-
1Academic Journal
المؤلفون: Múnera Galarza, Francisco Alejandro
وصف الملف: application/pdf
Relation: http://revistas.unal.edu.co/index.php/revfacmed/article/view/43525; Universidad Nacional de Colombia Revistas electrónicas UN Revista de la Facultad de Medicina; Revista de la Facultad de Medicina; Revista de la Facultad de Medicina; Vol. 53, núm. 2 (2005); 55-56 2357-3848 0120-0011; Múnera Galarza, Francisco Alejandro (2005) De la electricidad animal, la pila y los controles a la investigación. Revista de la Facultad de Medicina; Vol. 53, núm. 2 (2005); 55-56 2357-3848 0120-0011 .; https://repositorio.unal.edu.co/handle/unal/74690; http://bdigital.unal.edu.co/39167/
-
2Academic Journal
المؤلفون: Múnera Galarza, Francisco Alejandro
المصدر: Revista de la Facultad de Medicina; Vol. 53 Núm. 2 (2005); 55-56 ; Revista de la Facultad de Medicina; Vol. 53 No. 2 (2005); 55-56 ; Revista de la Facultad de Medicina; v. 53 n. 2 (2005); 55-56 ; 2357-3848 ; 0120-0011
وصف الملف: application/pdf; text/html
-
3Academic Journal
المؤلفون: Palacio, Carlos Andrés Cárdenas, Galarza, Francisco Alejandro Múnera, Cárdenas Palacio, Carlos Andrés, Múnera Galarza, Francisco Alejandro
المصدر: Otolaryngology-Head & Neck Surgery; May2017, Vol. 156 Issue 5, p828-833, 6p
-
4Academic Journal
المؤلفون: Múnera Galarza, Francisco Alejandro
المصدر: Revista de la Facultad de Medicina; Vol. 44 Núm. 1 (1996); 34-42 ; Revista de la Facultad de Medicina; Vol. 44 No. 1 (1996); 34-42 ; Revista de la Facultad de Medicina; v. 44 n. 1 (1996); 34-42 ; 2357-3848 ; 0120-0011
مصطلحات موضوعية: Urgencias, servicios médicos, evaluación de filtro, protocolos, Medicina
وصف الملف: application/pdf
-
5Electronic Resource
Additional Titles: De la electricidad animal, la pila y los controles a la investigación
المؤلفون: Múnera Galarza, Francisco Alejandro
المصدر: Revista de la Facultad de Medicina; Vol. 53 Núm. 2 (2005); 55-56; Revista de la Facultad de Medicina; Vol. 53 No. 2 (2005); 55-56; Revista de la Facultad de Medicina; v. 53 n. 2 (2005); 55-56; 2357-3848; 0120-0011
مصطلحات الفهرس: info:eu-repo/semantics/article, info:eu-repo/semantics/publishedVersion, Editorial, Editorial, Editorial
-
6Dissertation/ Thesis
المؤلفون: Niño Hernández, Angélica Beatriz
المساهمون: Múnera Galarza, Francisco Alejandro, Neurofisiología comportamental, Angelica Beatriz Niño
مصطلحات موضوعية: 570 - Biología::571 - Fisiología y temas relacionados, 570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales, RECEPTORES SENSORIALES, LOBULO PARIETAL, GENERALIZACION DEL ESTIMULO, Sensory receptors, Parietal lobes, Stimulus generalization, Sistema de las vibrisas, Corteza motora de las vibrisas, Corteza de los barriles, Integración sensoriomotora, Whisker system, Vibrissal motor cortex, Barrel cortex, Sensorimotor integration
وصف الملف: 96 páginas; application/pdf
Relation: Abbott, L., & Regehr, W. (2004). Synaptic computation. Nature, 431, 796–803. https://doi.org/10.1038/nature03010; Achury, M., & Múnera, A. (2015). Interacción funcional entre hipocampo y corteza motora primaria de las vibrisas en el procesamiento de información somatosensorial en ratas [Póster]. X Congreso Nacional - XI Seminario Internacional de Neurociencias.; Adibi, M. (2019). Whisker-Mediated Touch System in Rodents: From Neuron to Behavior. Frontiers in Systems Neuroscience, 13. https://www.frontiersin.org/articles/10.3389/fnsys.2019.00040; Ahissar, E., & Knutsen, P. M. (2016). Vibrissal Location Coding. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 725–735). