Appl.Probab. 41 (2009), 3, 664-681. MR 2571312; reference:[2] Dereudre, D.: Introduction to the theory of Gibbs point processes.In: Stochastic Geometry: Modern Research Frontiers, (D. Coupier, ed.), Springer International Publishing, Cham 2019, pp 181-229. MR 3931586; reference:[3] Dereudre, D., Drouilhet, R., Georgii, H. O.: Existence of Gibbsian point processes with geometry-dependent interactions.Probab. Theory Related Fields 153 (2012), 3, 643-670. MR 2948688; reference:[4] Georgii, H. O., Zessin, H.: Large deviations and the maximum entropy principle for marked point random fields.Probab. Theory Related Fields 96 (1993), 2, 177-204. MR 1227031; reference:[5] Jahn, D., Seitl, F.: Existence and simulation of Gibbs-Delaunay-Laguerre tessellations.Kybernetika 56 (2020), 4, 617-645. MR 4168528; reference:[6] Lautensack, C.: Random Laguerre Tessellations.PhD Thesis, University of Karlsruhe, 2007.; reference:[7] Moller, J.: Lectures on Random Voronoi Tessellations.Lecture Notes in Statistics, Springer-Verlag, New York 1994. MR 1295245; reference:[8] Moller, J., Waagepetersen, R. P.: Statistical Inference and Simulation for Spatial Point Processes.Monographs on Statistics and Applied Probability. Chapman and Hall/CRC, Boca Raton 2004. MR 2004226; reference:[9] Roelly, S., Zass, A.: Marked Gibbs point processes with unbounded interaction: an existence result.J. Statist. Physics 179 (2020), 4, 972-996. MR 4102445; reference:[10] Ruelle, D.: Statistical Mechanics: Rigorous Results.W. A. Benjamin, Inc., New York - Amsterdam 1969. MR 0289084; reference:[11] Schneider, R.: Convex Bodies: the Brunn-Minkowski Theory.Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge 1993. MR 1216521; reference:[12] Schneider, R., Weil, W.: Stochastic and Integral Geometry.Probability and its Applications (New York). Springer-Verlag, Berlin 2008. Zbl 1175.60003, MR 2455326; reference:[13] Večeřa, J., Beneš, V.: Interaction processes for unions of facets, the asymptotic behaviour with increasing intensity.Methodology Computing Appl. Probab. 18 (2016), 4, 1217-1239. MR 3564860; reference:[14] Zessin, H.: Point processes in general position.J. Contempor. Math. Anal. 43 (2008), 1, 59-65. MR 2465001
-
3Academic Journal
المؤلفون: Jahn, Daniel, Seitl, Filip
مصطلحات موضوعية: keyword:Laguerre–Delauay tetrahedrization, keyword:stationary Gibbs measure, keyword:Gibbs–Laguerre tessellation, keyword:MCMC simulation, msc:60G55, msc:60K35
وصف الملف: application/pdf
Relation: mr:MR4168528; zbl:Zbl 07286039; reference:[1] Chiu, S. N., Stoyan, D., Kendall, W. S., Mecke, J.: Stochastic Geometry and its Applications.J. Willey and Sons, Chichester 2013. MR 3236788, 10.1002/9781118658222; reference:[2] Dereudre, D.: Introduction to the theory of Gibbs point processes.In: Chapter in Stochastic Geometry, pp. 181-229, Springer, Cham 2019. MR 3931586, 10.1007/978-3-030-13547-8_5; reference:[3] Dereudre, D., Drouilhet, R., Georgii, H. O.: Existence of Gibbsian point processes with geometry-dependent interactions.Probab. Theory Rel. 153 (2012), 3, 643-670. MR 2948688, 10.1007/s00440-011-0356-5; reference:[4] Dereudre, D., Lavancier, F.: Practical simulation and estimation for Gibbs Delaunay-Voronoi tessellations with geometric hardcore interaction.Comput. Stat. Data An. 55 (2011), 1, 498-519. MR 2736572, 10.1016/j.csda.2010.05.018; reference:[5] Fropuff: The vertex configuration of a tetrahedral-octahedral honeycomb.; reference:[6] Hadamard, P.: Résolution d'une question relative aux déterminants.Bull. Sci. Math. 17 (1893), 3, 240-246.; reference:[7] Lautensack, C., Zuyev, S.: Random Laguerre tessellations.Adv. Appl. Probab. 40 (2008), 3, 630-650. MR 2454026, 10.1017/s000186780000272x; reference:[8] Møller, J., Waagepetersen, R. P.: Statistical Inference and Simulation for Spatial Point Processes.Chapman and Hall/CRC, Boca Raton 2003. MR 2004226, 10.1201/9780203496930; reference:[9] Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams.J. Willey and Sons, Chichester 2009. MR 1770006, 10.2307/2687299; reference:[10] Preston, C.: Random Fields.Springer, Berlin 1976. MR 0448630, 10.1007/bfb0080563; reference:[11] Quey, R., Renversade, L.: Optimal polyhedral description of 3{D} polycrystals: Method and application to statistical and synchrotron {X}-ray diffraction data.Comput. Method Appl. M 330 (2018), 308-333. MR 3759098, 10.1016/j.cma.2017.10.029; reference:[12] Rycroft, C.: Voro++: A three-dimensional Voronoi cell library in C++.Chaos 19 (2009), 041111. 10.1063/1.3215722; reference:[13] Seitl, F., Petrich, L., Staněk, J., III, C. E. Krill, Schmidt, V., Beneš, V.: Exploration of Gibbs-Laguerre Tessellations for Three-Dimensional Stochastic Modeling.Methodol. Comput. Appl. Probab. (2020). 10.1007/s11009-019-09757-x; reference:[14] Sommerville, D. M. Y.: An Introduction to the Geometry of N Dimensions.Methuen and Co, London 1929. MR 0100239; reference:[15] Stein, P.: A note on the volume of a simplex.Amer. Math. Monthly 73 (1966), 3, 299-301. MR 1533698, 10.2307/2315353; reference:[16] Zessin, H.: Point processes in general position.J. Contemp. Math. Anal. 43 (2008), 1, 59-65. MR 2465001, 10.3103/s11957-008-1005-x
-
4Academic Journal
المؤلفون: Morvai, Gusztáv, Weiss, Benjamin
مصطلحات موضوعية: keyword:Point processes, msc:60G55
وصف الملف: application/pdf
Relation: mr:MR4055577; zbl:Zbl 07177917; reference:[1] Daley, D. J., Vere-Jones, D.: An introduction to the theory of point processes. Vol. II. General theory and structure. Second edition.In: Probability and its Applications. Springer, New York 2008. MR 2371524, 10.1007/978-0-387-49835-5; reference:[2] Haywood, J., Khmaladze, E.: On distribution-free goodness-of-fit testing of exponentiality.J. Econometr. 143 (2008), 5-18. MR 2384430, 10.1016/j.jeconom.2007.08.005; reference:[3] Kallenberg, O.: Foundations of modern probability. Second edition.In: Probability and its Applications. Springer-Verlag, New York 2002. MR 1876169, 10.1007/978-1-4757-4015-8; reference:[4] Lewis, P. A. W.: Some results on tests for Poisson processes.Biometrika 52 (1965), 1 and 2, 67-77. MR 0207107, 10.1093/biomet/52.1-2.67; reference:[5] Massart, P.: The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality.Ann. Probab. 18 (1990), 3, 1269-1283. Zbl 0713.62021, MR 1062069, 10.1214/aop/1176990746; reference:[6] Morvai, G., Weiss, B.: Testing stationary processes for independence.Ann. Inst. H. Poincare' Probab. Statist. 47 (2011), 4, 1219-1225. MR 2884232, 10.1214/11-aihp426; reference:[7] Ryabko, B., Astola, J.: Universal codes as a basis for time series testing.Statist. Methodol. 3 (2006), 375-397. MR 2252392, 10.1016/j.stamet.2005.10.004; reference:[8] Thorisson, H.: Coupling, stationarity, and regeneration.In: Probability and its Applications. Springer-Verlag, New York 2000. MR 1741181, 10.1007/978-1-4612-1236-2
