-
1Academic Journal
المؤلفون: D. Mikhaylenko S., S. Sergienko A., E. Kuznetsova B., I. Zaborsky N., M. Martynov I., O. Loran B., G. Efremov D., S. Samoylova A., B. Alekseev Ya., V. Musatova V., I. Bure V., M. Nemtsova V., Д. Михайленко С., С. Сергиенко А., Е. Кузнецова Б., И. Заборский Н., М. Мартынов И., О. Лоран Б., Г. Ефремов Д., С. Самойлова И., Б. Алексеев Я., В. Мусатова В., И. Буре В., М. Немцова В.
المساهمون: Российский научный фонд (РНФ)
المصدر: Cancer Urology; Том 17, № 1 (2021); 89-100 ; Онкоурология; Том 17, № 1 (2021); 89-100 ; 1996-1812 ; 1726-9776
مصطلحات موضوعية: bladder cancer, somatic mutation, gene expression, polymerase chain reaction, sequencing, prognostic classificator, TCGA cluster, рак мочевого пузыря, соматическая мутация, экспрессия генов, полимеразная цепная реакция, секвенирование, прогностический классификатор, кластер TCGA
وصف الملف: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1390/1254; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1390/923; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1390/924; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1390/925; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1390/926; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1390/927; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1390/928; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1390/929; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1390/930; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1390/931; Злокачественные новообразования в России в 2018 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2019. 250 с.; Bray F., Ferlay J., Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394—424. DOI:10.3322/caac.21492.; Fantini D., Meeks J.J. Genomic classification and risk stratification of bladder cancer. World J Urol 2018;37(9):1751—7. DOI:10.1007/s00345-018-2558-2.; Matulay J.T., Kamat A.M. Advances in risk stratification of bladder cancer to guide personalized medicine. F1000Res 2018;7:F1000. DOI:10.12688/f1000research.14903.1.; Audenet F., Attalla K., Sfakianos J.P. The evolution of bladder cancer genomics: What have we learned and how can we use it? Urol Oncol 2018;36(7):313—20. DOI:10.1016/j.urolonc.2018.02.017.; Kang H.W., Seo S.P., Byun Y.J. et al. Molecular progression risk score for prediction of muscle invasion in primary T1 high-grade bladder cancer. Clin Genitourin Cancer 2018;16(4):274—80. DOI:10.1016/j.clgc.2018.02.001.; Yousef P.G., Gabril M.Y. An update on the molecular pathology of urinary bladder tumors. Pathol Res Pract 2018;214(1):1—6. DOI:10.1016/j.prp.2017.11.003.; Sjodahl G. Molecular subtype profiling of urothelial carcinoma using a subtypespecific immunohistochemistry panel. Methods Mol Biol 2018;1655:53—64. DOI:10.1007/978-1-4939-7234-0_5.; Tang F., He Z., Lei H. et al. Identification of differentially expressed genes and biological pathways in bladder cancer. Mol Med Rep 2018;17(5):6425—34. DOI:10.3892/mmr.2018.8711.; Han Y., Jin X., Zhou H., Liu B. Identification of key genes associated with bladder cancer using gene expression profiles. Oncol Lett 2018;15(1):297—303. DOI:10.3892/ol.2017.7310.; Ren R., Tyryshkin K., Graham C.H. et al. Comprehensive immune transcriptomic analysis in bladder cancer reveals subtype specific immune gene expression patterns of prognostic relevance. Oncotarget 2017;8(41):70982—1001. DOI:10.18632/oncotarget.20237.; Li S., Liu X., Liu T. et al. Identification of biomarkers correlated with the TNM staging and overall survival of patients with bladder cancer. Front Physiol 2017;8:947. DOI:10.3389/fphys.2017.00947.; McConkey D.J., Choi W. Molecular subtypes of bladder cancer. Curr Oncol Rep 2018;20(10):77. DOI:10.1007/s11912-018-0727-5.; Chen F., Zhang Y., Bosse D. et al. Pan-urologic cancer genomic subtypes that transcend tissue of origin. Nat Commun 2017;8(1):199. DOI:10.1038/s41467-017-00289-x.; Tan T.Z., Rouanne M., Tan K.T. et al. Molecular subtypes of urothelial bladder cancer: results from a meta-cohort analysis of 2411 tumors. Eur Urol 2019;75(3):423—32. DOI:10.1016/j.eururo.2018.08.027.; Creighton C.J. The clinical applications of The Cancer Genome Atlas project for bladder cancer. Expert Rev Anticancer Ther 2018;18(10):973—80. DOI:10.1080/14737140.2018.1508999.; Rosenberg J.E., Hoffman-Censits J., Powles T. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 2016;387(10031):19009—20. DOI:10.1016/S0140-6736(16)00561-4.; Михайленко Д.С., Перепечин Д.В., Ефремов Г.Д. и др. Определение мутаций генов FGFR3 и PIK3CA в ДНК из осадка мочи у больных раком мочевого пузыря. Экспериментальная и клиническая урология 2015;(4):38—41.; Allory Y., Beukers W., Sagrera A. et al. Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, detection in urine, and lack of association with outcome. Eur Urol 2014;65(2):360-6. DOI:10.1016/j.eururo.2013.08.052.; Defavery R., Lemos J.A., Kashima S. et al. Analysis of the p53 gene by PCR-SSCP in ten cases of Wilms' tumor. Sao Paulo Med J 2000;118(2):49-52. DOI:10.1590/s1516-31802000000200005.; Zvereva M., Pisarev E., Hosen I. et al. Activating telomerase TERT promoter mutations and their application for the detection of bladder cancer. Int J Mol Sci 2020;21(17):6034. DOI:10.3390/ijms21176034.; Yuan X., Liu T., Xu D. Telomerase reverse transcriptase promoter mutations in thyroid carcinomas: implications in precision oncology-a narrative review. Ann Transl Med 2020;8(19):1244. DOI:10.21037/atm-20-5024.; Zehir A., Benayed R., Shah R.H. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 2017;23(6):703-13. DOI:10.1038/nm.4333.; Гладков О.А., Матвеев В.Б., Митин Т. и др. Практические рекомендации по лекарственному лечению рака мочевого пузыря: практические рекомендации RUSSCO. Злокачественные опухоли 2020;10(32)3s2:541-54. DOI:10.18027/2224-5057-2020-10-3s2-32.; Necchi A., Madison R., Pal S.K. et al. Comprehensive genomic profiling of upper-tract and bladder urothelial carcinoma. Eur Urol Focus 2020:S2405-4569(20)30214-5. DOI:10.1016/j.euf.2020.08.001.; Van Rhijn B.W.G., Mertens L.S., Mayr R. et al. FGFR3 mutation status and FGFR3 expression in a large bladder cancer cohort treated by radical cystectomy: implications for anti-FGFR3 treatment? Eur Urol 2020;78(5):682-7. DOI:10.1016/j.eururo.2020.07.002.; Hodgson A., van Rhijn B.W.G., Kim S.S. et al. Reassessment of p53 immunohistochemistry thresholds in invasive high grade bladder cancer shows a better correlation with TP53 and FGFR3 mutations. Pathol Res Pract 2020;216(11):153186. DOI:10.1016/j.prp.2020.153186.; D'Angelo A., Bagby S., Galli I.C. et al. Overview of the clinical use of erdafitinib as a treatment option for the metastatic urothelial carcinoma: where do we stand. Expert Rev Clin Pharmacol 2020;13(10):1139-46. DOI:10.1080/17512433.2020.1823830.; Breyer J., Otto W., Wirtz R.M. et al. ERBB2 expression as potential riskstratification for early cystectomy in patients with pT1 bladder cancer and concomitant carcinoma in situ. Urol Int 2017;98(3):282-9. DOI:10.1159/000453670.; Di Maida F., Mari A., Scalici Gesolfo C. et al. Epidermal growth factor receptor (EGFR) cell expression during adjuvant treatment after transurethral resection for non-muscle-invasive bladder cancer: a new potential tool to identify patients at higher risk of disease progression. Clin Genitourin Cancer 2019;17(4):e751-8. DOI:10.1016/j.clgc.2019.04.008.; Yu Y., Liu D., Liu Z. et al. The inhibitory effects of COL1A2 on colorectal cancer cell proliferation, migration, and invasion. J Cancer 2018;9(16):2953-62. DOI:10.7150/jca.25542.; Blinova E., Buzdin A., Enikeev D. et al. Prognostic role of FGFR3 expression status and tumor-related microRNAs level in association with PD-L1 expression in primary luminal non-muscular invasive bladder carcinoma. Life (Basel) 2020;10(11):305. DOI:10.3390/life10110305.; Le Goux C., Vacher S., Schnitzler A. et al. Assessment of prognostic implication of a panel of oncogenes in bladder cancer and identification of a 3-gene signature associated with recurrence and progression risk in non-muscle-invasive bladder cancer. Sci Rep 2020;10(1):16641. DOI:10.1038/s41598-020-73642-8.; Roperch J.P., Hennion C. A novel ultrasensitive method for the detection of FGFR3 mutations in urine of bladder cancer patients - design of the Urodiag® PCR kit for surveillance of patients with non-muscle-invasive bladder cancer (NMIBC). BMC Med Genet 2020;21(1):112. DOI:10.1186/s12881-020-01050-w.; https://oncourology.abvpress.ru/oncur/article/view/1390
-
2Academic Journal
المؤلفون: A. Kalinkin I., V. Sigin O., M. Nemtsova V., E. Kuznetsova B., T. Kekeeva V., I. Vinogradov Y., M. Vinogradov I., I. Vinogradov I., D. Zaletaev V., V. Strelnikov V., A. Tanas S., А. Калинкин И., В. Сигин О., М. Немцова В., Е. Кузнецова Б., Т. Кекеева В., И. Виноградов Ю., М. Виноградов И., И. Виноградов И., Д. Залетаев В., В. Стрельников В., А. Танас С.
