يعرض 1 - 20 نتائج من 34 نتيجة بحث عن '"M. V. YARMOLICH"', وقت الاستعلام: 0.48s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal

    المساهمون: The authors are grateful for the support of this research within the framework of the BRFFR projects No. F23ME-025 and No. F24MN-009., Авторы работы признательны за поддержку данного исследования в рамках проектов БРФФИ № Ф23МЭ-025 и № Ф24МН-009.

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 27, № 2 (2024) ; Известия высших учебных заведений. Материалы электронной техники; Том 27, № 2 (2024) ; 2413-6387 ; 1609-3577

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/572/447; https://met.misis.ru/jour/article/downloadSuppFile/572/218; https://met.misis.ru/jour/article/downloadSuppFile/572/219; https://met.misis.ru/jour/article/downloadSuppFile/572/220; https://met.misis.ru/jour/article/downloadSuppFile/572/221; https://met.misis.ru/jour/article/downloadSuppFile/572/222; https://met.misis.ru/jour/article/downloadSuppFile/572/223; Wolf S.A., Awschalom D.D., Buhrman R.A., Daughton J.M., Von Molnar S., Roukes M.L., Chtchelkanova A.Y., Treger D.M. Spintronics: a spin-based electronic vision for the future. Science. 2001; 294(5546): 1488—1495. https://doi.org/10.1126/science.1065389; Zutic I., Fabian J., Das Sarma S. Spintronics: fundamentals and applications. Reviews of Modern Physics. 2004; 76(2): 323—410. https://doi.org/10.1103/RevModPhys.76.323; Kalanda N., Bobrikov I., Yarmolich M., Kuts V., Huang L., Hwang C., Kim D.-H. Interrelation among superstructural ordering, oxygen nonstoichiometry and lattice strain of double perovskite Sr2FeMoO6-δ materials. Journal of Materials Science. 2021; 56: 11698—11710. https://doi.org/10.1007/s10853-021-06072-0; Jungwirth T., Sinova J., Masek J., Kucera J., MacDonald A.H. Theory of ferromagnetic (III, Mn)V semiconductors. Reviews of Modern Physics. 2006; 78(3): 809—864. https://doi.org/10.1103/RevModPhys.78.809; Serrate D., DeTeresa J.M., Ibarra M.R. Double perovskites with ferromagnetism above room temperature. Journal of Physics: Condensed Matter. 2007; 19(2): 023201. https://doi.org/10.1088/0953-8984/19/2/023201; Topwal D., Sarma D.D., Kato H., Tokura Y.; Avignon M. Structural and magnetic properties of; Sr2Fe1+xMo1-xO6 (-1 ⩽ x ⩽ 0.25). Physical Review B. 2006; 73(9): 0944191. https://doi.org/10.1103/PhysRevB.73.094419; Karki S.B., Ramezanipour F. Magnetic and electrical properties of BaSrMMoO6 (M = Mn, Fe, Co, and Ni). Materials Today Chemistry. 2019; 13: 25—33. https://doi.org/10.1016/j.mtchem.2019.04.002; Balcells L., Navarro J., Bibes M., Roig A., Martinez B., Fontcuberta J. Cationic ordering control of magnetization in Sr2FeMoO6 double perovskite. Applied Physics Letters. 2001; 78(6): 14. https://doi.org/10.1063/1.1346624; Allub R., Navarro O., Avignon M., Alascio B. Effect of disorder on the electronic structure of the double perovskite Sr2FeMoO6. Physica B: Condensed Matter. 2002; 320(1–4): 13—17. https://doi.org/10.1016/S0921-4526(02)00608-7; Park B., Han H., Kim J., Kim Y.J., Kim C.S., Lee B.W. Correlation between anti-site disorder and magnetic properties in ordered perovskite Sr2FeMoO6. Journal of Magnetism and Magnetic Materials. 2004; 272–276(Pt 3): 1851—1852. https://doi.org/10.1016/j.jmmm.2003.12.429; Menéndez N., Garcia-Hernandez M., Sanchez D., Tornero J.D., Martinez J.L., Alonso J.A. Charge transfer and disorder in double perovskites. American Chemical Society. 2004; 16(18): 3565—3572. https://doi.org/10.1021/cm049305t; Sarma D.D. A new class of magnetic materials; Sr2FeMoO6 and related compounds. Current Opinion in Solid State and Materials Science. 2001; 5(4): 261—268. https://dx.doi.org/10.1016/S1359-0286(01)00014-6; Szotek Z., Temmerman W.M., Svane A., Petit L., Winter H. Electronic structure of half-metallic double perovskites. Physical Review B. 2003; 68(10): 104411. https://doi.org/10.1103/PhysRevB.68.104411; Sarma D.D., Mahadevan P., Saha-Dasgupta T., Ray S., Kumar A. Electronic structure of Sr2FeMoO6. Physical Review Letters. 2000; 85(12): 2549—2552. https://doi.org/10.1103/PhysRevLett.85.2549; Navarro J., Frontera C., Balcells LI., Martinez B., Fontcuberta J. Raising the Curie temperature in; Sr2FeMoO6 double perovskites by electron doping. Physical Review B. 2001; 64(9): 09241. https://doi.org/10.1103/PhysRevB.64.092411; Zhong W., Wu X.L., Tang N.J., Liu W., Chen W., Au C.T., Du Y.W. Magnetocaloric effect in ordered double-perovskite Ba2FeMoO6 synthesized using wet chemistry. The European Physical Journal B – Condensed Matter and Complex Systems. 