-
5
المساهمون: Université du Québec à Montréal = University of Québec in Montréal (UQAM), Statistique pour le Vivant et l’Homme (SVH), Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), GIPSA Pôle Géométrie, Apprentissage, Information et Algorithmes (GIPSA-GAIA), Grenoble Images Parole Signal Automatique (GIPSA-lab), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
المصدر: Spatial Statistics
Spatial Statistics, 2020, 38, pp.100437. ⟨10.1016/j.spasta.2020.100437⟩
Spatial Statistics, Elsevier, 2020, 38, pp.100437. ⟨10.1016/j.spasta.2020.100437⟩مصطلحات موضوعية: Statistics and Probability, 2000 MSC:60G55, 62K99, 0208 environmental biotechnology, 02 engineering and technology, Management, Monitoring, Policy and Law, Space (mathematics), 01 natural sciences, Point process, Combinatorics, 010104 statistics & probability, Cardinality, FOS: Mathematics, Uniform boundedness, spatial point processes, 0101 mathematics, Computers in Earth Sciences, pair correlation function, [MATH]Mathematics [math], Mathematics, Kernel (set theory), space-filling design, 60G55, 62K99, Probability (math.PR), Function (mathematics), Ripley's function, 020801 environmental engineering, Projection (relational algebra), Index set, Mathematics - Probability
-
6Academic Journal
المؤلفون: Flimmel, Daniela, Beneš, Viktor
مصطلحات موضوعية: keyword:asymptotics of functionals, keyword:innovation, keyword:stationary Gibbs particle process, keyword:Wasserstein distance, msc:60D05, msc:60G55
وصف الملف: application/pdf
Relation: mr:MR3863255; zbl:Zbl 06987033; reference:[1] Beneš, V., Večeřa, J., Pultar, M.: Planar segment processes with reference mark distributions, modeling and simulation.Methodol. Comput. Appl. Probab. (2018), accepted. 10.1007/s11009-017-9608-x; reference:[2] Blaszczyszyn, B., Yogeshwaran, D., Yukich, J. E.: Limit theory for geometric statistics of point processes having fast decay of correlations.Preprint (2018), submitted to the Annals of Probab.; reference:[3] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes.Volume I: Elementary Theory and Methods. MR 1950431; reference:[4] Dereudre, D.: Introduction to the theory of Gibbs point processes.Preprint (2017), submitted.; reference:[5] Georgii, H.-O.: Gibbs Measures and Phase Transitions. Second edition.W. de Gruyter and Co., Berlin 2011. MR 2807681, 10.1515/9783110250329; reference:[6] Last, G., Penrose, M.: Lectures on the Poisson Process.Cambridge University Press, Cambridge 2017. MR 3791470, 10.1017/9781316104477; reference:[7] Mase, S.: Marked Gibbs processes and asymptotic normality of maximum pseudo-likelihood estimators.Math. Nachr. 209 (2000), 151-169. MR 1734363, 10.1002/(sici)1522-2616(200001)209:13.0.co;2-j; reference:[8] Ruelle, D.: Superstable interactions in classical statistical mechanics.Commun. Math. Phys. 18 (1970), 127-159. MR 0266565, 10.1007/bf01646091; reference:[9] Schneider, R., Weil, W.: Stochastic and Integral Geometry.Springer, Berlin 2008. Zbl 1175.60003, MR 2455326, 10.1007/978-3-540-78859-1; reference:[10] Schreiber, T., Yukich, J. E.: Limit theorems for geometric functionals of Gibbs point processes.Ann. Inst. Henri Poincaré - Probab. et Statist. 49 (2013), 1158-1182. MR 3127918, 10.1214/12-aihp500; reference:[11] Serra, J.: Image Analysis and Mathematical Morphology.Academic Press, London 1982. MR 0753649, 10.1002/cyto.990040213; reference:[12] Stucki, K., Schuhmacher, D.: Bounds for the probability generating functional of a Gibbs point process.Adv. Appl. Probab. 46 (2014), 21-34. MR 3189046, 10.1239/aap/1396360101; reference:[13] Torrisi, G. L.: Probability approximation of point processes with Papangelou conditional intensity.Bernoulli 23 (2017), 2210-2256. MR 3648030, 10.3150/16-bej808; reference:[14] Večeřa, J., Beneš, V.: Approaches to asymptotics for U-statistics of Gibbs facet processes.Statist. Probab. Let. 122 (2017), 51-57. MR 3584137, 10.1016/j.spl.2016.10.024; reference:[15] Xia, A., Yukich, J. E.: Normal approximation for statistics of Gibbsian input in geometric probability.Adv. Appl. Probab. 25 (2015), 934-972. MR 3433291, 10.1017/s0001867800048965
-
7Academic Journal
المؤلفون: Helisová, Kateřina, Staněk, Jakub
مصطلحات موضوعية: keyword:attractiveness, keyword:germ-grain model, keyword:Markov Chain Monte Carlo simulation, keyword:Quermass-interaction process, keyword:random set, keyword:repulsiveness, keyword:Ruelle stability, msc:60D05, msc:60G55
وصف الملف: application/pdf
Relation: mr:MR3532254; zbl:Zbl 06644007; reference:[1] Altendorf, H., Latourte, F., Jeulin, D., Faessel, M., Saintyant, L.: 3D reconstruction of a multiscale microstructure by anisotropic tessellation models.Image Anal. Stereol. 33 (2014), 121-130. 10.5566/ias.v33.p121-130; reference:[2] Chiu, S. N., Stoyan, D., Kendall, W. S., Mecke, J.: Stochastic Geometry and Its Applications.Wiley Series in Probability and Statistics John Wiley & Sons, Chichester (2013). Zbl 1291.60005, MR 3236788; reference:[3] Dereudre, D.: Existence of Quermass processes for non locally stable interaction and non bounded convex grains.Adv. Appl. Probab. 41 (2009), 664-681. MR 2571312, 10.1017/S0001867800003517; reference:[4] Dereudre, D., Lavancier, F., Helisová, K. Staňková: Estimation of the intensity parameter of the germ-grain Quermass-interaction model when the number of germs is not observed.Scand. J. Stat. 41 (2014), 809-829. MR 3249430, 10.1111/sjos.12064; reference:[5] Diggle, P. J.: Binary mosaics and the spatial pattern of heather.Biometrics 37 (1981), 531-539. 