المصدر: Medical Genetics; Том 20, № 8 (2021); 21-30 ; Медицинская генетика; Том 20, № 8 (2021); 21-30 ; 2073-7998
مصطلحات موضوعية: Breast cancer, genome wide analysis of DNA methylation, leukotriene receptors, рак молочной железы, широкогеномный анализ метилирования ДНК, лейкотриеновые рецепторы
وصف الملف: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/1959/1507; Bray F., Ferlay J., Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 2018; 68(6):394-424.; Bernhardt S.M., Dasari P., Walsh D. et al. Hormonal modulation of breast cancer gene expression: implications for intrinsic subtyping in premenopausal women. Frontiers in oncology 2016;6:1-16.; Garrido-Castro A. C., Lin N. U., Polyak K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer discovery 2019;9(2):176-198.; Криворотько П.В., Жильцова Е.К., Гиголаева Л.П. и др. Сравнительная характеристика различных схем неоадъювантной полихимиотерапии трижды негативного рака молочной железы. Опухоли женской репродуктивной системы 2017;13(4):19-23.; Tanas A.S., Borisova M.E., Kuznetsova E.B. et al. Rapid and Affordable Genome-Wide Bisulfite DNA Sequencing by XmaI-reduced Representation Bisulfite Sequencing. Epigenomics 2017; 9(6): 833-847.; Tanas A.S., Sigin V.O., Kalinkin A.I. et al. Genome-wide methylotyping resolves breast cancer epigenetic heterogeneity and suggests novel therapeutic perspectives. Epigenomics 2019; 11(6):605-617.; Wang D., DuBois R.N. Eicosanoids and cancer. Nature Reviews Cancer 2010;10(3):181-193.; Jeon W.K., Choi J., Park S.J. et al. The proinflammatory LTB4/BLT1 signal axis confers resistance to TGF-β1-induced growth inhibition by targeting Smad3 linker region. Oncotarget 2015;6(39):41650-41666.; Choi J.A., Lee J.W., Kim H. et al. Pro-survival of estrogen receptor-negative breast cancer cells is regulated by a BLT2-reactive oxygen species-linked signaling pathway. Carcinogenesis 2009;31(4):543-551.; Park G.S., Kim J.H. LPS up-regulates ICAM-1 expression in breast cancer cells by stimulating a MyD88-BLT2-ERK-linked cascade, which promotes adhesion to monocytes. Molecules and cells 2015;38(9):821-828.; Kim H., Choi J.A., Park G.S. et al. BLT2 up-regulates interleukin-8 production and promotes the invasiveness of breast cancer cells. PLoS One 2012;7(11):e49186.; Weinstein J.N., Collisson E.A., Mills G.B. et al. The cancer genome atlas pan-cancer analysis project. Nature genetics 2013;45(10):1113.; Tanas A.S., Kuznetsova E.B., Borisova M.E., Rudenko V.V., Zaletayev D.V., Strelnikov V.V. Reduced representation bisulfite sequencing design for assessing the methylation of human CpG islands in large samples. Molecular Biology 2015;49(4):618-626.; Li L.C., Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics 2002;18(11):1427-1431.; Абрамычева Н.Ю., Федотова Е.Ю., Нужный Е.П. и др. Эпигенетика болезни Фридрейха: метилирование области экспансии (GAA) n-повторов гена FXN. Вестник Российской академии медицинских наук 2019;74(2):80-87.; Zemliakova V.V., Strelnikov V.V., Zborovskaia I.B. et al. Abnormal methylation of p16/CDKN2A AND p14/ARF genes GpG Islands in non-small cell lung cancer and in acute lymphoblastic leukemia. Molekuliarnaia biologiia. 2004;38(6):966-972.; https://www.medgen-journal.ru/jour/article/view/1959
-
3Academic Journal
المؤلفون: D. Mikhaylenko S., S. Sergienko A., B. Alekseev Ya., A. Kaprin D., M. Nemtsova V., Д. Михайленко С., С. Сергиенко А., Б. Алексеев Я., А. Каприн Д., М. Немцова В.
المصدر: Cancer Urology; Том 15, № 4 (2019); 18-29 ; Онкоурология; Том 15, № 4 (2019); 18-29 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2019-15-4
مصطلحات موضوعية: test system, prostate cancer, somatic mutation, bladder cancer, DNA methylation, gene expression, polymerase chain reaction, prognostic classificator, тест-система, рак предстательной железы, соматическая мутация, рак мочевого пузыря, метилирование ДНК, экспрессия генов, полимеразная цепная реакция, прогностический классификатор
وصف الملف: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/974/891; Аксель Е.М., Матвеев В.Б. Статистика злокачественных новообразований мочевых и мужских половых органов в России и странах бывшего СССР. Онкоурология 2019;15(2):15-24. DOI:10.17650/1726-9776-2019-15-2-15-24.; Чиссов В.И., Алексеев Б.Я., Русаков И.Г. Онкоурология. Национальное руководство. М.: ГЭОТАР-Медиа, 2012, 688 с. ISBN: 978-5-9704-2181-9.; Михайленко Д.С., Ефремов Г.Д., Алексеев Б.Я. Молекулярно-генетические методы диагностики при наследственных и спорадических опухолях в урологии. Справочник заведующего КДЛ 2016;2:38-46.; Wu D., Ni J., Beretov J. et al. Urinary biomarkers in prostate cancer detection and monitoring progression. Crit Rev Oncol Hematol 2017;118:15-26. PMID: 28917266. DOI:10.1016/j.critrevonc.2017.08.002.; Михайленко Д.С., Кушлинский Н.Е. Соматические мутации и аберрантное метилирование – потенциальные генетические маркеры рака мочевого пузыря. Клиническая лабораторная диагностика 2016;61(2):78-83. PMID: 27455559. DOI:10.18821/0869-2084-2016-61-2-78-83.; Ploussard G., de la Taille A. The role of prostate cancer antigen 3 (PCA3) in prostate cancer detection. Expert Rev Anticancer Ther 2018;18(10):1013-20. PMID: 30016891. DOI:10.1080/14737140.2018.1502086.; Hologic. Progensa PCA3 Assay 502083 rev. 003. User Guide, USA, 47 pp. Доступно по: https://www.hologic.com/sites/default/files/2019-05/502083-IFU-PI_003_01.pdf.; Михайленко Д.С., Перепечин Д.В., Аполихин О.И. и др. Маркеры для неинвазивной молекулярно-генетической диагностики онкоурологических заболеваний. Урология 2014;5:116-20. PMID: 25807773.; de la Taille A., Irani J., Graefen M. et al. Clinical evaluation of the PCA3 assay in guiding initial biopsy decisions. J Urol 2011;185(6):2119-25. PMID: 21496856. DOI:10.1016/j.juro.2011.01.075.; Crawford E.D., Rove K.O., Trabulsi E.J. et al. Diagnostic performance of PCA3 to detect prostate cancer in men with increased prostate specific antigen: a prospective study of 1,962 cases. J Urol 2012;188:1726-31. PMID: 22998901. DOI:10.1016/j.juro.2012.07.023.; Filella X., Foj L. Novel biomarkers for prostate cancer detection and prognosis. Adv Exp Med Biol 2018;1095:15-39. PMID: 30229547. DOI:10.1007/978-3-319-95693-0_2.; Chevli K.K., Duff M., Walter P. et al. Urinary PCA3 as a predictor of prostate cancer in a cohort of 3,073 men undergoing initial prostate biopsy. J Urol 2014;191(6) 1743-48. PMID: 24333241. DOI:10.1016/j.juro.2013.12.005.; Osses D.F., Roobol M.J., Schoots I.G. Prediction medicine: biomarkers, risk calculators and magnetic resonance imaging as risk stratification tools in prostate cancer diagnosis. Int J Mol Sci 2019;20(7):pii: E1637. PMID: 30986955. DOI:10.3390/ijms20071637.; Rodon N., Trias I., Verdu M. et al. Correlation of mRNA-PCA3 urine levels with the new grading system in prostate cancer. Rev Esp Patol 2019;52(1):20-26. PMID: 30583827. DOI:10.1016/j.patol.2018.04.003.; Alshalalfa M., Verhaegh G.W., Gibb E.A. et al. Low PCA3 expression is a marker of poor differentiation in localized prostate tumors: exploratory analysis from 12,076 patients. Oncotarget 2017;8(31):50804-13. PMID: 28881605. DOI:10.18632/oncotarget.15133.; Hegde J.V., Veruttipong D., Said J.W. et al. Prostate cancer antigen 3 score does not predict for adverse pathologic features at radical prostatectomy or for progression-free survival in clinically localized, intermediate- and high-risk prostate cancer. Urology 2017;107:171-7. PMID: 28552819. DOI:10.1016/j.urology.2017.05.028.; Fradet V., Toren P., Nguile-Makao M. et al. Prognostic value of urinary prostate cancer antigen 3 (PCA3) during active surveillance of patients with low-risk prostate cancer receiving 5α-reductase inhibitors. BJU Int 2018;121(3):399-404. PMID: 28972698. DOI:10.1111/bju.14041.; Tosoian J.J., Patel H.D., Mamawala M. et al. Longitudinal assessment of urinary PCA3 for predicting prostate cancer grade reclassification in favorable-risk men during active surveillance. Prostate Cancer Prostatic Dis 2017;20(3):339-42. PMID: 28417979. DOI:10.1038/pcan.2017.16.; Zhou Y., Li Y., Li X.3, Jiang M. Urinary biomarker panel to improve accuracy in predicting prostate biopsy result in Chinese men with PSA 4-10 ng/mL. Biomed Res Int 2017:2512536. PMID: 28293631. DOI:10.1155/2017/2512536.; Mao Z., Ji A., Yang K. et al. Diagnostic performance of PCA3 and hK2 in combination with serum PSA for prostate cancer. Medicine (Baltimore) 2018;97(42):e12806. PMID: 30334974. DOI:10.1097/MD.0000000000012806.; Михайленко Д.С., Перепечин Д.В., Григорьева М.В., и др. Экспрессия генов РСА3 и TMPRSS2:ERG в биоптатах при доброкачественной гиперплазии, интраэпителиальной неоплазии и раке предстательной железы. Урология 2015;5:46-50. PMID: 26859937.; Аполихин О.И., Сивков А.В., Ефремов Г.