2004; 41: 213—217. https://doi.org/10.1140/epjb/e2004-00312-9; Zhong W., Tang N.J., Wu X.L., Liu W., Chen W., Jiang H.Y., Du Y.W. Magnetocaloric effect above room temperature in the ordered double-perovskite Ba2Fe1+xMo1-xO6. Journal of Magnetism and Magnetic Materials. 2004; 282: 151—155. https://doi.org/10.1016/j.jmmm.2004.04.036; Tomioka Y., Okuda T., Okimoto Y., Kumai R., Kobayashi K.-I., Tokura Y. Magnetic and electronic properties of a single crystal of ordered double perovskite Sr2FeMoO6. Physical Review B. 2000; 61(1): 422. https://doi.org/10.1103/PhysRevB.61.422; Dhahri A., Dhahri J., Zemni S., Oumezzine M., Vincent H. Structural, magnetic and magnetocaloric effect in double perovskite Ba2CrMo1-xWxO6. Journal of Alloys and Compounds. 2006; 420(1–2): 15—19. https://doi.org/10.1016/j.jallcom.2005.10.030; Moritomo Y., Xu S., Akimoto T., Machida A., Hamada N., Ohoyama K., Nishibori E., Takata M., Sakata M. Electron doping effects in conducting Sr2FeMoO6. Physical Review B. 2000; 62(21): 14224. https://doi.org/10.1103/PhysRevB.62.14224; Garcia-Hernandez M., Martinez J.L., Martinez-Lope M.J., Casais M.T., Alonso J.A. Finding universal correlations between cationic disorder and low field magnetoresistance in FeMo double perovskite series. Physical Review Letters. 2001; 86(11–12): 2443. https://doi.org/10.1103/PhysRevLett.86.2443; Navarro J., Nogues J., Munoz J.S., Fontcuberta J. Antisites and electron-doping effects on the magnetic transition of Sr2FeMoO6 double perovskite. Physical Review B. 2003; 67(17): 174416. https://doi.org/10.1103/PhysRevB.67.174416; Kahoul A., Aziz A., Colis S., Stoelfer D., Moubah R., Schmerber G., Leuvrey C. Effect of La doping on the properties of Sr2-xLaxFeMoO6 double perovskite. Journal of Applied Physics. 2008; 104(12): 123903. https://doi.org/10.1063/1.3043586; Jana S., Meneghini C., Sanyal P., Sarkar S., Saha-Dasgupta T., Karis O., Ray S. Signature of an antiferromagnetic metallic ground state in heavily electron-doped Sr2FeMoO6. Physical Review B. 2012; 86(5): 054433. https://doi.org/10.1103/PhysRevB.86.054433; Sanyal P., Das H., Saha-Dasgupta T. Evidence of kinetic-energy-driven antiferromagnetism in double perovskites: a first-principles study of La-doped Sr2FeMoO6. Physical Review B. 2009; 80(22): 224412. https://doi.org/10.1103/PhysRevB.80.224412; Fang, T.-T., Lin J.-C. Formation kinetics; of Sr2FeMoO6 double perovskite. Journal of Materials Science. 2005; 40(1): 683—686. https://doi.org/10.1007/s10853-005-6307-8; Yarmolich M., Kalanda N., Demyanov S., Terryn H., Ustarroz J., Silibin M., Gorokh G. Influence of synthesis conditions on microstructure and phase transformations of annealed Sr2FeMoO6-x nanopowders formed by the citrate-gel method. Beilstein Journal of. Nanotechnology. 2016; 7: 1202—1207. https://doi.org/10.3762/bjnano.7.111; Cernea M., Vasiliu F., Bartha C., Plapcianu C., Merconiu I., Characterization of ferromagnetic double perovskite Sr2FeMoO6 prepared by various methods. Ceramics International. 2014; 40(8 Pt A): 11601—11609. https://doi.org/10.1016/j.ceramint.2014.03.142; Kalanda N.A., Gurskii A.L., Yarmolich M.V., Petrov A.V., Bobrikov I.A., Ivanshina O.Yu., Sumnikov S.V., Maia F., Zhaludkevich A.L., Demyanov S.E. Sequence of phase transformations at the formation of the stronitum chrome-molybdate compound. Modern Electronic Materials. 2019; 5(2): 69—75. https://doi.org/10.3897/j.moem.5.2.50758; Jurca B., Berthon J., Dragoe N., Berthet P., Influence of successive sintering treatments on high ordered Sr2FeMoO6 double perovskite properties. Journal of Alloys and Compounds. 2009; 474(1–2): 416—423. https://doi.org/10.1016/j.jallcom.2008.06.100; Kraus W., Nolze G. POWDERCELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography. 1996; 29: 301—303. https://doi.org/10.1107/S0021889895014920; Rodríguez-Carvajal J. Recent developments of the program FULLPROF in Commission on Powder Diffraction (IUCr). Newsletter. 2001; 26: 12—19.; https://met.misis.ru/jour/article/view/572

  10. 10
    Academic Journal

    المساهمون: The authors are grateful for the support of this study within the framework of the BRFFR projects No F21IZR-004 and No. F21U-003., Авторы работы признательны за поддержку данного исследования в рамках проектов БРФФИ № Ф21ИЗР-004 и № Ф21У-003.