10.2307/2530566; reference:[6] Geyer, C. J., Møller, J.: Simulation procedures and likelihood inference for spatial point processes.Scand. J. Stat. 21 (1994), 359-373. Zbl 0809.62089, MR 1310082; reference:[7] Helisová, K.: Modeling, statistical analyses and simulations of random items and behavior on material surfaces.Supplemental UE: TMS 2014 Conference Proceedings, San Diego (2014), 461-468.; reference:[8] Hermann, P., Mrkvička, T., Mattfeldt, T., Minárová, M., Helisová, K., Nicolis, O., Wartner, F., Stehlík, M.: Fractal and stochastic geometry inference for breast cancer: a case study with random fractal models and Quermass-interaction process.Stat. Med. 34 (2015), 2636-2661. MR 3368407, 10.1002/sim.6497; reference:[9] Kendall, W. S., Lieshout, M. N. M. van, Baddeley, A. J.: Quermass-interaction processes: conditions for stability.Adv. Appl. Probab. 31 (1999), 315-342. MR 1724554, 10.1017/S0001867800009137; reference:[10] Klazar, M.: Generalised Davenport-Schinzel sequences: results, problems and applications.Integers: The Electronic Journal of Combinatorial Number Theory 2 (2002), A11. MR 1917956; reference:[11] Molchanov, I.: Theory of Random Sets.Probability and Its Applications Springer, London (2005). Zbl 1109.60001, MR 2132405; reference:[12] Møller, J., Helisová, K.: Power diagrams and interaction processes for unions of discs.Adv. Appl. Probab. 40 (2008), 321-347. Zbl 1146.60322, MR 2431299, 10.1017/S0001867800002548; reference:[13] Møller, J., Helisová, K.: Likelihood inference for unions of interacting discs.Scand. J. Stat. 37 (2010), 365-381. Zbl 1226.60016, MR 2724503, 10.1111/j.1467-9469.2009.00660.x; reference:[14] Møller, J., Waagepetersen, R. P.: Statistical Inference and Simulation for Spatial Point Processes.Monographs on Statistics and Applied Probability 100 Chapman and Hall/CRC, Boca Raton (2004). Zbl 1044.62101, MR 2004226; reference:[15] Mrkvička, T., Mattfeldt, T.: Testing histological images of mammary tissues on compatibility with the Boolean model of random sets.Image Anal. Stereol. 30 (2011), 11-18. MR 2816303, 10.5566/ias.v30.p11-18; reference:[16] Mrkvička, T., Rataj, J.: On the estimation of intrinsic volume densities of stationary random closed sets.Stochastic Processes Appl. 118 (2008), 213-231. Zbl 1148.62023, MR 2376900; reference:[17] Ohser, J., Mücklich, F.: Statistical Analysis of Microstructures in Materials Science.Wiley Series in Statistics in Practice Wiley, Chichester (2000).; reference:[18] Pratt, W. K.: Digital Image Processing.Wiley & Sons, New York (2001).; reference:[19] Team, R Development Core: R: A language and environment for statistical computing.R Found Stat Comp, Vienna. http://www.R-project.org/ (2010).; reference:[20] Helisová, K. Staňková, Staněk, J.: Dimension reduction in extended Quermass-interaction process.Methodol. Comput. Appl. Probab. 16 (2014), 355-368. MR 3199051, 10.1007/s11009-013-9343-x; reference:[21] Zikmundová, M., Helisová, K. Staňková, Beneš, V.: Spatio-temporal model for a random set given by a union of interacting discs.Methodol. Comput. Appl. Probab. 14 (2012), 883-894. MR 2966326, 10.1007/s11009-012-9287-6; reference:[22] Zikmundová, M., Helisová, K. Staňková, Beneš, V.: On the use of particle Markov chain Monte Carlo in parameter estimation of space-time interacting discs.Methodol. Comput. Appl. Probab. 16 (2014), 451-463. MR 3199057, 10.1007/s11009-013-9367-2
-
8Academic Journal
المؤلفون: Dvořák, Jiří, Prokešová, Michaela
مصطلحات موضوعية: keyword:space-time point process, keyword:shot-noise Cox process, keyword:minimum contrast estimation, keyword:projection process, keyword:increasing domain asymptotics, msc:60G55, msc:62F12
وصف الملف: application/pdf
Relation: mr:MR3532250; zbl:Zbl 06644003; reference:[1] Baddeley, A. J., Møller, J., Waagepetersen, R.: Non- and semi-parametric estimation of interaction in inhomogeneous point patterns.Stat. Neerl. 54 (2000), 329-350. Zbl 1018.62027, MR 1804002, 10.1111/1467-9574.00144; reference:[2] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Vol. II: General Theory and Structure.Probability and Its Applications Springer, New York (2008). Zbl 1159.60003, MR 2371524; reference:[3] Diggle, P. J.: Spatio-temporal point processes: methods and applications.B. Finkenstädt, et al. Statistical Methods for Spatio-temporal Systems Selected Invited Papers Based on the Presentations at the 6th Séminaire Européen de Statistique SemStat Held as a Summer School of the European Mathematical Society, Bernried, 2004, Chapman and Hall/CRC, Boca Raton, 2007 Monographs on Statistics and Applied Probability {\it 107} (2007), 1-45. Zbl 1121.62080, MR 2307967; reference:[4] Doukhan, P.: Mixing: Properties and Examples.Lecture Notes in Statistics 85 Springer, New York (1994). Zbl 0801.60027, MR 1312160, 10.1007/978-1-4612-2642-0_3; reference:[5] Dvořák, J., Prokešová, M.: Parameter estimation for inhomogeneous space-time shot-noise Cox point processes.(to appear) in Scand. J. Stat. MR 3199056; reference:[6] Gabriel, E.: Estimating second-order characteristics of inhomogeneous spatio-temporal point processes.Methodol. Comput. Appl. Probab. 16 (2014), 411-431. Zbl 1308.60061, MR 3199055, 10.1007/s11009-013-9358-3; reference:[7] Gabriel, E., Diggle, P. J.: Second-order analysis of inhomogeneous spatio-temporal point process data.Stat. Neerl. 63 (2009), 43-51. MR 2656916, 10.1111/j.1467-9574.2008.00407.x; reference:[8] Guyon, X.: Random Fields on a Network. Modeling, Statistics, and Applications.Probability and Its Applications Springer, New York (1995). Zbl 0839.60003, MR 1344683; reference:[9] Hager, W. W.: Minimizing a quadratic over a sphere.SIAM J. Optim. 12 (2001), 188-208. Zbl 1058.90045, MR 1870591, 10.1137/S1052623499356071; reference:[10] Hellmund, G., Prokešová, M., Jensen, E. B. V.: Lévy-based Cox point processes.Adv. Appl. Probab. 40 (2008), 603-629. Zbl 1149.60031, MR 2454025, 10.1017/S0001867800002718; reference:[11] Kar{á}csony, Z.: A central limit theorem for mixing random fields.Miskolc Math. Notes 7 (2006), 147-160. Zbl 1120.41301, MR 2310274, 10.18514/MMN.2006.151; reference:[12] Motzkin, Th.: From among {$n$} conjugate algebraic integers, {$n-1$} can be approximately given.Bull. Am. Math. Soc. 53 (1947), 156-162. Zbl 0032.24702, MR 0019653, 10.1090/S0002-9904-1947-08772-3; reference:[13] Møller, J.: Shot noise Cox processes.Adv. Appl. Probab. 