Д. и др. PCA3 и TMPRSS2-ERG в диагностике рака предстательной железы: первый опыт применения комбинации маркеров в России. Экспериментальная и клиническая урология 2015;2:30-6.; Li M., Zhou D., Zhang W. et al. Urine PCA3 mRNA level in diagnostic of prostate cancer. J Cancer Res Ther 2018;14(4):864-6. PMID: 29970667. DOI:10.4103/jcrt.JCRT_734_17.; Wang T., Qu X., Jiang J. et al. Diagnostic significance of urinary long non-coding PCA3 RNA in prostate cancer. Oncotarget 2017;8(35):58577-86. PMID: 28938580. DOI:10.18632/oncotarget.17272.; Павлов К.А., Шкопоров А.Н., Хохлова Е.В. и др. Разработка диагностической тест-системы для ранней неинвазивной диагностики рака простаты, основанной на количественной детекции мРНК гена PCA3 в осадке мочи методом ОТ-ПЦР в режиме реального времени. Вестник РАМН 2013;5:45-51. PMID: 24000667.; Тороповский А.Н., Никитин А.Г., Гордиев М.Г. и др. Результаты испытания набора реагентов для выявления мРНК гена РСА3 и определения уровня его экспрессии методом двустадийной ОТ-ПЦР-РВ (Проста-Тест) для диагностики рака предстательной железы in vitro в клинической практике. Вестник медицинского института «РЕАВИЗ» 2018;1:126-36.; Fenstermaker M., Mendhiratta N., Bjurlin M.A. et al. Risk stratification by urinary prostate cancer gene 3 testing before magnetic resonance imaging-ultrasound fusion-targeted prostate biopsy among men with no history of biopsy. Urology 2017;99:174-9. PMID: 27562202. DOI:10.1016/j.urology.2016.08.022.; Cao L., Lee C.H., Ning J. et al. Combination of prostate cancer antigen 3 and prostate-specific antigen improves diagnostic accuracy in men at risk of prostate cancer. Arch Pathol Lab Med 2018;142(9):1106-12. PMID: 29547000. DOI:10.5858/arpa.2017-0185-OA.; Yang Z., Yu L., Wang Z. PCA3 and TMPRSS2-ERG gene fusions as diagnostic biomarkers for prostate cancer. Chin J Cancer Res 2016;28(1):65-71. PMID: 27041928. DOI:10.3978/j.issn.1000-9604.2016.01.05.; Ankerst D.P., Goros M., Tomlins S.A. et al. Incorporation of urinary prostate cancer antigen 3 and TMPRSS2:ERG into prostate cancer prevention trial risk calculator. Eur Urol Focus 2019;5(1):54-61. PMID: 29422418. DOI:10.1016/j.euf.2018.01.010.; Newcomb L.F., Zheng Y., Faino A.V. et al. Performance of PCA3 and TMPRSS2:ERG urinary biomarkers in prediction of biopsy outcome in the Canary Prostate Active Surveillance Study (PASS). Prostate Cancer Prostatic Dis 2019;22(3):438-45. PMID: 30664734. DOI:10.1038/s41391-018-0124-z.; Kornberg Z., Cooperberg M.R., Spratt D.E., Feng F.Y. Genomic biomarkers in prostate cancer. Transl Androl Urol 2018;7(3):459-71. PMID: 30050804. DOI:10.21037/tau.2018.06.02.; Govers T.M., Caba L., Resnick M.J. Cost-effectiveness of urinary biomarker panel in prostate cancer risk assessment. J Urol 2018;200(6):1221-6. PMID: 30012363. DOI:10.1016/j.juro.2018.07.034.; Haese A., Trooskens G., Steyaert S. et al. Multicenter optimization and validation of a 2-gene mRNA urine test for detection of clinically significant prostate cancer before initial prostate biopsy. J Urol 2019;202(2):256-63. PMID: 31026217. DOI:10.1097/JU.0000000000000293.; Fujita K., Nonomura N. Urinary biomarkers of prostate cancer. Int J Urol 2018;25(9):770-9. PMID: 30129068. DOI:10.1111/iju.13734.; Arriaga-Canon C., Rosa-Velazquez I.A., Gonzalez-Barrios R. et al. The use of long non-coding RNAs as prognostic biomarkers and therapeutic targets in prostate cancer. Oncotarget 2018;9(29):20872-90. PMID: 29755696. DOI:10.18632/oncotarget.25038.; Loeb S. Biomarkers for prostate biopsy and risk stratification of newly diagnosed prostate cancer patients. Urol Pract 2017;4(4):315-21. PMID: 29104903. DOI:10.1016/j.urpr.2016.08.001.; Shore N., Concepcion R., Saltzstein D. et al. Clinical utility of a biopsy-based cell cycle gene expression assay in localized prostate cancer. Curr Med Res Opin 2014;30(4):547-53. PMID: 24320750. DOI:10.1185/03007995.2013.873398.; Crawford E.D., Scholz M.C., Kar A.J. et al. Cell cycle progression score and treatment decisions in prostate cancer: results from an ongoing registry. Curr Med Res Opin 2014;30(6):1025-31. PMID: 24576172. DOI:10.1185/03007995.2014.899208.; Cuzick J., Stone S., Fisher G. et al. Validation of an RNA cell cycle progression score for predicting death from prostate cancer in a conservatively managed needle biopsy cohort. Br J Cancer 2015;113:382-9. PMID: 26103570. DOI:10.1038/bjc.2015.223.; Cuzick J., Berney D.M., Fisher G. et al. Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br J Cancer 2012;106:1095-9. PMID: 22361632. DOI:10.1038/bjc.2012.39.; Alford A.V., Brito J.M., Yadav K.K. et al. The use of biomarkers in prostate cancer screening and treatment. Rev Urol 2017;19(4):221-34. PMID: 29472826. DOI:10.3909/riu0772.; Klein E.A., Haddad Z., Yousefi K. et al. Decipher genomic classifier measured on prostate biopsy predicts metastasis risk. Urology 2016;90:148-52. PMID: 26809071. DOI:10.1016/j.urology.2016.01.012.; Marrone M., Potosky A.L., Penson D., Freedman A.N. A 22 gene-expression assay, Decipher® (GenomeDx Biosciences) to predict five-year risk of metastatic prostate cancer in men treated with radical prostatectomy. PLoS Curr 2015;7. PMID: 26664778. DOI:10.1371/currents.eogt.761b81608129ed61b0b48d42c04f92a4.; Carneiro A., Priante Kayano P., Gomes Barbosa A.R. et al. Are localized prostate cancer biomarkers useful in the clinical practice? Tumour Biol 2018;40(9). PMID: 30204063. DOI:10.1177/1010428318799255.; Knezevic D., Goddard A.D., Natraj N. et al. Analytical validation of the Oncotype DX prostate cancer assay – a clinical RT-PCR assay optimized for prostate needle biopsies. BMC Genomics 2013;14:690. PMID: 24103217. DOI:10.1186/1471-2164-14-690.; Cullen J., Rosner I.L., Brand T.C. et al. A biopsy-based 17-gene genomic prostate score predicts recurrence after radical prostatectomy and adverse surgical pathology in a racially diverse population of men with clinically low- and intermediate-risk prostate cancer. Eur Urol 2015;68(1):123-31. PMID: 25465337. DOI:10.1016/j.eururo.2014.11.030.; Kornberg Z., Cowan J.E., Westphalen A.C. et al. Genomic prostate score, PI-RADS™ version 2 and progression in men with prostate cancer on active surveillance. J Urol 2019;201(2):300-7. PMID: 30179620. DOI:10.1016/j.juro.2018.08.047.; UroVysion Bladder Cancer Kit. Доступно по: https://www.molecular.abbott/sal/en-us/staticAssets/UroVysion-package-insert-R6---watermark.pdf.; Karnes R.J., Fernandez C.A., Shuber A.P. A noninvasive multianalyte urine-based diagnostic assay for urothelial cancer of the bladder in the evaluation of hematuria. Mayo Clin Proc 2012;87(9):835-42. PMID: 22883743. DOI:10.1016/j.mayocp.2012.04.013.; Roperch J.P., Grandchamp B., Desgrandchamps F. et al. Promoter hypermethylation of HS3ST2, SEPTIN9 and SLIT2 combined with FGFR3 mutations as a sensitive/specific urinary assay for diagnosis and surveillance in patients with low or high-risk non-muscle-invasive bladder cancer. BMC Cancer 2016;16:704. PMID: 27586786. DOI:10.1186/s12885-016-2748-5.; Zhu F., Zhang Y., Shi L. et al. Gene mutation detection of urinary sediment cells for NMIBC early diagnose and prediction of NMIBC relapse after surgery. Medicine (Baltimore) 2019;98(32):e16451. PMID: 31393349. DOI:10.1097/MD.0000000000016451.; Михайленко Д.С., Немцова М.В. Точковые соматические мутации в развитии рака мочевого пузыря: ключевые события канцерогенеза, диагностические маркеры и мишени для терапии. Урология 2016;1:100-5. PMID: 28247712.; Descotes F., Kara N., Decaussin-Petrucci M. et al. Non-invasive prediction of recurrence in bladder cancer by detecting somatic TERT promoter mutations in urine. Br J Cancer 2017;117(4):583-7. PMID: 28683471. DOI:10.1038/bjc.2017.210.; Rodriguez Pena M.D., Springer S.U., Taheri D. et al. Performance of novel non-invasive urine assay UroSEEK in cohorts of equivocal urine cytology. Virchows Arch 2019 [Epub ahead of print]. PMID: 31482302. DOI:10.1007/s00428-019-02654-1.; Cxbladder Kits. Доступно по: https://www.cxbladder.com/.; Kavalieris L., Sullivan P., Frampton C. et al. Performance characteristics of a multigene urine biomarker test for monitoring for recurrent urothelial carcinoma in a multicenter study. J Urol 2017;197(6):1419-26. PMID: 27986532. DOI:10.1016/j.juro.2016.12.010.; Davidson P.J., McGeoch G., Shand B. Inclusion of a molecular marker of bladder cancer in a clinical pathway for investigation of haematuria may reduce the need for cystoscopy. N Z Med J 2019;132(1497):55-64. PMID: 31220066.; Konety B., Shore N., Kader A.K. et al. Evaluation of Cxbladder and adjudication of atypical cytology and equivocal cystoscopy. Eur Urol 2019;76(2):238-43. PMID: 31103391. DOI:10.1016/j.eururo.2019.04.035.; https://oncourology.abvpress.ru/oncur/article/view/974
-
4Academic Journal
المؤلفون: S. Bashkatov V., M. Nemtsova V., O. Karyakin B., С. Башкатов В., М. Немцова В., О. Карякин Б.