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 26, № 1 (2023); 5-16 ; Известия высших учебных заведений. Материалы электронной техники; Том 26, № 1 (2023); 5-16 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2023-1

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/506/406; Goodenough J.B. Electronic and ionic transport properties and other physical aspects of perovskites. Reports on Progress in Physics. 2004; 67: 1915—1994. https://doi.org/10.1088/0034-4885/67/11/R01; Balagurov A.M., Bushmeleva S.N., Pomjakushin V.Yu., Sheptyakov D.V., Amelichev V.A., Gorbenko O.Yu., Kaul A.R., Gan’shina E.A., Perkins N.B. Magnetic structure of NaMnO3 consistently doped with Sr and Ru. Physical Review B. 2004; 70: 014427. https://doi.org/10.1103/PhysRevB.70.014427; Дунаевский С.М. Магнитные фазовые диаграммы манганитов в области их электронного легирования (обзор). Физика твердого тела. 2004; 46(2): 193—211.; Kozlenko D.P., Glazkov V.P., Jirák Z., Savenko B.N. High pressure effects on the crystal and magnetic structure of Pr1-xSrxMnO3 manganites (x = 0.5–0.56). Journal of Physics: Condensed Matter. 2004; 16(13): 2381—2394. https://doi.org/10.1088/0953-8984/16/13/017; Янчевский О.З., Вьюнов О.И., Белоус А.Г., Товстолыткин А.И., Кравчик В.П. Синтез и свойства манганитов La0.7Sr0.3Mn1-xTixO3. Физика твердого тела. 2006; 48(4): 667—673.; McIntosh S., Vente J.F., Haije W.G., Blank D.H.A., Bouwmeester H.J.M. Structure and oxygen stoichiometry of SrCo0.8Fe0.2O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ. Solid State Ionics. 2006; 177(19–25): 1737—1742. https://doi.org/10.1016/j.ssi.2006.03.041; Nagaev E.L. Lanthanum manganites and other giant-magnetoresistance magnetic conductors. Physics – Uspekhi. 1996; 39(8): 781—806. https://doi.org/10.1070/ PU1996v039n08ABEH000161; Maignan A., Martin C., Pelloquin D., Nguyen N., Raveau B. Structural and magnetic studies of ordered oxygen-deficient perovskites LnBaCo2O5+δ, closely related to the ‘‘112’’ structure. Journal of Solid State Chemistry. 1999; 142(2): 247—260. https://doi.org/10.1006/jssc.1998.7934; Yamazoe N., Furukawa S., Teraoka Y., Seiyama T. The effect of oxygen sorption on the crystal structure of La1-xSrxCoO3-δ. Chemistry Letters. 1982; 11(12): 2019—2022. https://doi.org/10.1246/cl.1982.2019; van den Brink, J., Khaliullin, G., Khomskii, D. Charge and orbital order in half-doped manganites. Physical Review Letters. 1999; 83(24): 5118. https://doi.org/10.1103/PhysRevLett.83.5118; Deshmukh A.V., Pati l S.I., Bhagat S.M., Sagdeo P.R., Choudhary R.J., Phase D.M. Effect of iron doping on electrical, electronic and magnetic properties of La0.7Sr0.3MnO3. Journal of Physics D: Applied Physics. 2009; 42(18): 185410. https://doi.org/10.1088/0022-3727/42/18/185410; Kuo J.H., Anderson H.U., Sparlin D.M. Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: defect structure, electrical conductivity, and thermoelectric power. Journal of Solid State Chemistry. 1990; 87(1): 55—63. https://doi.org/10.1016/0022-4596(90)90064-5; Kruidhof H., Bouwmeester H. J.M., v. Doorn R.H.E., Burggraaf A.J. Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides. Solid State Ionics. 1993; 63–65: 816—822. https://doi.org/10.1016/0167-2738(93)90202-E; Ritter C., Ibarra M.R., Morellon L., Blasco J., Garcia J., De Teresa J.M. Structural and magnetic properties of double perovskites AA’FeMoO6 (AA’ = Ba2, BaSr, Sr2 and Ca2). Journal of Physics: Condensed Matter. 2000; 12(38): 8295—8308. https://doi.org/10.1088/0953-8984/12/38/306; Goodenough J.B. Metallic oxides. Progress in Solid State Chemistry. 1971: 5: 145—399. https://doi.org/10.1016/0079-6786(71)90018-5; Troyanchuk I.O., Bushinsky M.V., Szymczak H., Bärner K., Maignan A. Magnetic interaction in Mg, Ti, Nb doped manganites. European Physical Journal B. 2002: 28(1): 75—80. https://doi.org/10.1140/epjb/e2002-00202-2; Ульянов А.Н., Мазур А.С., Янг Д.С., Криворучко В.Н., Даниленко И.А., Константинова Т.Е., Левченко Г.Г. Локальные структурные и магнитные неоднородности в наноразмерных La0.7Sr0.3MnO3 манганитах. Наносистемы, Наноматериалы, Нанотехнологии. 2011; 9(1): 107—114. https://www.imp.kiev.ua/nanosys/media/pdf/2011/1/nano_vol9_iss1_p0107p0114_2011.pdf; Каланда Н.А., Ярмолич М.В., Гурский А.Л., Петров А.В., Желудкевич А.Л., Игнатенко О.В., Сердечнова М. Кислородная нестехиометрия и магнитные свойства легированных манганитов La0.7Sr0.3Mn0.95Fe0.05O3-δ. Известия высших учебных заведений. Материалы электронной техники. 2022; 25(1): 52—63. https://doi.org/10.17073/1609-3577-2022-1-52-63; dos Santos-Gómez L., Leon-Reina L., Porras-Vazquez J.M., Losilla E.R., Marrero-Lopez D. Chemical stability and compatibility of double perovskite anode materials for SOFCs. Solid State Ionics. 2013; 239: 1—7. https://doi.org/10.1016/j.ssi.2013.03.005; Rodríguez-Carvajal J. Recent developments of the program FULLPROF. Commission on powder diffraction (IUCr). Newsletter. 2001; 26: 12—19.; Kraus W. POWDER CELL — a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography. 1996; 29(3): 301—303. https://doi.org/10.1107/S0021889895014920; Меrzhanov А.G., Barzykin V.V., Shteinberg A.S., Gontkovskayaт V.T. Methodological Principles in studying chemical reaction kinetics under conditions of programmed heating. Thermochimica Acta. 1977; 21(3): 301—332. https://doi.org/10.1016/0040-6031(77)85001-6; Sánchez-Rodríguez D., Eloussifi H., Farjas J., Roura P., Dammak M. Thermal gradients in thermal analysis experiments: Criterions to prevent inaccuracies when determining sample temperature and kinetic parameters. Thermochimica Acta. 2014; 589: 37—46. https://doi.org/10.1016/j.tca.2014.05.001; Каланда Н.А. Термостимулированная десорбция кислорода в Sr2FeMoO6-δ. Известия высших учебных заведений. Материалы электронной техники. 2019: 21(1): 48—53. https://doi.org/10.17073/1609-3577-2018-1-48-53; Третьяков Ю.Д. Развитие неорганической химии как фундаментальной основы создания новых поколений функциональных материалов. Успехи химии. 2004: 73(9): 899—916.; Штиллер В. Уравнение Аррениуса и неравновесная кинетика. Изд-во Мир. 2000. 176 c.; Mizusaki J., Mori N., Takai H., Yonemura Y., Minamiue H., Tagawa H., Dokiya M., Inaba H., Naraya K., Sasamoto T., Hashimoto T. Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1-xSrxMnO3+d. Solid State Ionics, 2000; 129(1-4): 163—177. https://doi.org/10.1016/S0167-2738(99)00323-9; https://met.misis.ru/jour/article/view/506