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_53; Ahrens, K. F., & Kleinfeld, D. (2004). Current Flow in Vibrissa Motor Cortex Can Phase-Lock With Exploratory Rhythmic Whisking in Rat. Journal of Neurophysiology, 92(3), 1700–1707. https://doi.org/10.1152/jn.00020.2004; Akin, M. (2002). Comparison of Wavelet Transform and FFT Methods in the Analysis of EEG Signals. Journal of medical systems, 26, 241–247. https://doi.org/10.1023/A:1015075101937; Alder, G., Signal, N., Olsen, S., & Taylor, D. (2019). A Systematic Review of Paired Associative Stimulation (PAS) to Modulate Lower Limb Corticomotor Excitability: Implications for Stimulation Parameter Selection and Experimental Design. Frontiers in Neuroscience, 13, 895. https://doi.org/10.3389/fnins.2019.00895; Arabzadeh, E., Heimendahl, M. von, & Diamond, M. (2016). Vibrissal Texture Decoding. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 737–749). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_54; Arkley, K., Grant, R. A., Mitchinson, B., & Prescott, T. J. (2014). Strategy Change in Vibrissal Active Sensing during Rat Locomotion. Current Biology, 24(13), 1507–1512. https://doi.org/10.1016/j.cub.2014.05.036; Bellingham, M. C., & Walmsley, B. (1999). A Novel Presynaptic Inhibitory Mechanism Underlies Paired Pulse Depression at a Fast Central Synapse. Neuron, 23(1), 159–170. https://doi.org/10.1016/S0896-6273(00)80762-X; Bokor, H., Acsády, L., & Deschênes, M. (2008). Vibrissal Responses of Thalamic Cells That Project to the Septal Columns of the Barrel Cortex and to the Second Somatosensory Area. Journal of Neuroscience, 28(20), 5169–5177. https://doi.org/10.1523/JNEUROSCI.0490-08.2008; Bosman, L. W. J., Houweling, A. R., Owens, C. B., Tanke, N., Shevchouk, O. T., Rahmati, N., Teunissen, W. H. T., Ju, C., Gong, W., Koekkoek, S. K. E., & De Zeeuw, C. I. (2011). Anatomical Pathways Involved in Generating and Sensing Rhythmic Whisker Movements. Frontiers in Integrative Neuroscience, 5. https://doi.org/10.3389/fnint.2011.00053; Bray, I. E., Clarke, S. E., Casey, K., Nuyujukian, P., & Laboratory, the B. I. (2022). Neuroelectrophysiology-Compatible Electrolytic Lesioning (p. 2022.11.10.516056). bioRxiv. https://doi.org/10.1101/2022.11.10.516056; Brecht, M., Grinevich, V., Jin, T.-E., Margrie, T., & Osten, P. (2006). Cellular mechanisms of motor control in the vibrissal system. Pflügers Archiv, 453(3), 269–281. https://doi.org/10.1007/s00424-006-0101-6; Brecht, M., Schneider, M., Sakmann, B., & Margrie, T. W. (2004). Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature, 427(6976), 704–710. https://doi.org/10.1038/nature02266; Buzsáki, G., & Draguhn, A. (2004). Neuronal Oscillations in Cortical Networks. Science (New York, N.Y.), 304, 1926–1929. https://doi.org/10.1126/science.1099745; Carpenter, R. H. S. (1997). Sensorimotor processing: Charting the frontier. Current Biology, 7(6), R348–R351. https://doi.org/10.1016/S0960-9822(06)00171-0; Castro-Alamancos, M. A. (2013). The motor cortex: A network tuned to 7-14 Hz. Frontiers in Neural Circuits, 7, 21. https://doi.org/10.3389/fncir.2013.00021; Castro-Alamancos, M. A., & Rigas, P. (2002). Synchronized oscillations caused by disinhibition in rodent neocortex are generated by recurrent synaptic activity mediated by AMPA receptors. The Journal of Physiology, 542(2), 567–581. https://doi.org/10.1113/jphysiol.2002.019059; Castro-Alamancos, M. A., & Tawara-Hirata, Y. (2007). Area-specific resonance of excitatory networks in neocortex: Control by outward currents. Epilepsia, 48(8), 1572–1584. https://doi.org/10.1111/j.1528-1167.2007.01113.x; Chakrabarti, S., & Schwarz, C. (2015). The Rodent Vibrissal System as a Model to Study Motor Cortex Function. En P. Krieger & A. Groh (Eds.), Sensorimotor Integration in the Whisker System (pp. 129–148). Springer. https://doi.org/10.1007/978-1-4939-2975-7_6; Council, N. R. (2011). Guía para el cuidado y uso de animales de laboratorio. Ediciones UC.; David-Jürgens, M., & Dinse, H. R. (2010). Effects of Aging on Paired-Pulse Behavior of Rat Somatosensory Cortical Neurons. Cerebral Cortex (New York, NY), 20(5), 1208–1216. https://doi.org/10.1093/cercor/bhp185; Debanne, D., Guérineau, N. C., Gähwiler, B. H., & Thompson, S. M. (1996). Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: Quantal fluctuation affects subsequent release. The Journal of Physiology, 491(Pt 1), 163–176.; Deschênes, M., & Kleinfeld, D. (2022). The Vibrissa Sensorimotor System of Rodents: A View from the Sensory Thalamus. En M. M. Halassa (Ed.), The Thalamus (pp. 214–220). Cambridge University Press. https://doi.org/10.1017/9781108674287.012; Deschênes, M., Takatoh, J., Kurnikova, A., Moore, J. D., Demers, M., Elbaz, M., Furuta, T., Wang, F., & Kleinfeld, D. (2016). Inhibition, Not Excitation, Drives Rhythmic Whisking. Neuron, 90(2), 374–387. https://doi.org/10.1016/j.neuron.2016.03.007; Deschenes, M., & Urbain, N. (2016). Vibrissal Afferents from Trigeminus to Cortices. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 657–672). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_49; Deschênes, M., Veinante, P., & Zhang, Z. W. (1998). The organization of corticothalamic projections: Reciprocity versus parity. Brain Research. Brain Research Reviews, 28(3), 286–308. https://doi.org/10.1016/s0165-0173(98)00017-4; Diamond, M. E., von Heimendahl, M., Knutsen, P. M., Kleinfeld, D., & Ahissar, E. (2008). “Where” and “what” in the whisker sensorimotor system. Nature Reviews Neuroscience, 9(8), Article 8. https://doi.org/10.1038/nrn2411; Dobrunz, L. E., & Stevens, C. F. (1997). Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron, 18(6), 995–1008. https://doi.org/10.1016/s0896-6273(00)80338-4; Domanski, A. P. F., Booker, S. A., Wyllie, D. J. A., Isaac, J. T. R., & Kind, P. C. (2019). Cellular and synaptic phenotypes lead to disrupted information processing in Fmr1-KO mouse layer 4 barrel cortex. Nature Communications, 10(1), Article 1. https://doi.org/10.1038/s41467-019-12736-y; Dörfl, J. (1985). The innervation of the mystacial region of the white mouse. Journal of Anatomy, 142, 173–184.; Ebara, S., Kumamoto, K., Matsuura, T., Mazurkiewicz, J., & Rice, F. (2002). Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: A confocal microscopic study. The Journal of comparative neurology, 449, 103–119. https://doi.org/10.1002/cne.10277; Erzurumlu, R. S., & Gaspar, P. (2020). How the Barrel Cortex Became a Working Model for Developmental Plasticity: A Historical Perspective. The Journal of Neuroscience, 40(34), 6460–6473. https://doi.org/10.1523/JNEUROSCI.0582-20.2020; Ferezou, I., Haiss, F., Gentet, L. J., Aronoff, R., Weber, B., & Petersen, C. C. H. (2007). Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice. Neuron, 56(5), 907–923. https://doi.org/10.1016/j.neuron.2007.10.007; Forero, A., & Múnera, A. (2016). Interaccion entre el estriado y la corteza motora primaria de las vibrisas durante el procesamiento de informacion somatosensorial [Póster]. X Congreso Nacional - XI Seminario Internacional de Neurociencias.; Friedman, W. A., Jones, L. M., Cramer, N. P., Kwegyir-Afful, E. E., Zeigler, H. P., & Keller, A. (2006). Anticipatory Activity of Motor Cortex in Relation to Rhythmic Whisking. Journal of Neurophysiology, 95(2), 1274–1277. https://doi.org/10.1152/jn.00945.2005; Fukui, A., Osaki, H., Ueta, Y., Kobayashi, K., Muragaki, Y., Kawamata, T., & Miyata, M. (2020). Layer-specific sensory processing impairment in the primary somatosensory cortex after motor cortex infarction. Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-60662-7; Gao, P., Hattox, A. M., Jones, L. M., Keller, A., & Zeigler, H. P. (2003). Whisker motor cortex ablation and whisker movement patterns. Somatosensory & Motor Research, 20(3–4), 191–198. https://doi.org/10.1080/08990220310001622924; Gauthier-Umaña, C., Valderrama, M., Múnera, A., & Nava-Mesa, M. O. (2023). BOARD-FTD-PACC: A graphical user interface for the synaptic and cross-frequency analysis derived from neural signals. Brain Informatics, 10(1), 12. https://doi.org/10.1186/s40708-023-00191-x; Ghanbari, A., Malyshev, A., Volgushev, M., & Stevenson, I. H. (2017). Estimating short-term synaptic plasticity from pre- and postsynaptic spiking (p. 156687). bioRxiv. https://doi.org/10.1101/156687; Grinevich, V., Brecht, M., & Osten, P. (2005). Monosynaptic Pathway from Rat Vibrissa Motor Cortex to Facial Motor Neurons Revealed by Lentivirus-Based Axonal Tracing. The Journal of Neuroscience, 25(36), 8250–8258. https://doi.org/10.1523/JNEUROSCI.2235-05.2005; Guic-Robles, E., Jenkins, W. M., & Bravo, H. (1992). Vibrissal roughness discrimination is barrelcortex-dependent. Behavioural Brain Research, 48(2), 145–152. https://doi.org/10.1016/S0166-4328(05)80150-0; Haidarliu, S. (2016). Whisking Musculature. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 627–639). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_47; Haiss, F., & Schwarz, C. (2005). Spatial Segregation of Different Modes of Movement Control in the Whisker Representation of Rat Primary Motor Cortex. The Journal of Neuroscience, 25(6), 1579–1587. https://doi.org/10.1523/JNEUROSCI.3760-04.2005; Harding, S. (2017). Somatotopic Precision of Whisker Tuning in Layer 2/3 of Rat Barrel Cortex [Doctoral Thesis]. University of California.; Hartmann, M. (2016). Vibrissa Mechanical Properties. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 591–614). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_45; Hooks, B. M. (2017). Sensorimotor Convergence in Circuitry of the Motor Cortex. The Neuroscientist, 23(3), 251–263. https://doi.org/10.1177/1073858416645088; Hooks, B. M., Mao, T., Gutnisky, D. A., Yamawaki, N., Svoboda, K., & Shepherd, G. M. G. (2013). Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(2), 748–760. https://doi.org/10.1523/JNEUROSCI.4338-12.2013; Hramov, A. E., Koronovskii, A. A., Makarov, V. A., Maksimenko, V. A., Pavlov, A. N., & Sitnikova, E. (2021). Wavelet Approach to the Study of Rhythmic Neuronal Activity. En A. E. Hramov, A. A. Koronovskii, V. A. Makarov, V. A. Maksimenko, A. N. Pavlov, & E. Sitnikova (Eds.), Wavelets in Neuroscience (pp. 211–242). Springer International Publishing. https://doi.org/10.1007/978-3-030-75992-6_6; Ibarra-Lecue, I., Haegens, S., & Harris, A. Z. (2022). Breaking Down a Rhythm: Dissecting the Mechanisms Underlying Task-Related Neural Oscillations. Frontiers in Neural Circuits, 16. https://doi.org/10.3389/fncir.2022.846905; Igarashi, J., Isomura, Y., Arai, K., Harukuni, R., & Fukai, T. (2013). A θ–γ Oscillation Code for Neuronal Coordination during Motor Behavior. Journal of Neuroscience, 33(47), 18515–18530. https://doi.org/10.1523/JNEUROSCI.2126-13.2013; Izraeli, R., & Porter, L. L. (1995). Vibrissal motor cortex in the rat: Connections with the barrel field. Experimental Brain Research, 104(1), 41–54. https://doi.org/10.1007/BF00229854; Jensen, O., & Mazaheri, A. (2010). Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition. Frontiers in Human Neuroscience, 4. https://doi.org/10.3389/fnhum.2010.00186; Jones, M. S., & Barth, D. S. (1999). Spatiotemporal Organization of Fast (>200 Hz) Electrical Oscillations in Rat Vibrissa/Barrel Cortex. Journal of Neurophysiology, 82(3), 1599–1609. https://doi.org/10.1152/jn.1999.82.3.1599; Kahanovitch, U., Berlin, S., & Dascal, N. (2017). Collision coupling in the GABAB receptor–G protein–GIRK signaling cascade. FEBS Letters, 591(18), 2816–2825. https://doi.org/10.1002/1873-3468.12756; Katz, B., & Miledi, R. (1968). The role of calcium in neuromuscular facilitation. The Journal of Physiology, 195(2), Article 2. https://doi.org/10.1113/jphysiol.1968.sp008469; Kawaguchi, Y., & Kubota, Y. (1997). GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cerebral Cortex, 7(6), 476–486. https://doi.org/10.1093/cercor/7.6.476; Kirischuk, S., Clements, J. D., & Grantyn, R. (2002). Presynaptic and postsynaptic mechanisms underlie paired pulse