المصدر: Cancer Urology; Том 2, № 3 (2006); 54-58 ; Онкоурология; Том 2, № 3 (2006); 54-58 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2006-2-3
وصف الملف: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1172/1057; Давыдов М.И., Аксель Е.М. Злокачественные новообразования в России и странах СНГ в 2003 г. М.; 2005.; Millan-Rodrigez F.,Chechile-Toniolo R. Multivariate analysis of the prognostic factors of primary superficial bladder cancer. J Urol 2000; 163:68–7.; Vet J.A., Bringuier P.P., Schaafsma H.E. et al. Comparison of P53 protein overexpression with P53 mutation in bladder cancer: clinical and biologic aspects. Lab Invest 1995;73(6):837–43.; Лопаткин Н.А., Мартов Б.М. и соавт. Современные подходы в лечении поверхностного рака мочевого пузыря. В кн.: Рак мочевого пузыря. Материалы 4-й Всероссийской научной конференции с участием стран СНГ. М.; 2002. с. 50–1.; Allard P., Bernard P., Fradet Y. еt al. The early clinical course of primary Ta and T1 bladder cancer. Europ Urol 1998;8(1):692–8.; Fleming F. et. al. Urinary bladder. In: Cancer staging manual. Philadelphia, Lippincot-Raven;1997. p. 241–24.; Malmstrom P., BuschC., Norlen B.J. Recurrences, progression and survial in bladder cancer. Scand J Urol Nephrol 1987;21(2):185.; Kurt K. et al. The nature history and prognosis of tread superficial bladder cancer. EORTC GU Group. Prog Clin Biol Res 1992;378:1.; Holmang S., Hedelin H., Anderstrom C., Johansson S.L. The relationship among multiple recurrences, progression and prognosis of patients with stages Ta and T1 transitional cell cancer of bladder followed for at least 20 years. J Urol 1995;153(16);1823–6; discussion 1826–7.; Witjes J.A., Kiemeney L.A., Schaafsma H.E., Debruyn F.M. The influence of review pathology on study outcome of a randomized multicentre superficial bladder cancer trial. Members of the Dutch Sought East cooperative Urological Group. Br J Urol 1994; 73(2): 172–6.; Placer J. et al. Clinical utility of a multiprobe FISH assay in voided urine specimens for detection of bladder cancer and its recurrences, compared with urinary cytology. Eur Urol 2002;42:547–52.; Vogelstein B., Kinzler K.W. Cancer genes and the pathways they control. Nature Med 2004; 10: 789–99.; Spruk C.H. 3 rd., Ohneseit P.F., Gonzalez-Zulueta M. et al. Two molecular pathways to transitional cell carcinoma of the bladder. Cancer Res 1994; 54(3):784–8.; Dalbagni S., Presti J.C. Jr., Reuter V.E. et al. Molecular genetic alterations of chromosome 17 and p53 nuclear overexpression in human bladder cancer. Diags Mol Pathol 1993; 2(1):4–13.; von Knobloch R. et al. Allelic imbalance at chromosomes 5q,8p and 17p as progression markers for bladder cancer. Aktuel Urol 2000, 31: 83–6.; Vogelstein B., Kinzler K.W. The genetic basis of human cancerl. McGraw-Hill Medical Pablishing Division; 2002. p. 697–702.; Cairns P., Polascik T.J., Eby Y. et al. Frequence of homozygous deletions at p16/CDKN2 in primary human tumors. Nat Genet 1995;11(2):210–2.; Prat E., Bernues M., Caballin M.R. et al. Detection of chromosomal imbalances in papillary bladder tumors by comparative genomic hybridization. Urology 2001; 57(5):986–92.; van Rhijn B.W. Lurkin I., Radvanyi F. et al. The fibroblast growth factor receptor 3 (FGFR3) mutation is a strong indicator of superficial bladder cancer with low recurrence rate. Cancer Res 2001; 61(14),1265–8.; Billerey C., Chopin D., Aubriot-Lorton M.H. et al. Frequent FGFR3 mutation in papillary non-invasive bladder (pTa) tumors. Am J Pathol 2001;158(6):1955–9.; Esrig D., Elmajian D., Groshen S. et al. Accumulation of nuclear p53 and tumor progression in bladder cancer. N Engl J Med 1994;331(19):1259–64.; Esrig D., Spruck C.H. 3 rd, Nichols P.W. et al. p53 nuclear protein accumulation correlates with mutation in the p53 gene, tumor grade, and stage in bladder cancer. Am J Pathol 1993;143(5):1389–97.; Cordon-Cardo C., Dalbagni G., Saez G.T. et al. P53 mutation in human bladder cancer: Genotypic vs phenotypic patterns. Int J Cancer 1994;56(3):347–53.; Sarkis A.S., Dalbagni G., Cordon-Cardo C. et al. Nuclear overexpression of p53 protein in transitional cell bladder carcinoma: A marker for disease progression. J Natl Cancer Inst 1993;85(1): 53–9.; Bakkar A. Wallerand H., Radvanyi F. et al. FGFR3 and TP53 gene mutation two distinct pathways in urothelial cell carcinoma of the bladder. Cancer Res 2003; 63 (23):8108–12.; Hartmann A., Schlake G., Zaak D. et al. Occurrence of chromosome 9 and p53 alteration in multifocal displasia and carcinoma in situ of human urinary bladder. Cancer Res 2002;62:809–18.; Belinsky S.A., Nikula K.J., Palmisano W.A. et al. Aberrant methylation of p16 (INK4a) is an early event in lung cancer and potential biomarker for early diagnosis. Proc Natl Acad Sci USA 1998,95(20):11891–6.; Obermann E.C., Meyer S., Hellge D. et al Fluorescence in situ hybridization detects frequent chromosome 9 deletions and aneuploidy in histologically normal urothelium of bladder cancer patients. Oncol Rep 2004; 11(4): 745–51.; Perl A.K., Wilgenbus P., Dahl U. et al. A casual role for E-cadherin in the transition from adenoma to carcinoma. Nature 1998;392(6672):190–3.; Shariat S.F., Matsumoto K., Casella R. et al. Urinary levels of soluble e-cadherin in the detection of transitional cell carcinoma of the urinary bladder. Eur Urol 2005;48(1):69–76.; Michael W.Y. et al. Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients. Clin Cancer Res 2002; 8:464–70.; Domingues G. et al. p14ARF promoter hypermethylation in plasma DNA as indicator of disease reccurence in bladder cancer patients. Clin Cancer Res 2002; 8:980–5.; https://oncourology.abvpress.ru/oncur/article/view/1172
-
5Academic Journal
المؤلفون: O. Simonova A., E. Kuznetsova B., A. Tanas S., V. Rudenko V., T. Kekeeva V., M. Nemtsova V., D. Zaletaev V., V. Strelnikov V., О. Симонова А., Е. Кузнецова Б., А. Танас С., В. Руденко В., Т. Кекеева В., М. Немцова В., Д. Залетаев В., В. Стрельников В.
المصدر: Medical Genetics; Том 19, № 6 (2020); 24-25 ; Медицинская генетика; Том 19, № 6 (2020); 24-25 ; 2073-7998
مصطلحات موضوعية: DNA methylation, extracellular matrix, breast cancer, methylation sensitive PCR, bisulfite DNA sequencing, метилирование ДНК, внеклеточный матрикс, рак молочной железы, метилчувствительная ПЦР, бисульфитное секвенирование ДНК
وصف الملف: application/pdf
-
6Academic Journal
المؤلفون: M. Nemtsova V., I. Dantsev S., D. Mikhaylenko S., O. Loran V., М. Немцова В., И. Данцев С., Д. Михайленко С., О. Лоран Б.
المصدر: Cancer Urology; Том 14, № 3 (2018); 92-106 ; Онкоурология; Том 14, № 3 (2018); 92-106 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2018-14-3
مصطلحات موضوعية: testicular germ cell tumor, testicular microlithiasis, single nucleotide polymorphism (SNP), high-risk genotype, risk factor, testicular dysgenesis syndrome, герминогенная опухоль яичка, тестикулярный микролитиаз, генотип высокого риска, фактор риска, синдром тестикулярной дисгенезии
وصف الملف: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/836/790; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/836/571; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/836/572; Grasso C., Zugna D., Fiano V. et al. Subfertility and risk of testicular cancer in the EPSAM case-control study. PLoS One 2016;11(12):e0169174. DOI:10.1371/journal.pone.0169174. PMID: 28036409.; Skakkebaek N.E., Rajpert-De Meyts E., Buck Louis G.M. et al. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol Rev 2016;96(1):55–97. DOI:10.1152/physrev.00017.2015. PMID: 26582516.; Skakkebaek N.E., Rajpert-De Meyts E., Buck Louis G.M. et al. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 2001;16(5):972– 978. PMID: 11331648.; van Casteren N.J., Looijenga L.H.J., Dohle G.R. Testicular microlithiasis and carcinoma in situ overview and proposed clinical guideline. Int J Androl 2009;32(4):279–87. DOI:10.1111/j.1365-2605.2008.00937.x. PMID: 19207616.; Goede J., Hack W.W. Clinical aspects of testicular microlithiasis in boys: a review. J Pediatr Urol 2012;8(5):459–69. DOI:10.1016/j.jpurol.2011.07.003. PMID: 21856234.; Peterson A.C., Bauman J.M., Light D.E. et al. The prevalence of testicular microlithiasis in an asymptomatic population of men 18 to 35 years old. J Urol 2001;166(6):2061–4. PMID: 11696707.; Fedder J. Prevalence of small testicular hyperechogenic foci in subgroups of 382 non-vasectomized, azoospermic men: a retrospective cohort study. Andrology 2017;5(2):248–55. DOI:10.1111/andr.12291. PMID: 28061524.; Miller F.N., Sidhu P.S. Does testicular microlithiasis matter? A review. Clin Radiol 2002;57(10):883–90. PMID: 12413911.; Cebeci A.N., Aslanger A., Ozdemir M. Should patients with down syndrome be screened for testicular microlithiasis? Eur J Pediatr Surg 2015;25(2):177–80. DOI:10.1055/s-0034-1370779. PMID: 24705995.; Richenberg J., Belfield J., Ramchandani P. et al. Testicular microlithiasis imaging and follow-up: guidelines of the ESUR scrotal imaging subcommittee. Eur Radiol 2015;25(2):323–30. DOI:10.1007/s00330-014-3437-x. PMID: 25316054.; Winter T.C., Kim B., Lowrance W.T., Middleton W.D. Testicular microlithiasis: what should you recommend? AJR Am J Roentgenol 2016;206(6):1164–9. DOI:10.2214/AJR.15.15226. PMID: 27058778.; Wang T., Liu L., Luo J. et al. Meta-analysis of the relationship between testicular microlithiasis and incidence of testicular