35 (2003), 614-640. Zbl 1045.60007, MR 1990607, 10.1017/S0001867800012465; reference:[14] Møller, J., Ghorbani, M.: Aspects of second-order analysis of structured inhomogeneous spatio-temporal point processes.Stat. Neerl. 66 (2012), 472-491. MR 2983306, 10.1111/j.1467-9574.2012.00526.x; reference:[15] Møller, J., Waagepetersen, R. P.: Statistical Inference and Simulation for Spatial Point Processes.Monographs on Statistics and Applied Probability 100 Chapman & Hall/CRC, Boca Raton (2004). Zbl 1044.62101, MR 2004226; reference:[16] Prokešová, M., Dvořák, J.: Statistics for inhomogeneous space-time shot-noise Cox processes.Methodol. Comput. Appl. Probab. 16 (2014), 433-449. Zbl 1305.62338, MR 3199056, 10.1007/s11009-013-9324-0; reference:[17] Prokešová, M., Dvořák, J., Jensen, E. B. V.: Two-step estimation procedures for inhomogeneous shot-noise Cox processes.(to appear) in Ann. Inst. Stat. Math.; reference:[18] Ripley, B. D.: Statistical Inference for Spatial Processes.Cambridge University Press, Cambridge (1988). Zbl 0705.62090, MR 0971986; reference:[19] Stoyan, D., Kendall, W. S., Mecke, J.: Stochastic Geometry and Its Applications.Wiley Series in Probability and Mathematical Statistics John Wiley & Sons, Chichester (1995). Zbl 0838.60002, MR 0895588; reference:[20] Vaart, A. W. van der: Asymptotic Statistics.Cambridge Series in Statistical and Probabilistic Mathematics 3 Cambridge University Press, Cambridge (1998). MR 1652247; reference:[21] Waagepetersen, R., Guan, Y.: Two-step estimation for inhomogeneous spatial point processes.J. R. Stat. Soc., Ser. B, Stat. Methodol. 71 (2009), 685-702. Zbl 1250.62047, MR 2749914, 10.1111/j.1467-9868.2008.00702.x
-
9Academic Journal
المؤلفون: Heinrich, Lothar
مصطلحات موضوعية: keyword:determinantal point process, keyword:permanental point process, keyword:trivial tail-$\sigma $-field, keyword:exponential moment, keyword:shot-noise process, keyword:Berry-Esseen bound, keyword:multiparameter $K$-function, keyword:kernel-type product density estimator, keyword:goodness-of-fit test, msc:60F05, msc:60G55
وصف الملف: application/pdf
Relation: mr:MR3532253; zbl:Zbl 06644006; reference:[1] Biscio, C. A. N., Lavancier, F.: Brillinger mixing of determinantal point processes and statistical applications.Electron. J. Stat. (electronic only) 10 582-607 (2016), arXiv: 1507.06506v1 [math ST] (2015). MR 3471989, 10.1214/16-EJS1116; reference:[2] Camilier, I., Decreusefond, L.: Quasi-invariance and integration by parts for determinantal and permanental processes.J. Funct. Anal. 259 (2010), 268-300. Zbl 1203.60050, MR 2610387, 10.1016/j.jfa.2010.01.007; reference:[3] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Vol. I: Elementary Theory and Methods.Probability and Its Applications Springer, New York (2003). Zbl 1026.60061, MR 1950431; reference:[4] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Vol. II: General Theory and Structure.Probability and Its Applications Springer, New York (2008). Zbl 1159.60003, MR 2371524; reference:[5] Georgii, H.-O., Yoo, H. J.: Conditional intensity and Gibbsianness of determinantal point processes.J. Stat. Phys. 118 (2005), 55-84. Zbl 1130.82016, MR 2122549, 10.1007/s10955-004-8777-5; reference:[6] Heinrich, L.: Asymptotic Gaussianity of some estimators for reduced factorial moment measures and product densities of stationary Poisson cluster processes.Statistics 19 (1988), 87-106. Zbl 0666.62032, MR 0921628, 10.1080/02331888808802075; reference:[7] Heinrich, L.: Gaussian limits of empirical multiparameter $K$-functions of homogeneous Poisson processes and tests for complete spatial randomness.Lith. Math. J. 55 (2015), 72-90. Zbl 1319.60068, MR 3323283, 10.1007/s10986-015-9266-z; reference:[8] Heinrich, L.: On the Brillinger-mixing property of stationary point processes.Submitted (2015), 12 pages.; reference:[9] Heinrich, L., Klein, S.: Central limit theorem for the integrated squared error of the empirical second-order product density and goodness-of-fit tests for stationary point processes.Stat. Risk Model. 28 (2011), 359-387. Zbl 1277.60085, MR 2877571, 10.1524/strm.2011.1094; reference:[10] Heinrich, L., Klein, S.: Central limit theorems for empirical product densities of stationary point processes.Stat. Inference Stoch. Process. 17 (2014), 121-138. Zbl 1306.60008, MR 3219525, 10.1007/s11203-014-9094-5; reference:[11] Heinrich, L., Prokešová, M.: On estimating the asymptotic variance of stationary point processes.Methodol. Comput. Appl. Probab. 12 (2010), 451-471. Zbl 1197.62122, MR 2665270, 10.1007/s11009-008-9113-3; reference:[12] Heinrich, L., Schmidt, V.: Normal convergence of multidimensional shot noise and rates of this convergence.Adv. Appl. Probab. 17 (1985), 709-730. Zbl 0609.60036, MR 0809427, 10.1017/S0001867800015378; reference:[13] Hough, J. B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes.University Lecture Series 51 American Mathematical Society, Providence (2009). Zbl 1190.60038, MR 2552864; reference:[14] Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical Analysis and Modelling of Spatial Point Patterns.Statistics in Practice John Wiley & Sons, Chichester (2008). Zbl 1197.62135, MR 2384630; reference:[15] Jolivet, E.: Central limit theorem and convergence of empirical processes for stationary point processes.Point Processes and Queuing Problems, Keszthely, 1978 Colloq. Math. Soc. János Bolyai 24 North-Holland, Amsterdam (1981), 117-161. Zbl 0474.60040, MR 0617406; reference:[16] Karr, A. F.: Estimation of Palm measures of stationary point processes.Probab. Theory Relat. Fields 74 (1987), 55-69. MR 0863718, 10.1007/BF01845639; reference:[17] Karr, A. F.: Point Processes and Their Statistical Inference.Probability: Pure and Applied 7 Marcel Dekker, New York (1991). Zbl 0733.62088, MR 1113698; reference:[18] Lavancier, F., Møller, J., Rubak, E.: Determinantal point process models and statistical inference.J. R. Stat. Soc., Ser. B, Stat. Methodol. 77 (2015), 853-877 arXiv: 1205.4818v1-v5 [math ST] (2012-2014). MR 3382600, 10.1111/rssb.12096; reference:[19] Lenard, A.: States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures.Arch. Rational Mech. Anal. 59 (1975), 241-256. MR 0391831, 10.1007/BF00251602; reference:[20] Leonov, V. P., Shiryaev, A. N.: On a method of calculation of semi-invariants.Theory Probab. Appl. 4 319-329 (1960), translation from Teor. Veroyatn. Primen. 