  11. 11
    Academic Journal

    المساهمون: A support of the work in frames of the European Union project H2020-MSCA-RISE-2018-823942 – FUNCOAT and in frames of the project of the Belarusian Republican Foundation for Fundamental Research No. F21ISR-0004 are gratefully acknowledged., Коллектив авторов выражает благодарность за поддержку работы в рамках проекта Европейского Союза H2020-MSCA-RISE-2018-823942 – FUNCOAT и в рамках проекта Белорусского республиканского фонда фундаментальных исследований № F21ISR-0004.

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 25, № 1 (2022); 52-63 ; Известия высших учебных заведений. Материалы электронной техники; Том 25, № 1 (2022); 52-63 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2022-1

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/471/370; Goodenough J.B. Electronic and ionic transport properties and other physical aspects of perovskites. Reports on Progress in Physics. 2004; 67: 1915—1994. https://doi.org/10.1088/0034-4885/67/11/R01; Дунаевский С.М. Магнитные фазовые диаграммы манганитов в области их электронного легирования (обзор). Физика твердого тела. 2004; 46(2): 193—211.; Balagurov A.M., Bushmeleva S.N., Pomja­ku­shin V.Yu., Sheptyakov D.V., Amelichev V.A., Gorbenko O.Yu., Kaul A.R., Gan’shina E.A., Perkins N.B. Magnetic structure of NaMnO3 consistently doped with Sr and Ru. Phys. Rev. B. 2004; 70: 014427. https://doi.org/10.1103/PhysRevB.70.014427; Kozlenko D.P., Glazkov V.P., Jirák Z., Savenko B.N. High pressure effects on the crystal and magnetic structure of Pr1-xSrxMnO3 manganites (x = 0.5–0.56). J. Phys.: Condensed Matter. 2004; 16(13): 2381—2394. https://doi.org/10.1088/0953-8984/16/13/017; Nagaev E.L. Lanthanum manganites and other giant-magnetoresistance magnetic conductors. Physics – Uspekhi. 1996; 39(8): 781—806. https://doi.org/10.1070/ PU1996v039n08ABEH000161; Янчевский О.З., Вьюнов О.И., Белоус А.Г., Товстолыткин А.И., Кравчик В.П. Синтез и свойства манганитов La0.7Sr0.3Mn1-xTixO3. Физика твердого тела. 2006; 48(4): 667—673.; McIntosh S., Vente J.F., Haije W.G., Blank D.H.A., Bouwmeester H.J.M. Structure and oxygen stoichiometry of SrCo0.8Fe0.2O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ. Solid State Ionics. 2006; 177(19–25): 1737—1742. https://doi.org/10.1016/j.ssi.2006.03.041; Maignan A., Martin C., Pelloquin D., Nguyen N., Raveau B. Structural and magnetic studies of ordered oxygen-deficient perovskites LnBaCo2O5+δ, closely related to the ‘‘112’’ structure. J. Solid State Chem. 1999; 142(2): 247—260. https://doi.org/10.1006/jssc.1998.7934; Yamazoe N., Furukawa S., Teraoka Y., Seiyama T. The effect of oxygen sorption on the crystal structure of La1-xSrxCoO3-δ. Chem. Lett. 1982; 11(12): 2019—2022. https://doi.org/10.1246/cl.1982.2019; Deshmukh A.V., Patil S.I., Bhagat S.M., Sagdeo P.R., Choudhary R.J., Phase D.M. Effect of iron doping on electrical, electronic and magnetic properties of La0.7Sr0.3MnO3. J. Phys. D: Appl. Phys. 2009; 42(18): 185410. https://doi.org/10.1088/0022-3727/42/18/185410; Barik S.K., Mahendiran R. Ac magnetotransport in La0.7Sr0.3Mn0.95Fe0.05O3 at low dc magnetic fields. Solid State Communications. 2011; 151(24): 1986—1989. https://doi.org/10.1016/j.ssc.2011.09.007; Ritter C., Ibarra M.R., Morellon L., Blasco J., Garcia J., De Teresa J.M. Structural and magnetic properties of double perovskites AA’FeMoO6 (AA’ = Ba2, BaSr, Sr2 and Ca2). J. Phys.: Condensed Matter. 2000; 12(38): 8295—8308. https://doi.org/10.1088/0953-8984/12/38/306; dos Santos–Gómez L., Leon-Reina L., Porras-Vazquez J.M., Losilla E.R., Marrero-Lopez D. Chemical stability and compatibility of double perovskite anode materials for SOFCs. Solid State Ionics. 