cancer. Urol J 2015;12(2):2057–64. PMID: 25923148; Cortes D., Kjellberg E.M., Breddam M., Thorup J. The true incidence of cryptorchidism in Denmark. J Urol 2008;179(1):314–8. DOI:10.1016/j.juro.2007.08.158. PMID: 18006016.; Schnack T.H., Poulsen G., Myrup C. et al. Familial coaggregation of cryptorchidism, hypospadias, and testicular germ cell cancer: a nationwide cohort study. J Natl Cancer Inst 2010;102(3):187–92. DOI:10.1093/jnci/djp457. PMID: 20026812.; Myrup C., Schnack T.H., Wohlfahrt J. Correction of cryptorchidism and testicular cancer. N Engl J Med 2007;357(8):825–7. DOI:10.1056/NEJMc071510. PMID: 17715418.; Acerini C.L., Miles H.L., Dunger D.B. et al. The descriptive epidemiology of congenital and acquired cryptorchidism in a UK infant cohort. Arch Dis Child 2009;94(11):868–72. DOI:10.1136/adc.2008.150219. PMID: 19542061.; Scorer C.G. The descent of the testis. Arch Dis Child 1964;39:605–9. PMID: 14230757.; Boisen K.A., Kaleva M., Main K.M. et al. Difference in prevalence of congenital cryptorchidism in infants between two Nordic countries. Lancet 2004;363(9417):1264–9. DOI:10.1016/S0140-6736(04)15998-9. PMID: 15094270.; Preikša R.T., Žilaitienė B., Matulevičius V. et al. Higher than expected prevalence of congenital cryptorchidism in Lithuania: a study of 1204 boys at birth and 1 year follow-up. Hum Reprod 2005;20(7):1928– 32. DOI:10.1093/humrep/deh887. PMID: 15860495.; Hutson J.M., Balic A., Nation T., Southwell B. Cryptorchidism. Semin Pediatr Surg 2010;19(3):215–24. DOI:10.1053/j.sempedsurg.2010.04.001. PMID: 20610195.; Huff D.S., Hadziselimovic F., Snyder H.M. 3rd et al. Histologic maldevelopment of unilaterally cryptorchid testes and their descended partners. Eur J Pediatr 1993;152 (Suppl 2):S11–4. PMID: 8101802.; Морозов Д.А., Городков С.Ю., Никитина А.С. Орхиопексия при одностороннем крипторхизме: отдаленные результаты. Детская хирургия 2007;(4):12–4.; Hadziselimovic F., Hocht B., Herzog B. et al. Infertility in cryptorchidism is linked to the stage of germ cell development at orchidopexy. Horm Res 2007;68(1): 46–52. DOI:10.1159/000100874. PMID: 17356291.; Regadera J., Martinez-Garcia F., Gonzalez-Peramato P. et al. Androgen receptor expression in Sertoli cells as a function of seminiferous tubule maturation in the human cryptorchid testis. J Clin Endocrinol Metab 2001;86(1):413–21. DOI:10.1210/jcem.86.1.7109. PMID: 11232033.; Morley R., Lucas A. Undescended testes in low birthweight infants. Br Med J (Clin Res Ed) 1987;295(6601):753. PMID: 2890400.; Schnack T.H., Zdravkovic S., Myrup C. et al. Familial aggregation of cryptorchidism – a nationwide cohort study. Am J Epidemiol 2008;167(12):1453–7. DOI:10.1093/aje/kwn081. PMID: 18436537.; Favorito L.A., Sampaio F.J., Javaroni V. et al. Proximal insertion of gubernaculum testis in normal human fetuses and in boys with cryptorchidism. J Urol 2000;164 (3 Pt 1):792–4. PMID: 10953158.; Bay K., Main K.M., Toppari J., Skakkebæk N.E. Testicular descent: INSL 3, testosterone, genes and the intrauterine milieu. Nature Rev Urol 2011;8(4):187–96. DOI:10.1038/nrurol.2011.23. PMID: 21403659.; Massart F., Saggese G. Morphogenetic targets and genetics of undescended testis. Sex Dev 2010;4(6):326–35. DOI:10.1159/000321006. PMID: 20980787.; Abduljabbar M., Taheini K., Picard J.Y. et al. Mutations of the AMH type II receptor in two extended families with persistent Mullerian duct syndrome: lack of phenotype/genotype correlation. Horm Res Paediatr 2012;77(5):291–7. DOI:10.1159/000338343. PMID: 22584735.; Zimmermann S., Steding G., Emmen J.M. et al. Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol Endocrinol 1999;13(5):681–91. DOI:10.1210/mend.13.5.0272. PMID: 10319319.; Nef S., Parada L.F. Cryptorchidism in mice mutant for Insl3. Nat Genet 1999;22(3):295–9. DOI:10.1038/10364. PMID: 10391220.; Harisis G.N., Chen N., Farmer P.J. et al. Wnt signalling in testicular descent: a candidate mechanism for cryptorchidism in Robinow syndrome. J Pediatr Surg 2013;48(7):1573–7. DOI:10.1016/j.jpedsurg.2012.08.038. PMID: 23895974.; Ferlin A., Zuccarello D., Garolla A. et al. Mutations in INSL3 and RXFP2 genes in cryptorchid boys. Ann N Y Acad Sci 2009;1160:213–4. DOI:10.1111/j.1749-6632.2008.03784.x. PMID: 19416190.; Foresta C., Zuccarello D., Garolla A., Ferlin A. Role of hormones, genes, and environment in human cryptorchidism. Endocr Rev 2008;29(5):560–80. DOI:10.1210/er.2007-0042. PMID: 18436703.; Kaftanovskaya E.M., Huang Z., Barbara A.M. et al. Cryptorchidism in mice with an androgen receptor ablation in gubernaculumtestis. Mol Endocrinol 2012;26(4):598–607. DOI:10.1210/me.2011-1283. PMID: 22322597.; Barthold J.S., Wang Y., Kolon T.F. et al. Pathway analysis supports association of nonsyndromic cryptorchidism with genetic loci linked to cytoskeletondependent functions. Hum Reprod 2015;30(10):2439–51. DOI:10.1093/humrep/dev180. PMID: 26209787.; Johnson K.J., Robbins A.K., Wang Y. et al. Insulin-like 3 exposure of the fetal rat gubernaculum modulates expression of genes involved in neural pathways. Biol Reprod 2010;83(5):774–82. DOI:10.1095/biolreprod.110.085175. PMID: 20631401.; Lanyi A., Barath M., Peterfi Z. et al. The homolog of the five SH3-domain protein (HOFI/SH3PXD2B) regulates lamellipodia formation and cell spreading. PLoS One 2011;6(8):e23653. DOI:10.1371/journal.pone.0023653. PMID: 21886807.; Haznedaroglu E., Tanboga I., Sozkes S. Clinical and radiological evaluation of ter haar syndrome: case report of a patient with extreme longevity. J Rare Disord 2014;2:15–7.; Barbaux S., Gascoin-Lachambre G., Buffat C. et al. A genome-wide approach reveals novel imprinted genes expressed in the human placenta. Epigenetics 2012;7(9):1079–90. DOI:10.4161/epi.21495. PMID: 22894909.; Yoshida Y., Tsunoda T., Takashima Y. et al. ZFAT is essential for endothelial cell assembly and the branch point formation of capillary like structures in an angiogenesis model. Cell Mol Biol Lett 2010;15(4):541–50. DOI:10.2478/s11658-010-0028-y. PMID: 20645017.; Lutke Holzik M.F., Rapley E.A., Hoekstra H.J. et al. Genetic predisposition to testicular germ-cell tumours. Lancet Oncol 2004;5(6):363–71. DOI:10.1016/S1470-2045(04)01493-7. PMID: 15172357.; Horner M.J., Krapcho M., Neyman N. et al. SEER cancer statistics review, 1975– 2006. Bethesda (MD): National Cancer Institute.; Siegel R., DeSantis C., Virgo K. et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clin 2012;62(4):220–41. DOI:10.3322/caac.21149. PMID: 22700443.; Schneider D.T., Zahn S., Sievers S. et al. Molecular genetic analysis of central nervous system germ cell tumors with comparative genomic hybridization. Mod Pathol 2006;19(6):864–73. DOI:10.1038/modpathol.3800607. PMID: 16607373.; Oosterhuis J.W., Looijenga L.H. Testicular germ-cell tumours in a broader perspec-tive. Nat Rev Cancer 2005;5(3):210–22. DOI:10.1038/nrc1568. PMID: 15738984.; Sonne S.B., Kristensen D.M., Novotny G.W. et al. Testicular dysgenesis syndrome and the origin of carcinoma in situ testis. Int J Androl 2008;31(2):275–87. DOI:10.1111/j.1365-2605.2007.00855.x. PMID: 18205797.; Purdue M.P., Devesa S.S., Sigurdson A.J., McGlynn K.A. International patterns and trends in testis cancer incidence. Int J Cancer 2005;115(5):822–7. DOI:10.1002/ijc.20931. PMID: 15704170.; Albers P., Albrecht W., Algaba F. et al. Guidelines on testicular cancer: 2015 Update. Eur Urol 2015;68(6):1054–68. DOI:10.1016/j.eururo.2015.07.044. PMID: 26297604.; Crockford G.P., Linger R., Hockley S. et al. Genome-wide linkage screen for testicular germ cell tumour. Hum Mol Genet 2006;15(3):443–51. DOI:10.1093/hmg/ ddi459. PMID: 16407372.; Ferlay J., Steliarova-Foucher E., Lortet-Tieulent J. et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 2013;49(6):1374–403. DOI:10.1016/j.ejca.2012.12.027. PMID: 23485231.; Rapley E.A., Nathanson K.L. Predisposition alleles for testicular germ cell tumour. Curr Opin Genet Dev 2010;20(3):225–30. DOI:10.1016/j.gde.2010.02.006. PMID: 20303738.; Bromen K., Stang A., Baumgardt-Elms C. et al. Testicular, other genital, and breast cancers in first-degree relatives of testicular cancer patients and controls. Cancer Epidemiol Biomarkers Prev 2004;13(8):1316–24. PMID: 15298952.; Hemminki K., Chen B. Familial risks in testicular cancer as aetiological clues. Int J Androl 2006;29(1):205–10. DOI:10.1111/j.1365-2605.2005.00599.x. PMID: 16466541.; Greene M.H., Kratz C.P., Mai P.L. et al. Familial testicular germ cell tumors in adults: 2010 summary of genetic risk factors and clinical phenotype. Endocr Relat Cancer 2010;17(2):109–21. DOI:10.1677/ERC-09-0254. PMID: 20228134.; Rodriguez S., Jafer O., Goker H. et al. Expression profile of genes from 12p in testicular germ cell tumors of adolescents and adults associated with i(12p) and amplification at 12p11.2 p12.1. Oncogene2003;22(12):1880–91. DOI:10.1038/sj.onc.1206302. PMID: 12660824.; Clark A.T., Rodriguez R.T., Bodnar M.S. et al. Human STELLAR, NANOG, and GDF3 genes are expressed in pluripotent cells and map to chromosome 12p13, a hotspot for teratocarcinoma. Stem Cells 2004;22(2):169–79. DOI:10.1634/stemcells.22-2-169. PMID: 14990856.; Litchfield K., Levy M., Huddart R.A. et al. The genomic landscape of testicular germ cell tumours: from susceptibility to treatment. Nat Rev Urol 2016;13(7):409–19. DOI:10.1038/nrurol.2016.107. PMID: 27296647.; Kanetsky P.A., Mitra