depression at single GABAergic boutons in rat collicular cultures. The Journal of Physiology, 543(Pt 1), 99–116. https://doi.org/10.1113/jphysiol.2002.021576; Kleinfeld, D., Ahissar, E., & Diamond, M. E. (2006). Active sensation: Insights from the rodent vibrissa sensorimotor system. Current Opinion in Neurobiology, 16(4), 435–444. https://doi.org/10.1016/j.conb.2006.06.009; Kleinfeld, D., & Deschênes, M. (2011). Neuronal Basis for Object Location in the Vibrissa Scanning Sensorimotor System. Neuron, 72(3), 455–468. https://doi.org/10.1016/j.neuron.2011.10.009; Knutsen, P. M. (2015). Whisking Kinematics. En Scholarpedia of Touch (pp. 615–625). https://doi.org/10.2991/978-94-6239-133-8_46; Lee, S., Kruglikov, I., Huang, Z. J., Fishell, G., & Rudy, B. (2013). A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nature Neuroscience, 16(11), 1662–1670. https://doi.org/10.1038/nn.3544; Lefort, S., Tomm, C., Floyd Sarria, J.-C., & Petersen, C. C. H. (2009). The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron, 61(2), 301–316. https://doi.org/10.1016/j.neuron.2008.12.020; Li, L., Du, Y., Li, N., Wu, X., & Wu, Y. (2009). Top–down modulation of prepulse inhibition of the startle reflex in humans and rats. Neuroscience & Biobehavioral Reviews, 33(8), 1157–1167. https://doi.org/10.1016/j.neubiorev.2009.02.001; Lüscher, C., & Slesinger, P. A. (2010). Emerging concepts for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nature reviews. Neuroscience, 11(5), 301–315. https://doi.org/10.1038/nrn2834; Mao, T., Kusefoglu, D., Hooks, B. M., Huber, D., Petreanu, L., & Svoboda, K. (2011). Long-Range Neuronal Circuits Underlying the Interaction between Sensory and Motor Cortex. Neuron, 72(1), 111–123. https://doi.org/10.1016/j.neuron.2011.07.029; Martínez, A. (2024). Participación de las proyecciones comisurales en los potenciales provocados en la corteza motora primaria de las vibrisas por estimulación somatosensorial [Tesis de maestría]. Universidad Nacional de Colombia.; Matyas, F., Sreenivasan, V., Marbach, F., Wacongne, C., Barsy, B., Mateo, C., Aronoff, R., & Petersen, C. C. H. (2010). Motor Control by Sensory Cortex. Science, 330(6008), 1240–1243. https://doi.org/10.1126/science.1195797; Miller, M. N., Okaty, B. W., & Nelson, S. B. (2008). Region-Specific Spike-Frequency Acceleration in Layer 5 Pyramidal Neurons Mediated by Kv1 Subunits. The Journal of Neuroscience, 28(51), 13716–13726. https://doi.org/10.1523/JNEUROSCI.2940-08.2008; Mitchinson, B., Martin, C. J., Grant, R. A., & Prescott, T. J. (2007). Feedback control in active sensing: Rat exploratory whisking is modulated by environmental contact. Proceedings of the Royal Society B: Biological Sciences, 274(1613), 1035–1041. https://doi.org/10.1098/rspb.2006.0347; Múnera, A. (2023). Interacciones funcionales de la corteza motora primaria de las vibrisas [Conferencia]. COLNE-XIII Congreso Nacional – XIV Seminario Internacional de Neurociencias, Cali, Colombia. https://colne.org.co/congreso-neurociencias-colne-ibro/; Múnera, A., Nava-Mesa, M. O., Gauthier-Umaña, C., & M, V. (2018). Interacciones tálamo-corticales en el sistema motor de las vibrisas [Conferencia]. XI Congreso Nacional - XII Seminario Internacional de Neurociencias, Bogotá, Colombia.; Nava-Mesa, M. O., Jimenez-Diaz, L., Yajeya, J., & Navarro-Lopez, J. D. (2013). Amyloid-β induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse. Frontiers in Cellular Neuroscience, 7. https://doi.org/10.3389/fncel.2013.00117; Nie, J. Z., Flint, R. D., Prakash, P., Hsieh, J. K., Mugler, E. M., Tate, M. C., Rosenow, J. M., & Slutzky, M. W. (2023). High-gamma activity is coupled to low-gamma oscillations in precentral cortices and modulates with movement and speech. bioRxiv, 2023.02.13.528325. https://doi.org/10.1101/2023.02.13.528325; Nolan, M., Scott, C., Hof, Patrick. R., & Ansorge, O. (2024). Betz cells of the primary motor cortex. Journal of Comparative Neurology, 532(1), e25567. https://doi.org/10.1002/cne.25567; O’Connor, D. H., Krubitzer, L., & Bensmaia, S. (2021). Of mice and monkeys: Somatosensory processing in two prominent animal models. Progress in Neurobiology, 201, 102008. https://doi.org/10.1016/j.pneurobio.2021.102008; Okun, M., & Lampl, I. (2016). Balance of Excitation and Inhibition. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 577–590). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_44; Osipova, D., Hermes, D., & Jensen, O. (2008). Gamma power is phase-locked to posterior alpha activity. PloS One, 3(12), e3990. https://doi.org/10.1371/journal.pone.0003990; Patestas, M. A., & Gartner, L. P. (2016). A Textbook of Neuroanatomy. John Wiley & Sons.; Paxinos, G., & Watson, C. (2006). The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition. Elsevier.; Penttonen, M., & Buzsáki, G. (2003). Natural logarithmic relationship between brain oscillators. Thalamus & Related Systems, 2, 145–152. https://doi.org/10.1017/S1472928803000074; Petersen, C. C. H. (2007). The Functional Organization of the Barrel Cortex. Neuron, 56(2), 339–355. https://doi.org/10.1016/j.neuron.2007.09.017; Petersen, C. C. H. (2014). Cortical Control of Whisker Movement. Annual Review of Neuroscience, 37(Volume 37, 2014), 183–203. https://doi.org/10.1146/annurev-neuro-062012-170344; Petersen, C. C. H. (2019). Sensorimotor processing in the rodent barrel cortex. Nature reviews. Neuroscience, 20(9), 533–546. https://doi.org/10.1038/s41583-019-0200-y; Pierret, T., Lavallée, P., & Deschênes, M. (2000). Parallel Streams for the Relay of Vibrissal Information through Thalamic Barreloids. Journal of Neuroscience, 20(19), 7455–7462. https://doi.org/10.1523/JNEUROSCI.20-19-07455.2000; Prescott, T., Ahissar, E., & Izhikevich, E. (Eds.). (2016). Scholarpedia of Touch. Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8; Radnikow, G., Qi, G., & Feldmeyer, D. (2015). Synaptic Microcircuits in the Barrel Cortex. En P. Krieger & A. Groh (Eds.), Sensorimotor Integration in the Whisker System (pp. 59–108). Springer. https://doi.org/10.1007/978-1-4939-2975-7_4; Ramírez, E. (2021). Estimulación cortical motora contralateral como mecanismo para inducir plasticidad sinaptica en la corteza motora primaria de las vibrisas en ratas [Tesis de maestría]. Universidad Nacional de Colombia.; Santschi, L. A., & Stanton, P. K. (2003). A paired-pulse facilitation analysis of long-term synaptic depression at excitatory synapses in rat hippocampal CA1 and CA3 regions. Brain Research, 962(1–2), Article 1–2. https://doi.org/10.1016/s0006-8993(02)03846-5; Schwarz, C., & Chakrabarti, S. (2016). Whisking Control by Motor Cortex. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 751–769). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_55; Sert, N. P. du, Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Hurst, V., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biology, 18(7), e3000411. https://doi.org/10.1371/journal.pbio.3000411; Sreenivasan, V., Esmaeili, V., Kiritani, T., Galan, K., Crochet, S., & Petersen, C. (2016). Movement Initiation Signals in Mouse Whisker Motor Cortex. Neuron, 92, 1368–1382. https://doi.org/10.1016/j.neuron.2016.12.001; Stüttgen, M. C., Kullmann, S., & Schwarz, C. (2008). Responses of Rat Trigeminal Ganglion Neurons to Longitudinal Whisker Stimulation. Journal of Neurophysiology, 100(4), 1879–1884. https://doi.org/10.1152/jn.90511.2008; Tahmasebi, L., Komaki, A., Karamian, R., Shahidi, S., Sarihi, A., & Komaki, H. (2016). Interaction between paired-pulse facilitation and long-term potentiation during the stimulation of the cannabinoid and vanilloid systems in the dentate gyrus. Brain Research, 1643, 27–34. https://doi.org/10.1016/j.brainres.2016.04.058; Tremblay, R., Lee, S., & Rudy, B. (2016). GABAergic