4 342-355 (1959), Russian 342-355. Zbl 0087.33701, MR 0123345; reference:[21] Macchi, O.: The coincidence approach to stochastic point processes.Adv. Appl. Probab. 7 (1975), 83-122. Zbl 0366.60081, MR 0380979, 10.1017/S0001867800040313; reference:[22] Press, S. J.: Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference.Robert E. Krieger Publishing Company, Malabar (1982). Zbl 0519.62041; reference:[23] Rao, A. R., Bhimasankaram, P.: Linear Algebra.Texts and Readings in Mathematics 19 Hindustan Book Agency, New Delhi (2000). Zbl 0982.15001, MR 1781860; reference:[24] Soshnikov, A.: Determinantal random point fields.Russ. Math. Surv. 55 923-975 (2000), translation from Usp. Mat. Nauk 55 107-160 (2000), Russian. Zbl 0991.60038, MR 1799012, 10.1070/RM2000v055n05ABEH000321; reference:[25] Soshnikov, A.: Gaussian limit for determinantal random point fields.Ann. Probab. 30 (2002), 171-187. Zbl 1033.60063, MR 1894104, 10.1214/aop/1020107764; reference:[26] Statulevičius, V. A.: On large deviations.Z. Wahrscheinlichkeitstheorie Verw. Geb. 6 (1966), 133-144. Zbl 0158.36207, MR 0221560, 10.1007/BF00537136
-
10Academic Journal
المؤلفون: Večeřa, Jakub
مصطلحات موضوعية: keyword:central limit theorem, keyword:facet process, keyword:U-statistics, msc:60D05, msc:60G55
وصف الملف: application/pdf
Relation: mr:MR3532252; zbl:Zbl 06644005; reference:[1] Beneš, V., M.Zikmundová: Functionals of spatial point processes having a density with respect to the Poisson process.Kybernetika 50 896-913 (2014). MR 3301778; reference:[2] Billingsley, P.: Probability and Measure.John Wiley & Sons, New York (1995). Zbl 0822.60002, MR 1324786; reference:[3] Georgii, H.-O., Yoo, H. J.: Conditional intensity and Gibbsianness of determinantal point processes.J. Stat. Phys. 118 55-84 (2005). Zbl 1130.82016, MR 2122549, 10.1007/s10955-004-8777-5; reference:[4] Last, G., Penrose, M. D.: Poisson process Fock space representation, chaos expansion and covariance inequalities.Probab. Theory Relat. Fields 150 663-690 (2011). Zbl 1233.60026, MR 2824870, 10.1007/s00440-010-0288-5; reference:[5] Last, G., Penrose, M. D., Schulte, M., Thäle, C.: Moments and central limit theorems for some multivariate Poisson functionals.Adv. Appl. Probab. 46 (2014), 348-364. Zbl 1350.60020, MR 3215537, 10.1017/S0001867800007126; reference:[6] Peccati, G., Taqqu, M. S.: Wiener chaos: Moments, Cumulants and Diagrams. A survey with computer implementation.Bocconi University Press, Milano; Springer, Milan (2011). Zbl 1231.60003, MR 2791919; reference:[7] Reitzner, M., Schulte, M.: Central limit theorems for $U$-statistics of Poisson point processes.Ann. Probab. 41 (2013), 3879-3909. Zbl 1293.60061, MR 3161465, 10.1214/12-AOP817; reference:[8] Schreiber, T., Yukich, J. E.: Limit theorems for geometric functionals of Gibbs point processes.Ann. Inst. Henri Poincaré, Probab. Stat. 49 (2013), 1158-1182. Zbl 1308.60064, MR 3127918, 10.1214/12-AIHP500; reference:[9] Večeřa, J., Beneš, V.: Interaction processes for unions of facets, the asymptotic behaviour with increasing intensity.Methodol. Comput. Appl. Probab. DOI-10.1007/s11009-016-9485-8 (2016). Zbl 1370.60015, MR 3564860, 10.1007/s11009-016-9485-8
-
11Academic Journal
المؤلفون: Jeulin, Dominique
مصطلحات موضوعية: keyword:Boolean model, keyword:Boolean varieties, keyword:Cox process, keyword:weakest link model, keyword:fracture statistics, keyword:mathematical morphology, msc:52A22, msc:60D05, msc:60G55
وصف الملف: application/pdf
Relation: mr:MR3532249; zbl:Zbl 06644002; reference:[1] Delisée, Ch., Jeulin, D., Michaud, F.: Caractérisation morphologique et porosité en 3D de matériaux fibreux cellulosiques.C.R. Académie des Sciences de Paris, t. 329, Série II b French (2001), 179-185.; reference:[2] Dirrenberger, J., Forest, S., Jeulin, D.: Towards gigantic RVE sizes for 3D stochastic fibrous networks.Int. J. Solids Struct. 51 (2014), 359-376. 10.1016/j.ijsolstr.2013.10.011; reference:[3] Faessel, M., Jeulin, D.: 3D multiscale vectorial simulations of random models.Proceedings of ICS13 (2011), 19-22.; reference:[4] Jeulin, D.: Modèles Morphologiques de Structures Aléatoires et de Changement d'Echelle.Thèse de Doctorat d'Etat è s Sciences Physiques, Université de Caen (1991).; reference:[5] Jeulin, D.: Modèles de Fonctions Aléatoires multivariables.Sci. Terre French 30 (1991), 225-256.; reference:[6] Jeulin, D.: Random structure models for composite media and fracture statistics.Advances in Mathematical Modelling of Composite Materials (1994), 239-289.; reference:[7] Jeulin, D.: Random structure models for homogenization and fracture statistics.Mechanics of Random and Multiscale Microstructures D. Jeulin, M. Ostoja-Starzewski CISM Courses Lect. 430, Springer, Wien (2001), 33-91. Zbl 1010.74004, 10.1007/978-3-7091-2780-3_2; reference:[8] Jeulin, D.: Morphology and effective properties of multi-scale random sets.A review, C. R. Mecanique 340 (2012), 219-229. 10.1016/j.crme.2012.02.004; reference:[9] Jeulin, D.: Boolean random functions.Stochastic Geometry, Spatial Statistics and Random Fields. Models and Algorithms V. Schmidt Lecture Notes in Mathematics 2120, Springer, Cham (2015), 143-169. Zbl 1366.60013, MR 3330575; reference:[10] Jeulin, D.: Power laws variance scaling of Boolean random varieties.Methodol. Comput. Appl. Probab. (2015), 1-15, DOI:10.1007/s11009-015-9464-5. MR 3564853, 10.1007/s11009-015-9464-5; reference:[11] Maier, R., Schmidt, V.: Stationary iterated tessellations.Adv. Appl. Probab. 35 (2003), 337-353. Zbl 1041.60012, MR 1970476, 10.1017/S000186780001226X; reference:[12] Matheron, G.: Random Sets and Integral Geometry.Wiley Series in Probability and Mathematical Statistics John Wiley & Sons, New York (1975). Zbl 0321.60009, MR 0385969; reference:[13] Nagel, W., Weiss, V.: Limits of sequences of stationary planar tessellations.Adv. Appl. Probab. 35 (2003), 123-138. Zbl 1023.60015, MR 1975507, 10.1017/S0001867800012118; reference:[14] Schladitz, K., Peters, S., Reinel-Bitzer, D., Wiegmann, A., Ohser, J.: Design of acoustic trim based on geometric modeling and flow simulation for non-woven.Computational Materials Science 38 (2006), 56-66. 10.1016/j.commatsci.2006.01.018