N., Vardhanabhuti S. et al. Common variation in KITLG and at 5q31.3 predisposes to testicular germ cell cancer. Nat Genet 2009;41(7):811–5. DOI:10.1038/ng.393. PMID: 19483682.; Stoop H., Honecker F., van de Geijn G.J. et al. Stem cell factor as a novel diagnostic marker for early malignant germ cells. J Pathol 2008;216(1):43–54. DOI:10.1002/path.2378. PMID: 18566970.; Azevedo M.F., Horvath A., Bornstein E.R. et al. Cyclic AMP and c-KIT signaling in familial testicular germ cell tumor predisposition. J Clin Endocrinol Metab 2013;98(8):E1393–400. DOI:10.1210/jc.2012-2838. PMID: 23771924.; Poynter J.N., Hooten A.J., Frazier A.L., Ross J.A. Associations between variants in KITLG, SPRY4, BAK1, and DMRT1 and pediatric germ cell tumors. Genes Chromosomes Cancer 2012;51(3):266–71. DOI:10.1002/gcc.20951. PMID: 22072546.; Frolov A., Chahwan S., Ochs M. et al. Response markers and the molecular mechanisms of action of Gleevec in gastrointestinal stromal tumors. Mol Cancer Ther 2003;2(8):699–709. PMID: 12939459.; Tsumura Y., Toshima J., Leeksma O.C. et al. Sprouty-4 negatively regulates cell spreading by inhibiting the kinase activity of testicular protein kinase. Biochem J 2005;387(Pt 3):627–37. DOI:10.1042/BJ20041181. PMID: 15584898.; Chung C.C., Kanetsky P.A., Wang Z. et al. Meta-analysis identifies four new loci associated with testicular germ cell tumor. Nat Genet 2013;45(6):680–5. DOI:10.1038/ng.2634. PMID: 23666239.; Jørgensen A., Nielsen J.E., Blomberg Jensen M. et al. Analysis of meiosis regulators in human gonads: a sexually dimorphic spatio-temporal expression pattern suggests involvement of DMRT1 in meiotic entry. Mol Hum Reprod 2012;18(11):523– 34. DOI:10.1093/molehr/gas030. PMID: 22899867.; Livadas S., Mavrou A., Sofocleous C. et al. Gonadoblastoma in a patient with del(9) (p22) and sex reversal: report of a case and review of the literature. Cancer Genet Cytogenet 2003;143(2):174–7. PMID: 12781454.; Looijenga L.H., Hersmus R., Gillis A.J. et al. Genomic and expression profiling of human spermatocytic seminomas: primary spermatocyte as tumorigenic precursor and DMRT1 as candidate chromosome 9 gene. Cancer Res 2006;66(1):290–302. DOI:10.1158/0008-5472.CAN-05-2936. PMID: 16397242.; Yamaji M., Seki Y., Kurimoto K. et al. Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat Genet 2008;40(8):1016–22. DOI:10.1038/ng.186. PMID: 18622394.; Rajpert-De Meyts E., Hanstein R., Jørgensen N. et al. Developmental expression of POU5F1(OCT-3/4) in normal and dysgenetic human gonads. Hum Reprod 2004;19(6):1338–44. DOI:10.1093/humrep/deh265. PMID: 15105401.; Lin Y., Gill M.E., Koubova J., Page D.C. Germ cell-intrinsic and-extrinsic factors govern meiotic initiation in mouse embryos. Science 2008;322(5908):1685–7. DOI:10.1126/science.1166340. PMID: 19074348.; Chen H.H., Welling M., Bloch D.B. et al. DAZL limits pluripotency, differentiation, and apoptosis in developing primordial germ cells. Stem Cell Reports 2014;3(5):892–904. DOI:10.1016/j.stemcr.2014.09.003. PMID: 25418731.; Khabour O.F., Al-azzam A.M., Alfaouri A.A. et al. Association of Polymorphisms in DAZL Gene with Male Infertility. Br J Medical Res 2013;3(1):41–8.; Yen P.H. Putative biological functions of the DAZ family. Int J Androl 2004;27(3):125–9. DOI:10.1111/j.1365-2605.2004.00469.x. PMID: 15139965.; Nathanson K.L., Kanetsky P.A., Hawes R. et al. The Y deletion gr/gr and susceptibility to testicular germ cell tumor. Am J Hum Genet 2005;77(6):1034–43. DOI:10.1086/498455. PMID: 16380914.; Черных В.Б. AZF делеции – частая генетическая причина бесплодия у мужчин: современное состояние исследований. Проблемы репродукции 2009;(1):10–4.; Kratz C.P., Mai P.L., Greene M.H. Familial testicular germ cell tumors. Best Pract Res Clin Endocrinol Metab 2010;24(3):503–13. DOI:10.1016/j.beem.2010.01.005. PMID: 20833340.; Dalgaard M.D., Weinhold N., Edsgärd D. et al. A genome-wide association study of men with symptoms of testicular dysgenesis syndrome and its network biology interpretation. J Med Genet 2012;49(1):58–65. DOI:10.1136/jmedgenet-2011-100174. PMID: 22140272.; Rossa A., Munger S., Capel B. Bmp7 regulates germ cell proliferation in mouse fetal gonads. Sex Dev 2007;1(2):127–37. DOI:10.1159/000100034. PMID: 18391523.; Dias V.L., Rajpert-De Meyts E., McLachlan R., Loveland K.L. Analysis of activin/ TGFB-signaling modulators within the normal and dysfunctional adult human testis reveals evidence of altered signaling capacity in a subset of seminomas. Reproduction 2009;138(5):801–11. DOI:10.1530/REP-09-0206. PMID: 19661148.; Sarraj M.A., Escalona R.M., Umbers A. et al. Fetal testis dysgenesis and compromised Leydig cell function in Tgfbr3 (beta glycan) knockout mice. Biol Reprod 2010;82(1):153–62. DOI:10.1095/biolreprod.109.078766. PMID: 19696014.; Ciller I.M., Palanisamy S.K., Ciller U.A., McFaarlane J.R. Postnatal expression of bone morphogenetic proteins and their receptors in the mouse testis. Physiol Res 2016;65(4):673–82. PMID: 26988160.; Rijlaarsdam M.A., Looijenga L.H. An oncofetal and developmental perspective on testicular germ cell cancer. Semin Cancer Biol 2014;29:59–74. DOI:10.1016/j.semcancer.2014.07.003. PMID: 25066859.; Quinonez S.C., Innis J.W. Human HOX gene disorders. Mol Genet Metab 2014;111(1):4–15. DOI:10.1016/j.ymgme.2013.10.012. PMID: 24239177.; https://oncourology.abvpress.ru/oncur/article/view/836
-
7Academic Journal
المؤلفون: E. Kuznetsova B., V. Strelnikov V., A. Tanas S., M. Nemtsova V., D. Zaletaev V., Е. Кузнецова Б., В. Стрельников В., А. Танас С., М. Немцова В., Д. Залетаев В.
المصدر: Medical Genetics; Том 17, № 6 (2018); 18-23 ; Медицинская генетика; Том 17, № 6 (2018); 18-23 ; 2073-7998
مصطلحات موضوعية: синдром ломкой Х-хромосомы, синдром Мартина, fragile X syndrome, FMR1 gene, FMR1-AS1 gene, medical technology, NGS, MLPA, methylation sensitive PCR
وصف الملف: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/495/321; Козлова С.И., Демикова Н.С., Семанова Е., Блинникова О.Е. Наследственные синдромы и медико-генетическое консультирование. Москва, изд. Практика: 1996; стр. 304-305.; Oberle I., Rousseau F., Heitz F., et al. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science. 1991; 252:1097-1102.; Strelnikov, V., Nemtsova, M., Chesnokova, G., Kuleshov, N., Zaletayev, D. A simple multiplex FRAXA, FRAXE, and FRAXF PCR assay convenient for wide screening programs. Human mutation. 1999;13(2):166-169.; Strel’nikov, V.V., Nemtsova, M.V., Chesnokova, et al. Diagnosis of Martin-Bell syndrome based on an analysis of the structural-functional changes in the 5’-untranslated region of the FMR1 gene. Molekuliarnaia biologiia. 1998; 33(2):330-336.; Залетаев, Д.В., Немцова, М.В., Стрельников, В.В. и соавт. Диагностика эпигенетической патологии при наследственных и онкологических заболеваниях. Молекулярная биология. 2004; 38(2):213-223.; Стрельников В.В., Танас А.С, Кузнецова Е.А. Методология локус-специфического анализа метилирования ДНК. Издательство: LAP Lambert Academic Publishing. ISBN 9783659670411; 2014, 104 стр.; De Boulle K., Verkerk A.J.M.H., Reyniers E., et al. A point mutation in the FMR-1 gene associated with fragile X mental retardation. Nature Genet. 1993;3:31-35.; Lugenbeel K.A., Peier A.M., Carson N.L., Chudley A.E., Nelson D.L. Intragenic loss of function mutations demonstrate the primary role of FMR1 in fragile X syndrome. Nature Genet. 1995;10:483-485.; Myrick, L.K., Nakamoto-Kinoshita, M., Lindor, N.M., Kirmani, S., Cheng, X., Warren, S.T. Fragile X syndrome due to a missense mutation. European Journal of Human Genetics. 2014;22(10):1185-1189.; Handt, M., Epplen, A., Hoffjan, S., Mese, K., Epplen, J.T., Dekomien, G. Point mutation frequency in the FMR1 gene as revealed by fragile X syndrome screening. Molecular and cellular probes. 2014;28(5):279-283.; Redin, C., Gеrard, B., Lauer, J., et al. Efficient strategy for the molecular diagnosis of intellectual disability using targeted high-throughput sequencing. Journal of medical genetics. 2014;51(11):724-736.; Grozeva, D., Carss, K., Spasic Boskovic, O., et al. Targeted next generation sequencing analysis of 1,000 individuals with intellectual disability. Human mutation. 2015;36(12): 1197-1204.; Wright, C.F., Fitzgerald, T.W., Jones, W.D., et al. Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data. The Lancet. 2015;385(9975):1305-1314.; Quartier, A., Poquet, H., Gilbert-Dussardier, B., et al. Intragenic FMR1 disease-causing variants: a significant mutational mechanism leading to Fragile-X syndrome. European Journal of Human Genetics. 2017;25(4):423-431.; Hantash, F.M., Goos, D.G., Tsao, D., et al. Qualitative assessment of FMR1 (CGG) n triplet repeat status in normal, intermediate, premutation, full mutation, and mosaic carriers in both sexes: implications for fragile X syndrome carrier and newborn screening. Genetics in Medicine. 2010;12(3):162-173.; https://www.medgen-journal.ru/jour/article/view/495
-
8Academic Journal
المؤلفون: K. Anoshkin I., I. Vasiliev A., K. Karandasheva O., A. Tanas S., M. Byakhova M., L. Gurevich E., Yu. Doludin V., N. Bagmet N., G. Shatveryan A., A. Yegorov V., M. Nemtsova V., M. Sekacheva I., V. Strelnikov V., К. Аношкин И., И. Васильев А., К. Карандашева О., А. Танас С., М. Бяхова М., Л. Гуревич Е., Ю. Долудин В., Н. Багмет Н., Г. Шатверян А., А. Егоров В., М. Немцова В., М. Секачева И., В. Стрельников В.