interneurons in the neocortex: From cellular properties to circuits. Neuron, 91(2), 260–292. https://doi.org/10.1016/j.neuron.2016.06.033; Troncoso, J., Múnera, A., & Delgado-García, J. M. (2007). Learning-dependent potentiation in the vibrissal motor cortex is closely related to the acquisition of conditioned whisker responses in behaving mice. Learning & Memory, 14(1–2), 84–93. https://doi.org/10.1101/lm.341807; Trussell, L. O., Zhang, S., & Ramant, I. M. (1993). Desensitization of AMPA receptors upon multiquantal neurotransmitter release. Neuron, 10(6), 1185–1196. https://doi.org/10.1016/0896-6273(93)90066-Z; Urbain, N., & Deschênes, M. (2007). A New Thalamic Pathway of Vibrissal Information Modulated by the Motor Cortex. Journal of Neuroscience, 27(45), 12407–12412. https://doi.org/10.1523/JNEUROSCI.2914-07.2007; Vatsyayan, R., Lee, J., Bourhis, A., Tchoe, Y., Cleary, D., Tonsfeldt, K., Lee, K., Montgomery-Walsh, R., Paulk, A., U, H., Cash, S., & Dayeh, S. (2023). Electrochemical and electrophysiological considerations for clinical high channel count neural interfaces. MRS Bulletin, 48. https://doi.org/10.1557/s43577-023-00537-0; Vincent, S. B. (2010). The Functions Of The Vibrissae In The Behavior Of The White Rat. Kessinger Publishing.; Wagner, J., Makeig, S., Hoopes, D., & Gola, M. (2019). Can Oscillatory Alpha-Gamma Phase-Amplitude Coupling be Used to Understand and Enhance TMS Effects? Frontiers in Human Neuroscience, 13. https://doi.org/10.3389/fnhum.2019.00263; Welker, W. I. (1964). Analysis of Sniffing of the Albino Rat. Behaviour, 22(3/4), 223–244.; Wilson, S. P., & Moore, C. (2016). S1 Somatotopic Maps. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 565–576). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_43; Yamashita, T., Vavladeli, A., Pala, A., Galan, K., Crochet, S., Petersen, S. S. A., & Petersen, C. C. H. (2018). Diverse Long-Range Axonal Projections of Excitatory Layer 2/3 Neurons in Mouse Barrel Cortex. Frontiers in Neuroanatomy, 12, 33. https://doi.org/10.3389/fnana.2018.00033; Yang, Y., & Calakos, N. (2013). Presynaptic long-term plasticity. Frontiers in Synaptic Neuroscience, 5. https://www.frontiersin.org/articles/10.3389/fnsyn.2013.00008; Zingg, B., Hintiryan, H., Gou, L., Song, M. Y., Bay, M., Bienkowski, M. S., Foster, N. N., Yamashita, S., Bowman, I., Toga, A. W., & Dong, H.-W. (2014). Neural Networks of the Mouse Neocortex. Cell, 156(5), 1096–1111. https://doi.org/10.1016/j.cell.2014.02.023; Zucker, R. S., & Regehr, W. G. (2002). Short-Term Synaptic Plasticity. Annual Review of Physiology, 64(1), 355–405. https://doi.org/10.1146/annurev.physiol.64.092501.114547; https://repositorio.unal.edu.co/handle/unal/86667; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
7Dissertation/ Thesis
المؤلفون: Martínez Porras, Alejandra Lucía
المساهمون: Múnera Galarza, Francisco Alejandro, https://www.researchgate.net/profile/Alejandra_Lucia_Martinez_Porras
مصطلحات موضوعية: 570 - Biología::571 - Fisiología y temas relacionados, Vibrisas/fisiología, Corteza Motora, Lidocaína, Vibrissae/physiology, Motor Cortex, Lidocaine, Integración sensoriomotora, Vibrisas en roedores, Corteza motora primaria, Conexiones interhemisféricas, Sensorimotor integration, Whiskers in rodents, Primary motor cortex, Interhemispheric connections
وصف الملف: 123 páginas; application/pdf