-
12Recovering the Brownian Coalescent Point Process from the Kingman Coalescent by Conditional Sampling
المؤلفون: Emmanuel Schertzer, Amaury Lambert
المساهمون: Lambert, Amaury, Centre interdisciplinaire de recherche en biologie (CIRB), Labex MemoLife, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Collège de France (CdF (institution))-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Probabilités et Modèles Aléatoires (LPMA), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC), CIRB - Collège de France, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
المصدر: Bernoulli 25, no. 1 (2019), 148-173
مصطلحات موضوعية: Statistics and Probability, Most recent common ancestor, sampling, [MATH.MATH-PR] Mathematics [math]/Probability [math.PR], Population, Kingman coalescent, 01 natural sciences, Point process, Coalescent theory, Combinatorics, 010104 statistics & probability, Mathematics::Probability, [SDV.BID.EVO] Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE], coalescent point process, FOS: Mathematics, Quantitative Biology::Populations and Evolution, flows of bridges, 0101 mathematics, Quantitative Biology - Populations and Evolution, education, Ultrametric space, Brownian motion, Mathematics, education.field_of_study, conditional sampling, critical, [SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE], 010102 general mathematics, Probability (math.PR), Populations and Evolution (q-bio.PE), small time behavior, MSC:60G55, 60G09, 60J80, 92D10, 92D15, 92D25, coalescent, Birth–death process, [MATH.MATH-PR]Mathematics [math]/Probability [math.PR], birth-death process, FOS: Biological sciences, 60G55, 60G09, 60J80, 92D10, 92D15, 92D25, Random variable, Mathematics - Probability
وصف الملف: application/pdf
-
13
المؤلفون: Paolo Dai Pra, Sylvie Rœlly, Giovanni Conforti
مصطلحات موضوعية: Statistics and Probability, 0209 industrial biotechnology, Class (set theory), General Mathematics, Compound Poisson processes, Jump processes, Reciprocal processes, Stochastic bridges, Mathematics (all), Statistics, Probability and Uncertainty, Discrete geometry, Markov process, 02 engineering and technology, 01 natural sciences, 010104 statistics & probability, symbols.namesake, 020901 industrial engineering & automation, FOS: Mathematics, msc:60H07, 0101 mathematics, ddc:510, Finite set, Probability measure, Mathematics, Discrete mathematics, Statistics, Probability and Uncertainty, Probability (math.PR), 60G55, 60H07, 60J75, Institut für Mathematik, Probability and statistics, State (functional analysis), msc:60G55, msc:60J75, symbols, Reciprocal, Mathematics - Probability
وصف الملف: application/pdf
-
14ReportRecovering the Brownian Coalescent Point Process from the Kingman Coalescent by Conditional Sampling
المؤلفون: Lambert, Amaury, Schertzer, Emmanuel
المساهمون: Centre interdisciplinaire de recherche en biologie (CIRB), Labex MemoLife, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Collège de France (CdF (institution))-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Probabilités et Modèles Aléatoires (LPMA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), CIRB - Collège de France
المصدر: https://hal.science/hal-01394651 ; 2016.
مصطلحات موضوعية: coalescent, sampling, critical, birth-death process, MSC:60G55, 60G09, 60J80, 92D10, 92D15, 92D25, [MATH.MATH-PR]Mathematics [math]/Probability [math.PR], [SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]
Relation: info:eu-repo/semantics/altIdentifier/arxiv/1611.01323; ARXIV: 1611.01323
الاتاحة: https://hal.science/hal-01394651
-
15Academic Journal
المؤلفون: Beneš, Viktor, Zikmundová, Markéta
مصطلحات موضوعية: keyword:difference of a functional, keyword:limit theorem, keyword:moments, keyword:U-statistics, msc:60D05, msc:60F05, msc:60G55
وصف الملف: application/pdf
Relation: mr:MR3301778; zbl:Zbl 06416866; reference:[1] Baddeley, A.: Spatial point processes and their applications. Stochastic geometry.Lecture Notes in Math. 1892 (2007), 1-75. MR 2327290, 10.1007/978-3-540-38175-4_1; reference:[2] Decreusefond, L., Flint, I.: Moment formulae for general point processes.C. R. Acad. Sci. Paris, Ser. I (2014), 352, 357-361. Zbl 1297.60031, MR 3186927; reference:[3] Kaucky, J.: Combinatorial Identities (in Czech).Veda, Bratislava 1975.; reference:[4] Last, G., Penrose, M. D.: Poisson process Fock space representation, chaos expansion and covariance inequalities.Probab. Theory Relat. Fields 150 (2011), 663-690. Zbl 1233.60026, MR 2824870, 10.1007/s00440-010-0288-5; reference:[5] Last, G., Penrose, M. D., Schulte, M., Thäle, Ch.: Moments and central limit theorems for some multivariate Poisson functionals.Adv. Appl. Probab. 46 (2014), 2, 348-364. MR 3215537, 10.1239/aap/1401369698; reference:[6] Møller, J., Helisová, K.: Power diagrams and interaction processes for unions of disc.Adv. Appl. Probab. 40 (2008), 321-347. MR 2431299, 10.1239/aap/1214950206; reference:[7] Møller, J., Waagepetersen, R.: Statistical Inference and Simulation for Spatial Point Processes.Chapman and Hall/CRC, Boca Raton 2004. MR 2004226; reference:[8] Peccati, G., Taqqu, M. S.: Wiener Chaos: Moments, Cumulants and Diagrams.Bocconi Univ. Press, Springer, Milan 2011. Zbl 1231.60003, MR 2791919; reference:[9] Peccati, G., Zheng, C.: Multi-dimensional Gaussian fluctuations on the Poisson space.Electron. J. Probab. 15 (2010), 48, 1487-1527. Zbl 1228.60031, MR 2727319; reference:[10] Reitzner, M., Schulte, M.: Central limit theorems for $U$-statistics of Poisson point processes.Ann. Probab. 41 (2013), 3879-3909. Zbl 1293.60061, MR 3161465, 10.1214/12-AOP817; reference:[11] Schneider, R., Weil, W.: Stochastic and Integral Geometry.Springer, Berlin 2008. Zbl 1175.60003, MR 2455326
-
16Academic Journal
المؤلفون: Dvořák, Jiří, Prokešová, Michaela
مصطلحات موضوعية: keyword:moment estimation methods, keyword:spatial Cox point process, keyword:parametric inference, msc:60G55, msc:62M30
وصف الملف: application/pdf