2013; 239: 1—7. https://doi.org/10.1016/j.ssi.2013.03.005; Huang Q., Li Z.W., Li J., Ong, C.K. The magnetic, electrical transport and magnetoresistance properties of epitaxial La0.7Sr0.3Mn1-xFexO3 (x = 0–0.20) thin films prepared by pulsed laser deposition. J. Phys.: Condensed Matter. 2001; 13(18): 4033—4048. https://doi.org/10.1088/0953-8984/13/18/312; Kruidhof H., Bouwmeester H.J.M., v. Doorn R.H.E., Burggraaf A.J. Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides. Solid State Ionics. 1993; 63–65: 816—822. https://doi.org/10.1016/0167-2738(93)90202-E; Kuo J.H., Anderson H.U., Sparlin D.M. Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: defect structure, electrical conductivity, and thermoelectric power. J. Solid State Chem. 1990; 87(1): 55—63. https://doi.org/10.1016/0022-4596(90)90064-5; Ульянов А.Н., Мазур А.С., Янг Д.С., Криворучко В.Н., Даниленко И.А., Константинова Т.Е., Левченко Г.Г. Локальные структурные и магнитные неоднородности в наноразмерных La0.7Sr0.3MnO3 манганитах. Наносистемы, Наноматериалы, Нанотехнологии. 2011; 9(1): 107—114. https://www.imp.kiev.ua/nanosys/media/pdf/2011/1/nano_vol9_iss1_p0107p0114_2011.pdf; Криворучко В.Н., Марченко М.А. Моделирование гистерезисных свойств наноструктурированных образцов (LаSr)MnО3. Физика низких температур. 2008; 34(9): 947—955. http://fnt.ilt.kharkov.ua/index.php/fnt/article/view/f34-0947r/6205; Ziese M., Vrejoiu I., Setzer A., Lotnyk A., Hesse D. Coupled magnetic and structural transitions in La0.7Sr0.3MnO3 films on SrTiO3. New J. Phys. 2008; 10: 063024. https://doi.org/10.1088/1367-2630/10/6/063024; Mizusaki J., Mori N., Takai H., Yonemura Y., Minamiue H., Tagawa H., Dokiya M., Inaba H., Naraya K., Sasamoto T., Hashi­moto T. Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1-xSrxMnO3+d. Solid State Ionics, 2000; 129(1–4): 163—177. https://doi.org/10.1016/S0167-2738(99)00323-9; Jimenes M., Martinez J.L., Herrero E., Alonso J., Prieto C., de Andres A., Vallet-Regi M., Gonzalez-Calbet J., Fernandez-Diaz M.T. Structural and magnetoresistance study of LaxMnyO3±z. Phys. B: Condensed Matter, 1997; 234–236: 708—709. https://doi.org/10.1016/S0921-4526(96)01110-6; Aruna S.T., Muthuraman M., Patil K.C. Combustion synthesis and properties of strontium substituted lanthanum manganites La1-xSrxMnO3 (0≤x≤0.3). J. Mater. Chem., 1997; 7(12): 2499—2503. https://doi.org/10.1039/A703901H; De Leon-Guevara A.M., Berthet P., Berthon J., Millot F., Revcolevschi A., Anane A., Dupas C., Le Dang K., Renard J.P., Veillet P. Influence of controlled oxygen vacancies on the magnetotransport and magnetostructural phenomena in La0.85Sr0.15MnO3-δ single crystals. Phys. Rev. B, 1997; 56(10): 6031. https://doi.org/10.1103/PhysRevB.56.6031; Veverka P., Kaman O., Knížek K., Novák P., Maryško M., Jirák Z. Magnetic properties of rare-earth-doped La0.7Sr0.3MnO3. J. Phys.: Condensed Matter, 2016; 29(3): 035803. https://doi.org/10.1088/1361-648X/29/3/035803; Mizusaki J., Tagawa H., Naraya K., Sasamoto T. Nonstoichiometry and thermochemical stability of the perovskite-type La1-xSrxMnO3-δ. Solid State Ionics. 1991; 49: 111—118. https://doi.org/10.1016/0167-2738(91)90076-N; Rodríguez-Carvajal J. Recent developments of the program FULLPROF. Commission on powder diffraction (IUCr). Newsletter, 2001; 26: 12—19.; Kraus W. POWDER CELL — a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallography, 1996; 29(3): 301—303. https://doi.org/10.1107/S0021889895014920; Dyson F.J. Thermodynamic behavior of an ideal ferromagnet. Phys. Rev., 1956; 102(5): 1230—1244. https://doi.org/10.1103/PhysRev.102.1230; https://met.misis.ru/jour/article/view/471