المصدر: Medical Genetics; Том 17, № 10 (2018); 26-30 ; Медицинская генетика; Том 17, № 10 (2018); 26-30 ; 2073-7998
مصطلحات موضوعية: инсулинома, ген TSC1, ген TSC2, mTOR, высокопроизводительное параллельное секвенирование ДНК, nsulinoma, TSC1 gene, TSC2 gene, NGS
وصف الملف: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/589/370; Okabayashi, T., et al., Diagnosis and management of insulinoma. World J Gastroenterol, 2013. 19(6): p. 829-37.; Batcher, E., P. Madaj, and A.G. Gianoukakis, Pancreatic neuroendocrine tumors. Endocr Res, 2011. 36(1): p. 35-43.; Гуревич, Л.Е., Диагностика нейроэндокринных опухолей желудочно-кишечного тракта. Практическая онкология, 2005. 6(4): p. 193-201.; Ito, T., L. Lee, and R.T. Jensen, Treatment of symptomatic neuroendocrine tumor syndromes: recent advances and controversies. Expert Opin Pharmacother, 2016. 17(16): p. 2191-2205.; Jensen, R.T., et al., ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms: functional pancreatic endocrine tumor syndromes. Neuroendocrinology, 2012. 95(2): p. 98-119.; Bollard, J., et al., Combinatorial Treatment with mTOR Inhibitors and Streptozotocin Leads to Synergistic In Vitro and In Vivo Antitumor Effects in Insulinoma Cells. Mol Cancer Ther, 2018. 17(1): p. 60-72.; Yao, J.C., et al., Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol, 2010. 28(1): p. 69-76.; Baratelli, C., et al., Intermittent everolimus administration for malignant insulinoma. Endocrinol Diabetes Metab Case Rep, 2014. 2014: p. 140047.; Pea, A., R.H. Hruban, and L.D. Wood, Genetics of pancreatic neuroendocrine tumors: implications for the clinic. Expert Rev Gastroenterol Hepatol, 2015. 9(11): p. 1407-19.; Karar, J. and A. Maity, PI3K/AKT/mTOR Pathway in Angiogenesis. Front Mol Neurosci, 2011. 4: p. 51.; Аношкин, К.И., et al., Медицинская технология комплексной ДНК-диагностики туберозного склероза. Медицинская генетика, 2018. 17(8): p. в печати.; Dubbink, H.J., et al., Diagnostic Detection of Allelic Losses and Imbalances by Next-Generation Sequencing: 1p/19q Co-Deletion Analysis of Gliomas. J Mol Diagn, 2016. 18(5): p. 775-786.; К.И. Аношкин , et al., Новые регионы с потерей гетерозиготности участков хромосом при спорадической ангиомиолипоме почки. Медицинская генетика, 2018. 17(9): p. в печати.; Knudson, A.G., Jr., Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A, 1971. 68(4): p. 820-3.; Palermo, A., et al., A novel germline mutation at exon 10 of MEN1 gene: a clinical survey and positive genotype-phenotype analysis of a MEN1 Italian family, including monozygotic twins. Hormones (Athens), 2018.; Chen, M., et al., Molecular pathology of pancreatic neuroendocrine tumors. J Gastrointest Oncol, 2012. 3(3): p. 182-8.; Lichtenauer, U.D., et al., Frequency and clinical correlates of somatic Ying Yang 1 mutations in sporadic insulinomas. J Clin Endocrinol Metab, 2015. 100(5): p. E776-82.; Jiao, Y., et al., DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science, 2011. 331(6021): p. 1199-203.; https://www.medgen-journal.ru/jour/article/view/589
-
9Academic Journal
المؤلفون: E. Alekseeva A., O. Babenko V., V. Kozlova M., T. Ushakova L., S. Saakyan V., A. Tanas S., M. Nemtsova V., V. Strelnikov V., D. Zaletayev V., Е. Алексеева А., О. Бабенко В., В. Козлова М., Т. Ушакова Л., С. Саакян В., А. Танас С., М. Немцова В., В. Стрельников В., Д. Залетаев В.
المصدر: Medical Genetics; Том 16, № 10 (2017); 41-46 ; Медицинская генетика; Том 16, № 10 (2017); 41-46 ; 2073-7998
مصطلحات موضوعية: ретинобластома, ген RB1, медицинская технология, высокопроизводительное параллельное секвенирование ДНК, MLPA, retinoblastoma, RB1 gene, medical technology, NGS
وصف الملف: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/336/252; Lohmann DR, Gallie BL. Retinoblastoma. In GeneReviews [Internet]. 2000 Jul [Updated 2015 Nov].; Kivela T. The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death. Br J Ophthalmol 2009; 93: 1129-1131.; Козлова ВМ, Казубская ТП, Соколова ИН и др. Ретинобласома: диагностика и генетическое консультирование. 2015; 2(1): 30-38.; Dommering CJ, Mol BM, Moll AC et al. RB1 mutation spectrum in a comprehensive nationwide cohort of retinoblastoma patients. J. Med. Genet. 2014; 51; 366-374.; Quinonez-Silva G, Davalos-Salas M, Recillas-Targa F et al. Monoallelic germline methylation and sequence variant in thе promoter of the RB1 gene: a possible constitutive epimutatiom in hereditary retinoblastoma. Clin Epigenetics. 2016; 8:1.; Li WL, Buckley J, Sanchez-Lara PA et al. A Rapid and Sensetive Next-Generation Sequencing Method to Detect RB1 Mutations Improves Care for Retinoblastoma Patients and Their Families. The J. of Molec. Diagnostics. 2016; 18(4): 480-493.; Babenko OV, Saakian SV, Brovkina AF et al. Spectrum and frequences of RB1 gene structural defects in retinoblastoma. Molecular Biology. 2002. 36(4): 487-492.; Valverde JR, Alonso J, Palacios et al. RB1 gene mutation up-date, a meta-analysis based on 932 reported mutations available in a searchable database. BMC Genet. 2005; 6: 53.; https://www.medgen-journal.ru/jour/article/view/336
-
10Academic Journal
المؤلفون: D. Mikhaylenko S., A. Novikov A., M. Grigor’eva V., G. Efremov D., A. Sivkov V., N. Safronova Yu., K. Sorokin S., M. Zemskova Yu., M. Nemtsova V., B. Alekseev Ya., A. Kaprin D., Д. Михайленко С., А. Новиков А., М. Григорьева В., Г. Ефремов Д., А. Сивков В., Н. Сафронова Ю., К. Сорокин С., М. Земскова Ю., М. Немцова В., Б. Алексеев Я., А. Каприн Д.
المصدر: Cancer Urology; Том 13, № 3 (2017); 54-60 ; Онкоурология; Том 13, № 3 (2017); 54-60 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2017-13-3
مصطلحات موضوعية: PCA3, gene expression, exosome, non-invasive diagnostics, РСА3, экспрессия, экзосома, неинвазивная диагностика
وصف الملف: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/685/706; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/685/466; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/685/467; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/685/479; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/685/480; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/685/494; Злокачественные новообразования в России в 2015 году (заболеваемость и смертность). Под ред. А. Д. Каприна, В. В. Старинского, Г. В. Петровой. М.: МНИОИ им. П. А. Герцена – филиал ФГБУ «НМИРЦ» Минздрава России, 2017. 250 с. [Malignant tumors in Russia in 2015 (morbidity and fatality). Eds.: А.D. Kaprin, V. V. Starinskiy, G. V. Petrova. Moscow: MNIOI im. P. A. Gertsena – filial FGBU “NMIRTS” Minzdrava Rossii, 2017. 250 p. (In Russ.)].; Онкоурология: национальное руководство. Под ред. В. И. Чиссова, Б. Я. Алексеева, И. Г. Русакова. М.: ГЭОТАР-Медиа, 2012. 688 c. [Oncourology: National Guideline. Eds.: V.I. Chissov, B. Ya. Alekseev, I. G. Rusakov. Moscow: GEOTAR-Media, 2012. 688 p. (In Russ.)].; Михайленко Д. С., Перепечин Д. В., Аполихин О. И. и др. Маркеры для неинвазивной молекулярно- генетической диагностики онкоурологических заболеваний. Урология 2014; (5):116–20. [Mikhaylenko D. S., Perepechin D. V., Apolikhin O. I. et al. Markers for non-invasive molecular genetic diagnosis of oncourological diseases. Urologiya = Urology 2014;(5):116–20. (In Russ.)].; Tombal B., Andriole G. L., de la Taille A. et al. Clinical judgment versus biomarker prostate cancer gene 3: which is best when determining the need for repeat prostate biopsy? Urology 2013;81(5):998–1004. DOI:10.1016/j.urology.2012.11.069. PMID: 23523291.; Cui Y., Cao W., Li Q. et al. Evaluation of prostate cancer antigen 3 for detecting prostate cancer: a systematic review and meta-analysis. Sci Rep 2016;6:25776. DOI:10.1038/srep25776. PMID: 27161545.; Bradley L. A., Palomaki G. E., Gutman S. et al. Comparative effectiveness review: prostate cancer antigen 3 testing for the diagnosis and management of prostate cancer. J Urol 2013;190(2):389–98. DOI:10.1016/j.juro.2013.02.005. PMID: 23545099.; Ramos C. G., Valdevenito R., Vergara I. et al. PCA3 sensitivity and specificity for prostate cancer detection in patients with abnormal PSA and/or suspicious digital rectal examination. First Latin American experience. Urol Oncol 2013;31(8):1522–6. DOI:10.1016/j.urolonc.2012.05.002. PMID: 22687565.; Durand X., Moutereau S., Xylinas E., de la Taille A. Progensa™ PCA3 test for prostate cancer. Expert Rev Mol Diagn 2011;11(2):137–44. DOI:10.1586/erm.10.122. PMID: 21405964.; Wang T., Qu X., Jiang J. et al. Diagnostic significance of urinary long non-coding PCA3 RNA in prostate cancer. Oncotarget 2017. DOI:10.18632/oncotarget.17272. PMID: 28489592.; Quek S. I., Wong O. M., Chen A. et al. Processing of voided urine for prostate cancer RNA biomarker analysis. Prostate 2015;75(16):1886–95. DOI:10.1002/pros.23066. PMID: 26306723.; Hendriks R. J., Dijkstra S., Jannink S. A. et al. Comparative analysis of prostate cancer specific biomarkers PCA3 and ERG in whole urine, urinary sediments and exosomes. Clin Chem Lab Med 2016;54(3): 483–92. DOI:10.1515/cclm-2015–0599.; Молекулярный канцерогенез. Под ред. М. А. Красильникова, И. Б. Зборовской. М.: ООО ИД «АБВ-пресс», 2016. 418 c. [Molecular carcinogenesis. Eds.: M. A. Krasil’nikov, I. B. Zborovskaya. Moscow: OOO ID “ABV-press”, 2016. 