Relation: mr:MR3086866; reference:[1] Baddeley, A. J., Turner, R.: Practical maximum pseudolikelihood for spatial point processes.Aust. N. Z. J. Statist. 42 (2000), 283-322. MR 1794056, 10.1111/1467-842X.00128; reference:[2] Baddeley, A. J., Turner, R.: Spatstat: an R package for analyzing spatial point patterns.J. Statist. Softw. 12 (2005), 1-42.; reference:[3] Brix, A.: Generalized gamma measures and shot-noise Cox processes.Adv. in Appl. Probab. 31 (1999), 929-953. Zbl 0957.60055, MR 1747450, 10.1239/aap/1029955251; reference:[4] Cox, D. R.: Some statistical models related with series of events.J. Roy. Statist. Soc. Ser. B 17 (1955), 129-164. MR 0092301; reference:[5] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Volume 1: Elementary Theory and Methods.Second edition. Springer Verlag, New York 2003. MR 1950431; reference:[6] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Volume 2: General Theory and Structure.Second edition. Springer Verlag, New York 2008. MR 2371524; reference:[7] Diggle, P. J.: Statistical Analysis of Spatial Point Patterns.Academic Press, London 1983. Zbl 1021.62076, MR 0743593; reference:[8] Diggle, P. J.: Statistical Analysis of Spatial Point Patterns.Second edition. Oxford University Press, New York 2003. Zbl 1021.62076, MR 0743593; reference:[9] Dvořák, J., Prokešová, M.: Moment estimation methods for stationary spatial Cox processes - a simulation study.Preprint (2011), \url{http://www.karlin.mff.cuni.cz/ dvorak/CoxEstimation/CoxEstimation_SimulationStudy.pdf}.; reference:[10] Guan, Y.: A composite likelihood approach in fitting spatial point process models.J. Amer. Statist. Assoc. 101 (2006), 1502-1512. Zbl 1171.62348, MR 2279475, 10.1198/016214506000000500; reference:[11] Guan, Y., Sherman, M.: On least squares fitting for stationary spatial point processes.J. Roy. Statist. Soc. Ser. B 69 (2007), 31-49. MR 2301498, 10.1111/j.1467-9868.2007.00575.x; reference:[12] Heinrich, L.: Minimum contrast estimates for parameters of spatial ergodic point processes.In: Trans. 11th Prague Conference on Random Processes, Information Theory and Statistical Decision Functions. Academic Publishing House, Prague 1992.; reference:[13] Hellmund, G., Prokešová, M., Jensen, E. B. Vedel: Lévy-based Cox point processes.Adv. in Appl. Probab. 40 (2008), 603-629. MR 2454025, 10.1239/aap/1222868178; reference:[14] Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical Analysis and Modelling of Spatial Point Patterns.John Wiley and Sons, Chichester 2008. Zbl 1197.62135, MR 2384630; reference:[15] Jensen, A. T.: Statistical Inference for Doubly Stochastic Poisson Processes.Ph.D. Thesis, Department of Applied Mathematics and Statistics, University of Copenhagen 2005.; reference:[16] Lindsay, B. G.: Composite likelihood methods.Contemp. Math. 80 (1988), 221-239. Zbl 0672.62069, MR 0999014, 10.1090/conm/080/999014; reference:[17] Matérn, B.: Doubly stochastic Poisson processes in the plane.In: Statistical Ecology. Volume 1. Pennsylvania State University Press, University Park 1971.; reference:[18] Møller, J., Syversveen, A. R., Waagepetersen, R. P.: Log-Gaussian Cox processes.Scand. J. Statist. 25 (1998), 451-482. MR 1650019, 10.1111/1467-9469.00115; reference:[19] Møller, J.: Shot noise Cox processes.Adv. in Appl. Probab. (SGSA) 35 (2003), 614-640. MR 1990607, 10.1239/aap/1059486821; reference:[20] Møller, J., Waagepetersen, R. P.: Statistical Inference and Simulation for Spatial Point Processes.Chapman and Hall/CRC, Florida 2003.; reference:[21] Møller, J., Waagepetersen, R. P.: Modern statistics for spatial point processes.Scand. J. Statist. 34 (2007), 643-684. MR 2392447; reference:[22] Prokešová, M., Jensen, E. B. Vedel: Asymptotic Palm likelihood theory for stationary spatial point processes.Accepted to Ann. Inst. Statist. Math. (2012).; reference:[23] Tanaka, U., Ogata, Y., Stoyan, D.: Parameter estimation and model selection for Neyman-Scott point processes.Biometrical J. 49 (2007), 1-15. MR 2414637
-
17
المؤلفون: Méléard, Sylvie, Roelly, Sylvie
مصطلحات موضوعية: msc:60G55, msc:35Q92, msc:60G57, Institut für Mathematik, Quantitative Biology::Populations and Evolution, msc:60J68, ddc:510, msc:60J80
وصف الملف: application/pdf
-
18Academic Journal
المؤلفون: Pawlas, Zbyněk
مصطلحات موضوعية: keyword:$K$-function, keyword:nearest-neighbour distance distribution function, keyword:non-parametric estimation, keyword:point process, keyword:replication, msc:60G55, msc:62G05, msc:62M30
وصف الملف: application/pdf
Relation: mr:MR2907848; zbl:Zbl 1250.62042; reference:[1] Baddeley, A. J., Gill, R.: Kaplan-Meier estimators of distance distributions for spatial point processes.Ann. Statist. 25 (1997), 263-292. Zbl 0870.62028, MR 1429925, 10.1214/aos/1034276629; reference:[2] Baddeley, A. J., Moyeed, R. A., Howard, C. V., Boyde, A.: Analysis of a three-dimensional point pattern with replication.J. Roy. Statist. Soc. Ser. C 42 (1993), 641-668. Zbl 0825.62476, MR 1234146; reference:[3] Bell, M. L., Grunwald, G. K.: Mixed models for the analysis of replicated spatial point patterns.Biostatistics 5 (2004), 633-648. Zbl 1069.62055, 10.1093/biostatistics/kxh014; reference:[4] Diggle, P. J.: Statistical Analysis of Spatial Point Patterns.2nd edition. Arnold, London 2003. Zbl 1021.62076, MR 0743593; reference:[5] Diggle, P. J., Lange, N., Beneš, F. M.: Analysis of variance for replicated spatial point patterns in clinical neuroanatomy.J. Amer. Statist. Assoc. 86 (1991), 618-625. 10.1080/01621459.1991.10475087; reference:[6] Diggle, P. J., Mateu, J., Clough, H. E.: A comparison between parametric and non-parametric approaches to the analysis of replicated spatial point patterns.Adv. in Appl. Probab. (SGSA) 32 (2000), 331-343. Zbl 1052.60009, MR 1778567, 10.1239/aap/1013540166; reference:[7] Hanisch, K.-H.: Some remarks on estimators of the distribution function of nearest neighbour distance in stationary spatial point patterns.Statistics 15 (1984), 409-412. MR 0756346; reference:[8] Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical Analysis and Modeling of Spatial Point Patterns.John Wiley & Sons, Chichester 2008. MR 2384630; reference:[9] Philimonenko, A. A., Janáček, J., Hozák, P.: Statistical evaluation of colocalization patterns in immunogold labeling experiments.J. Struct. Biol. 132 (2000), 201-210. 10.1006/jsbi.2000.4326; reference:[10] R Development Core Team: R: A Language and Environment for Statistical Computing.R Foundation for Statistical Computing, Vienna 2010. URL: http://www.R-project.org.; reference:[11] Stoyan, D.: On estimators of the nearest neighbour distance distribution function for stationary point processes.Metrika 64 (2006), 139-150. Zbl 1100.62082, MR 2259218, 10.1007/s00184-006-0040-4; reference:[12] Wager, C. G., Coull, B. A., Lange, N.: Modelling spatial intensity for replicated inhomogeneous point patterns in brain imaging.J. R. Statist. Soc. B 66 (2004), 429-446. Zbl 1062.62221, MR 2062386, 10.1046/j.1369-7412.2003.05285.x