  12. 12
    Academic Journal

    المساهمون: The support of the work in frames of the European project H2020-MSCA-RISE-2018-823942 - FUNCOAT and the project of the Belarusian republican foundation for fundamental research No. F18D-009 are gratefully acknowledged., Авторы работы признательны за поддержку данного исследования в рамках проекта программы ЕС «Горизонт-2020» (H2020-MSCA-RISE-2018-823942 - FUNCOAT) и проекта Белорусского республиканского фонда фундаментальных исследований № Ф18Д-009.

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 22, № 3 (2019); 149-157 ; Известия высших учебных заведений. Материалы электронной техники; Том 22, № 3 (2019); 149-157 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2019-3

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/338/293; Serrate D., De Teresa J. M., Ibarra M. R. Double perovskites with ferromagnetism above room temperature // J. Phys.: Condens. Matter. 2007. V. 19, Iss. 2. P. 023201. DOI:10.1088/0953-8984/19/2/023201; Rubi D., Frontera C., Roig A., Nogués J., Muñoz J. S., Fontcuberta J. A new approach to increase the Curie temperature of Fe–Mo double perovskites // Materials Science and Engineering: B. 2006. V. 126, Iss. 2–3. P. 139—142. DOI:10.1016/j.mseb.2005.09.013; Topwal D., Sarma D. D., Kato H., Tokura Y., Avignon M. Structural and magnetic properties of Sr2Fe1+xMo1-xO6 (-1≤x≤0.25) // Phys. Rev. B. 2006. V 73, Iss. 9. P. 0944191-1—0944191-1. DOI:10.1103/PhysRevB.73.094419; Kovalev L. V., Yarmolich M. V., Petrova M. L., Ustarroz J., Terryn H. A., Kalanda N. A., Zheludkevich M. L. Double perovskite Sr2FeMoO6 films prepared by electrophoretic deposition // ACS Appl. Mater. Interfaces. 2014. V. 6, N 21. P. 19201—19206. DOI:10.1021/am5052125; Fontcuberta J., Balcells L., Bibes M., Navarro J., Frontera C., Santiso J., Fraxedas J., Martínez B., Nadolski S., Wojcik M., Jedryka E., Casanove M. J. Magnetoresistive oxides: new developments and applications // J. Magn. Magn. Mat., 2002. V. 242–245, Pt 1. P. 98—104. DOI:10.1016/S0304-8853(01)01208-2; Balcells L., Calvo E., Fontcuberta J. Room-temperature anisotropic magnetoresistive sensor based on manganese perovskite thick films // J. Magn. Magn. Mat. 2002. V. 242–245, Pt 2. P. 1166—1168. DOI:10.1016/S0304-8853(01)01292-6; Sarma D. D., Mahadevan P., Saha-Dasgupta T., Ray S., Kumar A. Electronic Structure of Sr2FeMoO6 // Phys. Rev. Lett. 2000. V. 85, N 12. P. 2549—2552. DOI:10.1103/PhysRevLett.85.2549; Kalanda N. A., Kovalev L. V., Waerenborgh J. C., Soares M. R., Zheludkevich M. L., Yarmolich M. V., Sobolev N. A. Interplay of superstructural ordering and magnetic properties of the Sr2FeMoO6-δ double perovskite // Science Advanced Materials. 2015. V. 7, N 3. P. 446—454. DOI:10.1166/sam.2015.2134; Kalanda N., Turchenko V., Karpinsky D., Demyanov S., Yarmolich M., Balasoiu M., Lupu N., Tyutyunnikov S., Sobolev N. The role of the Fe/Mo cations ordering degree and oxygen non-stoichiometry on the formation of the crystalline and magnetic structure of Sr2FeMoO6-δ // Phys. Status Solidi B. 2019. V. 256, Iss. 5. P. 1800278-1—1800278-7. DOI:10.1002/pssb.201800278; Auth N., Jakob G., Westerburg W., Ritter C., Bonn I., Felser C., Tremel W. Crystal structure and magnetism of the double perovskites A2FeReO6 (A = Ca, Sr, Ba) // J. Magn. Magn. Mat. 2004. V. 272–276. P. E607—E608. DOI:10.1016/j.jmmm.2003.12.484; Philipp J. B., Majewski P., Alff L., Erb A., Gross R., Graf T., Brandt M. S., Simon J., Walther T., Mader W., Topwal D., Sarma D. D. Structural and doping effects in the half-metallic double perovskite A2CrWO6 (A = Sr, Ba, and Ca) // Phys. Rev. B. 2003. V. 68, Iss. 14. P. 144431. DOI:10.1103/PhysRevB.68.144431; Zeng Z., Fawcett I.D., Greenblatt M., Croft M. Large magnetoresistance in double perovskite Sr2Cr1.2Mo0.8O6-δ // Materials Research Bulletin. 