418 p. (In Russ.)].; Donovan M. J., Noerholm M., Bentink S. et al. A molecular signature of PCA3 and ERG exosomal RNA from non-DRE urine is predictive of initial prostate biopsy result. Prostate Cancer Prostatic Dis 2015;18(4):370–5. DOI:10.1038/pcan.2015.40.; Filella X., Foj L. Prostate cancer detection and prognosis: from prostate specific antigen (PSA) to exosomal biomarkers. Int J Mol Sci 2016;17(11):E1784. DOI:10.3390/ijms17111784. PMID: 27792187.; Аполихин О. И., Сивков А. В., Ефремов Г. Д. и др. РСА3 и TMPRSS2: ERG в диагностике рака предстательной железы: первый опыт применения комбинации маркеров в России. Экспериментальная клиническая урология 2015;(2):30–5. [Apolikhin O. I., Sivkov A. V., Efremov G. D. et al. The first Russian experience of using PCA3 and TMPRSS2-ERG for prostate cancer diagnosis. Experimental’naya klinicheskaya urologiya = Experimental Clinical Urology 2015;(2):30–5. (In Russ.)].; Михайленко Д. С., Перепечин Д. В., Григорьева М. В. и др. Экспрессия генов PCA3 и TMPRSS2-ERG в биоптатах при доброкачественной гиперплазии, интраэпителиальной неоплазии и раке предстательной железы. Урология 2015; (5):46–50. [Mikhaylenko D. S., Perepechin D. V., Grigor’eva M.V. et al. PCA3 and TMPRSS2: ERG genes expression in biopsies of benign prostate hyperplasia, intraepithelial neoplasia, and prostate cancer. Urologiya = Urology 2015; (5):46–50. (In Russ.)].; Goode R. R., Marshall S. J., Duff M. et al. Use of PCA3 in detecting prostate cancer in initial and repeat prostate biopsy patients. Prostate 2013;73(1):48–53. DOI:10.1002/pros.22538. PMID: 22585386.; Ferro M., Bruzzese D., Perdona S. et al. Prostate health index (Phi) and prostate cancer antigen 3 (PCA3) significantly improve prostate cancer detection at initial biopsy in a total PSA range of 2–10 ng/ml.PLoS One 2013;8(7):e67687. DOI:10.1371/journal. pone. 0067687.; Zhou Y., Li Y., Li X., Jiang M. Urinary biomarker panel to improve accuracy in predicting prostate biopsy result in Chinese men with PSA 4–10 ng/ml. Biomed Res Int 2017:2512536. DOI:10.1155/2017/2512536. PMID: 28293631.; Chevli K. K., Duff M., Walter P. et al. Urinary PCA3 as a predictor of prostate cancer in a cohort of 3,073 men undergoing initial prostate biopsy. J Urol 2014;191(6):1743–8. DOI:10.1016/j.juro.2013.12.005. PMID: 24333241.; Vlaeminck-Guillem V., Devonec M., Champetier D. et al. Urinary PCA3 to predict prostate cancer in a cohort of 1015 patients. Prog Urol 2015;25(16):1160–8. DOI:10.1016/j.purol.2015.08.005. PMID: 26376283.; Wei W., Leng J., Shao H., Wang W. High PCA3 scores in urine correlate with poorprognosis factors in prostate cancer patients. Int J Clin Exp Med 2015;8(9):16606–12. PMID: 26629191.; Tosoian J. J., Patel H. D., Mamawala M. et al. Longitudinal assessment of urinary PCA3 for predicting prostate cancer grade reclassification in favorable-risk men du ring active surveillance. Prostate Cancer Prostatic Dis 2017. DOI:10.1038/pcan.2017.16. PMID: 28417979.; Alshalalfa M., Verhaegh G. W., Gibb E. A. et al. Low PCA3 expression is a marker of poor differentiation in localized prostate tumors: exploratory analysis from 12,076 patients. Oncotarget 2017. DOI:10.18632/oncotarget.15133. PMID: 28187449.; Motamedinia P., Scott A. N., Bate K. L. et al. Urine exosomes for non-invasive assessment of gene expression and mutations of prostate cancer. PLoS One 2016;11(5):e0154507. DOI:10.1371/journal.pone.0154507. PMID: 27144529.; Dijkstra S., Birker I. L., Smit F. P. et al. Prostate cancer biomarker profiles in urinary sediments and exosomes. J Urol 2014;191(4):1132–8. DOI:10.1016/j.juro.2013.11.001. PMID: 24211598.; Mengual L., Lozano J. J., Ingelmo-Torres M. et al. Using gene expression from urine sediment to diagnose prostate cancer: development of a new multiplex mRNA urine test and validation of current biomarkers. BMC Cancer 2016;16:76. DOI:10.1186/s12885-016-2127-2.; O’Malley P. G., Nguyen D. P., Al Hussein Al Awamlh B. et al. Racial variation in the utility of urinary biomarkers PCA3 and T2ERG in a large multicenter study. J Urol 2017;198(1):42–9. DOI:10.1016/j.juro. 2017.01.058. PMID: 28115190.; Albitar M., Ma W., Lund L. et al. Predicting prostate biopsy results using a panel of plasma and urine biomarkers combined in a scoring system. J Cancer 2016;7 (3):297–303. DOI:10.7150/jca.12771. PMID: 26918043.; Leyten G. H., Hessels D., Smit F. P. et al. Identification of a candidate gene panel for the early diagnosis of prostate cancer. Clin Cancer Res 2015;21(13):3061–70. DOI:10.1158/1078–0432.CCR- 14–3334. PMID: 25788493.; Van Neste L., Hendriks R. J., Dijkstra S. et al. Detection of high-grade prostate cancer using a urinary molecular biomarker-based risk score. Eur Urol 2016;70(5):740–8. DOI:10.1016/j.eururo.2016.04.012. PMID: 27108162.; https://oncourology.abvpress.ru/oncur/article/view/685
-
11Academic Journal
المؤلفون: A. Babayan Yu., S. Bashkatov V., O. Karyakin B., A. Teplov A., M. Golovashchenko P., V. Shkarupo V., D. Zaletayev V., M. Nemtsova V., А. Бабаян Ю., С. Башкатов В., О. Карякин Б., А. Теплов А., М. Головащенко П., В. Шкарупо В., Д. Залетаев В., М. Немцова В.
المصدر: Cancer Urology; Том 5, № 3 (2009); 19-24 ; Онкоурология; Том 5, № 3 (2009); 19-24 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2009-5-3
مصطلحات موضوعية: superficial bladder cancer, prognosis, molecular genetic markers, поверхностный рак мочевого пузыря, прогноз течения, молекулярно-генетические маркеры
وصف الملف: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/255/272; Чиссов В.И., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2006 году (заболеваемость и смертность). М., 2008.; Матвеев Б.П., Фигурин К.Н., Корякин О.Б. Рак мочевого пузыря. М.: Вердана, 2001.; Heney N.M., Ahmed S., Flanagan M.J. et al. Superficial bladder cancer. J Urol 1983;130:1083—6.; Babjuk M., Oosterlinck W., Sylvester R. et al. Guidelines on TaT1 (non-muscle invasive) bladder cancer. Arnhem, The Netherlands: European Association of Urology (EAU), 2008.; Sambrook J., Fritsh E.F., Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. N.Y.: Cold Spring Harbor Laboratory Press, 1989.; Землякова В., Жевлова А., Стрельников В. и др. Аномальное метилирование некоторых геновсупрессоров при спорадическом раке молочной железы. Мол Биол 2003;37:696—703.; Кекеева Т., Жевлова А., Подистов Ю. и др. Аномальное метилирование генов супрессоров опухолевого роста и микросателлитная нестабильность в предраковых состояниях шейки матки. Мол Биол 2006;40:224—30.; Van Rhijn B.W., Lurkin I., Radvanyi F. et al. The fibroblast growth factor receptor 3 (FGFR3) mutation is a strong indicator of superficial bladder cancer with low recurrence rate. Cancer Res 2001;61:1265—8.; Knowles M.A. Molecular subtypes of bladder cancer: Jekyll and Hyde or chalk and cheese? Carcinogenesis 2006;27: 361—73.; Mhawech-Fauceglia P., Cheney R.T., Schwaller J. Genetic alterations in urothelial bladder carcinoma. Cancer 2006;106(6):1205—16.; Akagashi K., Tanda H., Kato S. et al. Recurrence pattern for superficial bladder cancer. Int J Urol 2006;13(6):686—91.; Chapman E.J., Harnden P., Chambers P. et al. Comprehensive analysis of CDKN2A status in microdissected urothelial cell carcinoma reveals potential haploinsufficiency, a high frequency of homozygous co-deletion and associations with clinical phenotype. Clin Cancer Res 2005;11(16):5740—7.; Millan-Rodrigez F., Chechile-Toniolo R., Salvador-Bayarri J. Multivariate analysis of the prognostic factors of primary superficial bladder cancer. J Urol (Baltimore) 2000;163:68—7.; Ali-El-Dein B., Sarhan O., Hinev A. et al. Superficial bladder tumours: analysis of prognostic factors and construction of a predictive index. BJU Int 2003;92(4): 393—9.; Tada Y., Wada M., Taguchi K. et al. The association of death-associated protein kinase hypermethylation with early recurrence in superficial bladder cancers. Cancer Res 2002;62:4048—53.; Карякин О.Б., Башкатов С.В., Немцова М.В. Клиническое значение молекулярно-генетических изменений в клетках уротелия при раке мочевого пузыря. Онкоурология 2006;3:54—58.; Sauter G., Mihatstch M.J. et al. Pussycats and baby tigers: non-invasive (pTa) and minimally invasive (pT1) bladder carcinomas are not the same! J Pathology 1998;185:339—41.; Effert P.J., Seifer P. Invasive potential of «noninvasive» human bladder carcinoma. Am J Clin Pathol 2003;120:188—93.; Kulkarni G.S., Finelli A., Fleshner N.E. et al. Optimal management of high-risk T1G3 bladder cancer. A decision analysis. PLoS Medicine 2007;4(9):1538—49.; Thalmann G.N., Markwalder R., Shahin O. et al. Primary T1G3 bladder cancer: organ preserving approach or immediate cystectomy? J Urol 2004;172(1):70—5.; Masood S., Sriprasad S., Palmer J.H., Mufti G.R. T1G3 bladder cancer—indications for early cystectomy. Int Urol Nephrol 2004;36(1):41—4.; Manoharan M., Soloway M.S. Optimal management of the T1G3 bladder cancer. Urol Clin North Am 2005;32(2):133—45.; Metwalli A.R., Kamat A.M. Controversial issues and optimal management of stage T1G3 bladder cancer. Expert Rev Anticancer Ther 2006;6(8):1283—94.; Brandau S., Böhle A. Bladder cancer. I. Molecular and genetic basis of carcinogenesis. Eur Urol 2001;39(5):491—7.; https://oncourology.abvpress.ru/oncur/article/view/255