-
19Academic Journal
المؤلفون: Prokešová, Michaela
مصطلحات موضوعية: keyword:reduced covariance measure, keyword:factorial moment and cumulant measures, keyword:kernel-type estimator, keyword:subsampling, keyword:mean squared error, keyword:Poisson cluster process, keyword:hard-core process, msc:60G55, msc:62F12
وصف الملف: application/pdf
Relation: mr:MR2850456; zbl:Zbl 1238.62098; reference:[1] S. Böhm, L. Heinrich, V. Schmidt: Kernel estimation of the spectral density of stationary random closed sets.Austral. & New Zealand J. Statist. 46 (2004), 41-52. Zbl 1061.62057, MR 2060951, 10.1111/j.1467-842X.2004.00310.x; reference:[2] K. L. Chung: A Course in Probability Theory.Second edition. Harcourt Brace Jovanovich, New York 1974. Zbl 0345.60003, MR 0346858; reference:[3] D. J. Daley, D. Vere-Jones: An Introduction to the Theory of Point Processes.Second edition. Vol I and II, Springer, New York 2003, 2008. Zbl 1026.60061, MR 0950166; reference:[4] S. David: Central Limit Theorems for Empirical Product Densities of Stationary Point Processes.Phd. Thesis, Augsburg Universität 2008.; reference:[5] L. Heinrich: Asymptotic gaussianity of some estimators for reduced factorial moment measures and product densities of stationary Poisson cluster processes.Statistics 19 (1988), 87-106. Zbl 0666.62032, MR 0921628, 10.1080/02331888808802075; reference:[6] L. Heinrich: Normal approximation for some mean-value estimates of absolutely regular tesselations.Math. Methods Statist. 3 (1994), 1-24. MR 1272628; reference:[7] L. Heinrich: Asymptotic goodness-of-fit tests for point processes based on scaled empirical K-functions.Submitted.; reference:[8] L. Heinrich, E. Liebscher: Strong convergence of kernel estimators for product densities of absolutely regular point processes.J. Nonparametric Statist. 8 (1997), 65-96. Zbl 0884.60041, MR 1658113, 10.1080/10485259708832715; reference:[9] L. Heinrich, M. Prokešová: On estimating the asymptotic variance of stationary point processes.Methodology Comput. in Appl. Probab. 12 (2010), 451-471. Zbl 1197.62122, MR 2665270, 10.1007/s11009-008-9113-3; reference:[10] L. Heinrich, V. Schmidt: Normal convergence of multidimensional shot noise and rates of this convergence.Adv. in Appl. Probab. 17 (1985), 709-730. Zbl 0609.60036, MR 0809427, 10.2307/1427084; reference:[11] J. Illian, A. Penttinen, H. Stoyan, D. Stoyan: Statistical Analysis and Modelling of Spatial Point Patterns.John Wiley and Sons, Chichester 2008. Zbl 1197.62135, MR 2384630; reference:[12] E. Jolivet: Central limit theorem and convergence of empirical processes of stationary point processes.In: Point Processes and Queueing Problems (P. Bartfai and J. Tomko, eds.), North-Holland, New York 1980, pp. 117-161. MR 0617406; reference:[13] S. Mase: Asymptotic properties of stereological estimators for stationary random sets.J. Appl. Probab. 19 (1982), 111-126. MR 0644424, 10.2307/3213921; reference:[14] D. N. Politis: Subsampling.Springer, New York 1999. Zbl 1072.62551, MR 1707286; reference:[15] D. N. Politis, M. Sherman: Moment estimation for statistics from marked point processes.J. Roy. Statist. Soc. Ser. B 63 (2001), 261-275. Zbl 0979.62074, MR 1841414, 10.1111/1467-9868.00284; reference:[16] M. Prokešová, E. B. Vedel-Jensen: Asymptotic Palm likelihood theory for stationary point processes.Submitted.; reference:[17] B. D. Ripley: Statistical Inference for Spatial Processes.Cambridge University Press, Cambridge 1988. Zbl 0716.62100, MR 0971986; reference:[18] D. Stoyan, W. S. Kendall, J. Mecke: Stochastic Geometry and its Applications.Second edition. J. Wiley & Sons, Chichester 1995. Zbl 0838.60002, MR 0895588; reference:[19] J. C. Taylor: An Introduction to Measure and Probability.Springer, New York 1997. MR 1420194; reference:[20] L. Zhengyan, L. Chuanrong: Limit Theory for Mixing Dependent Random Variables.Kluwer Academic Publishers, Dordrecht 1996. Zbl 0889.60001, MR 1486580
-
20Academic Journal
المؤلفون: Thäle, Christoph
مصطلحات موضوعية: keyword:hypergeometric function, keyword:iteration/nesting, keyword:random tessellation, keyword:segments, keyword:stochastic geometry, keyword:stochastic stability, msc:05B45, msc:52A22, msc:60D05, msc:60G55
وصف الملف: application/pdf
Relation: mr:MR2741883; zbl:Zbl 1224.60015; reference:[1] Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.Dover, New York, 1965, online version under http://www.math.ucla.edu/ cbm/aands/index.htm. Zbl 0643.33001, MR 1225604; reference:[2] Mecke J., Nagel W., Weiss V.: Length distributions of edges in planar stationary and isotropic STIT tessellations.J. Contemp. Math. Anal. 42 (2007), 28–43. Zbl 1155.60005, MR 2361580, 10.3103/S1068362307010025; reference:[3] Mecke J., Nagel W., Weiss V.: Some distributions for I-segments of planar random homogeneous STIT tessellations.Math. Nachr. (2010)(to appear). MR 2832660; reference:[4] Nagel W., Weiss V.: Crack STIT tessellations: characterization of stationary random tessellations stable with respect to iteration.Adv. in Appl. Probab. 37 (2005), 859–883. Zbl 1098.60012, MR 2193987, 10.1239/aap/1134587744; reference:[5] Schneider R., Weil W.: Stochastic and Integral Geometry.Springer, Berlin, 2008. Zbl 1175.60003, MR 2455326; reference:[6] Schreiber T., Thäle C.: Typical geometry, second-order properties and central limit theory for iteration stable tessellations.arXiv:1001.0990 [math.PR] (2010). MR 2796670; reference:[7] Thäle C.: Moments of the length of line segments in homogeneous planar STIT tessellations.Image Anal. Stereol. 28 (2009), 69–76. MR 2538063, 10.5566/ias.v28.p69-76