2001. V. 36, Iss. 3–4. P. 705—715. DOI:10.1016/S0025-5408(01)00520-7; Seung-Iel Park, Hong Joo Ryu, Sung Baek Kim, Bo Wha Lee, Chul Sung Kim. Neutron diffraction and magnetic properties of Sr2Fe0.9Cr0.1MoO6 // Phys. B: Condens. Matter. 2004. V. 345, Iss. 1–4. P. 99—102. DOI:10.1016/j.physb.2003.11.032; Wang J., Liu G., Zhong W., Du Y. Magnetic inhomogeneity and valence state in Sr2CrWO6 double perovskite // J. Appl. Phys. 2003. V. 93, Iss. 1. P. 471—474. DOI:10.1063/1.1524710; Ngantso G. D., Benyoussef A., El Kenz A., Naji S. Study of the magnetic properties and phase transitions of Sr2CrMoO6 by mean-field approximation // J. Supercond. Nov. Magn. 2015. V. 28, Iss. 8. P. 2589—2596. DOI:10.1007/s10948-015-3077-7; Patterson F. K., Moeller C. W., Ward R. Magnetic oxides of molybdenum (V) and tungsten (V) with the ordered perovskite structure // Inorg. Chem. 1963. V. 2, N 1. P. 196—198. DOI:10.1021/ic50005a050; Chan T. S., Liu R. S., Hu S. F., Lin J. G. Structure and physical properties of double perovskite compounds Sr2FeMO6 (M = Mo, W) // Materials Chemistry and Physics. 2005. V. 93, Iss. 2–3. P. 314—319. DOI:10.1016/j.matchemphys.2005.03.060; Moritomo Y., Xu Sh., Machida A., Akimoto T., Nishibori E., Takata M., Sakata M. Electronic structure of double-perovskite transition-metal oxides // Phys. Rev. B. 2000. V. 61, Iss. 12, P. R7827. DOI:10.1103/PhysRevB.61.R7827; Arulraj A., Ramesha K., Gopalakrishnan J., Rao C. N. R. Magnetoresistance in the double perovskite Sr2CrMoO6 // J. Solid State Chemistry. 2000. V. 155, Iss. 1. P. 233—237. DOI:10.1006/jssc.2000.8939; Philipp J. B., Reisinger D., Schonecke M., Marx A., Erb A., Alff L., Gross R., Klein J. Spin-dependent transport in the double-perovskite Sr2CrWO6 // Appl. Phys. Lett. 2001. V. 79, Iss. 22. P. 3654—3656. DOI:10.1063/1.1421227; Li Q. F., Zhu X. F., Chen L. F. First-principles investigations of disorder effects on electronic structure and magnetic properties in Sr2CrMoO6 // J. Phys.: Condens. Matter. 2008. V. 20, N 25. P. 255230. DOI:10.1088/0953-8984/20/25/255230; Geprägs S., Czeschka F. D., Opel M., Goennenwein S. T. B., Yu W., Mader W., Gross R. Epitaxial growth and magnetic properties of Sr2CrReO6 thin films // J. Magn. Magn. Mat. 2009. V. 321, Iss. 13. P. 2001—2004. DOI:10.1016/j.jmmm.2008.12.029; Yarmolich M., Kalanda N., Demyanov S., Fedotova Ju., Bayev V., Sobolev N. Charge ordering and magnetic properties in nanosized Sr2FeMoO6-δ powders // Phys. Status Solidi B. 2016. V. 253, Iss. 11. P. 2160—2166. DOI:10.1002/pssb.201600527; Ritter C., Blasco J., De Teresa J. M., Serrate D., Morellon L., Garcia J., Ibarra M. R. Structural and magnetic details of 3d-element doped Sr2Fe0.75T0.25MoO6 // Solid State Sciences. 2004. V. 6, Iss. 5. P. 419—431. DOI:10.1016/j.solidstatesciences.2004.02.007; Kraus W., Nolze G. POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns // J. Appl. Cryst. 1996. V. 29, Iss. 3. P. 301—303. DOI:10.1107/S0021889895014920; Rodríguez-Carvajal J. Recent developments of the program FULLPROF // In: Commission on powder diffraction (IUCr) // Newsletter. 2001. V. 26. P. 12—19. URL: https://www.fkf.mpg.de/4112052/cpd26.pdf; https://met.misis.ru/jour/article/view/338

  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal

    المصدر: Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series; № 3 (2016); 16-20 ; Известия Национальной академии наук Беларуси. Серия физико-технических наук; № 3 (2016); 16-20 ; 2524-244X ; 1561-8358 ; undefined

    وصف الملف: application/pdf

    Relation: https://vestift.belnauka.by/jour/article/view/253/251; Influence of preparation method on SrMoO4 impurity content and magnetotransport properties of double perovskite Sr2FeMoO6 polycrystals / C. L. Yuan [et al.] // Sol. Stat. Comm. – 2004. – N 129(9). – P. 551–554.; Interplay between phase formation mechanisms and magnetism in the Sr2FeMoO6 metal-oxide compound / N. Kalanda [et al.] // Cryst. Res. Technol. – 2011. – Vol. 6. – N 5. – P. 463–469.; Inhomogeneous magnetic state in the Sr2FeMoO6–d double perovskite / N. A. Kalanda [et al.] // Science of Advanced Materials. – 2015. – Vol. 7. – P. 446–454.; Magnetic properties of fine SFMO particles: Superparamagnetism / T. Suominen [et al.] // J. Magn. Magn. Mater. – 2007. – Vol. 309. – P. 278–284.; Absence of tunnel magnetoresistance in Sr2FeMoO6-based magnetic tunnel junctions / T. Fix [et al.] // Chem. Phys. Lett. – 2007. – Vol. 434. – P. 276–279.; Coey, J. M. D. Magnetism and Magnetic Materials/ J. M. D. Coe. – Cambridge University Press: New York, – 2010. – P. 231–263.; https://vestift.belnauka.by/jour/article/view/253; undefined

  17. 17
    Academic Journal

    المصدر: Proceedings of the National Academy of Sciences of Belarus. Physical-technical series; № 1 (2014); 46-50 ; Известия Национальной академии наук Беларуси. Серия физико-технических наук; № 1 (2014); 46-50 ; 2524-244X ; 1561-8358 ; undefined

    وصف الملف: application/pdf

    Relation: https://vestift.belnauka.by/jour/article/view/8/9; Serrate D., Teresa J. M., Ibarra M. R. et al. // J. Phys. : Condensed Matter. 2007 Vol. 19. P 023201.; Huang Y. H., Linden J., Yamauchi H. et al. // Appl. Phys. Lett. 2005. Vol. 86. P. 072510.; Kanchana V., Vaitheeswaran G., Alouani M. et al. // Phys. Rev B. 2007 Vol. 75. P. 220404.; Retuerto M., Martinez-Lope M. J., Garcia-Hernandez M. et al. // J Phys. : Condensed Matter. 2009. Vol. 21. P 186003.; Yan Qian, Haiping Wu, Ruifeng Lu et al. // J. Appl. Phys. 2012. Vol. 112. P. 103712.; Yanagihara H., Salamon M. B., Lyanda-Geller Y. et al. // J. Phys. Rev. B. 2001. Vol. 64. P. 214407.; Gokoa T., Endoa Y., Morimotoa E. et al. // J. Physica B. 2003. Vol. 837. P. 329-333.; Kaji S., Oomi G., Tomioka Y. et al. // J. Phys. Rev. B. 2007. Vol. 75. P. 024430.; DiCastro D., Dore P., Khasanov R. et al. // J. Phys. Rev. B. 2008. Vol. 78. P. 184416.; Zhang W., Yao L. D., Yang L. X. et al. // Journ. of Alloys and Compounds. 2006. Vol. 10. P. 425.; https://vestift.belnauka.by/jour/article/view/8; undefined

  18. 18
    Academic Journal

    المصدر: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; № 2 (2015); 82-85 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; № 2 (2015); 82-85 ; 2524-2415 ; 1561-2430 ; undefined

    وصف الملف: application/pdf

    Relation: https://vestifm.belnauka.by/jour/article/view/85/86; Serrate D., De Teresa J. M., Ibarra M. R. // J. Phys.: Condens. Matter. 2007. Vol. 19. P. 1–86.; Huang Y., Yamauchi H., Karppinen, M. // Appl. Phys. Lett. 2005. Vol. 86. P. 0725101−0725103.; Kanchana V., Vaitheeswaran G., Alouani M. et al. // Phys. Rev. B. 2007. Vol. 75. P. 2204041–22040414.; Kalanda M., Suchaneck G., Saad A. M. et al. // Mater. Sci. Forum. 2010. Vol. 636/637. P. 338–343.; Kalanda N., Demyanov S., Masselink W. et al. // Cryst. Res. Technol. 2011. Vol. 6, N 5. P. 463–469.; Fang T.-T., Lin J.-C. // J. Mater. Sci. 2005. Vol. 40. P. 683– 686.; Topwal D., Sarma D. D., Kato H. et al. // Phys. Rev. B. 2006. Vol. 73. P. 0944191–0944195.; Каланда Н. А., Демьянов С. Е., Крупа Н. Н. и др. // Физика и техника высоких давлений. 2010. Т. 20, № 2. С. 52–62.; https://vestifm.belnauka.by/jour/article/view/85; undefined

  19. 19
  20. 20