Relation: Bireme; Aboitiz, F. and Montiel, J. (2003). One hundred million years of interhemispheric communication: the history of the corpus callosum. Brazilian journal of medical and biological research, 36:409–420.; Ahissar, E. (2008). And motion changes it all. Nature neuroscience, 11(12):1369–1370.; An, K.-m., Ikeda, T., Hirosawa, T., Hasegawa, C., Yoshimura, Y., Tanaka, S., Saito, D. N., Yaoi, K., Iwasaki, S., and Kikuchi, M. (2020a). Brain oscillatory coupling during motor control as a potential biomarker for autism spectrum disorders: a comparative study.; An, K.-m., Ikeda, T., Hirosawa, T., Hasegawa, C., Yoshimura, Y., Tanaka, S., Saito, D. N., Yaoi, K., Iwasaki, S., and Kikuchi, M. (2020b). Brain oscillatory coupling during motor control as a potential biomarker for autism spectrum disorders: a comparative study.; Antonoudiou, P., Tan, Y. L., Kontou, G., Upton, A. L., and Mann, E. O. (2019). Complementary roles for parvalbumin and somatostatin interneurons in the generation of hippocampal gamma oscillations. bioRxiv, page 595546.; Aroniadou, V. A. and Keller, A. (1995). Mechanisms of ltp induction in rat motor cortex in vitro. Cerebral Cortex, 5(4):353–362.; Axelson, H. W., Winkler, T., Flygt, J., Djupsj¨o, A., H˚anell, A., and Marklund, N. (2013). Plasticity of the contralateral motor cortex following focal traumatic brain injury in the rat. Restorative neurology and neuroscience, 31(1):73–85.; Bachiller, A., Gomez-Pilar, J., Poza, J., N´u˜nez, P., G´omez, C., Lubeiro, A., Molina, V., and Hornero, R. (2017). Event-related phase-amplitude coupling: A comparative study. In Converging Clinical and Engineering Research on Neurorehabilitation II: Proceedings of the 3rd International Conference on NeuroRehabilitation (ICNR2016), October 18-21, 2016, Segovia, Spain, pages 757–761. Springer.; Bailey, C. H., Giustetto, M., Huang, Y.-Y., Hawkins, R. D., and Kandel, E. R. (2000). Is heterosynaptic modulation essential for stabilizing hebbian plasiticity and memory. Nature Reviews Neuroscience, 1(1):11–20.; Balakin, K. V., Savchuk, N. P., and Tetko, I. V. (2006). In silico approaches to prediction of aqueous and dmso solubility of drug-like compounds: Trends, problems and solutions. Current Medicinal Chemistry.; Baranyi, A. and Feh´er, O. (1978). Conditioned changes of synaptic transmission in the motor cortex of the cat. Experimental brain research, 33(2):283–298.; Basu, K., Appukuttan, S., Manchanda, R., and Sik, A. (2023). Difference in axon diameter and myelin thickness between excitatory and inhibitory callosally projecting axons in mice. Cerebral Cortex, 33(7):4101–4115.; Benamer, N., Vidal, M., Balia, M., and Angulo, M. (2020). Myelination of parvalbumin interneurons shapes the function of cortical sensory inhibitory circuits. nat. commun. 11, 5151.; Biane, J. S., Takashima, Y., Scanziani, M., Conner, J. M., and Tuszynski, M. H. (2016). Thalamocortical projections onto behaviorally relevant neurons exhibit plasticity during adult motor learning. Neuron, 89(6):1173–1179.; Bonnefond, M. and Jensen, O. (2015). Gamma activity coupled to alpha phase as a mechanism for top-down controlled gating. PloS one, 10(6):e0128667.; Bosman, L. W., Houweling, A. R., Owens, C. B., Tanke, N., Shevchouk, O. T., Rahmati, N., Teunissen, W. H., Ju, C., Gong, W., Koekkoek, S. K., et al. (2011). Anatomical pathways involved in generating and sensing rhythmic whisker movements. Frontiers in integrative; Breshears, J., Sharma, M., Anderson, N., Rashid, S., and Leuthardt, E. C. (2010). Electrocorticographic frequency alteration mapping of speech cortex during an awake craniotomy: case report. Stereotactic and Functional Neurosurgery, 88(1):11–15.; Brus-Ramer, M., Carmel, J. B., and Martin, J. H. (2009). Motor cortex bilateral motor representation depends on subcortical and interhemispheric interactions. Journal of Neuroscience, 29(19):6196–6206.; Buzs´aki, G., Anastassiou, C. A., and Koch, C. (2012). The origin of extracellular fields and currents—eeg, ecog, lfp and spikes. Nature reviews neuroscience, 13(6):407–420.; Buzs´aki, G. and Wang, X.-J. (2012). Mechanisms of gamma oscillations. Annual review of neuroscience, 35:203–225.; Carson, R. G. (2020). Inter-hemispheric inhibition sculpts the output of neural circuits by co-opting the two cerebral hemispheres. The Journal of Physiology, 598(21):4781–4802.; Castro-Alamancos, M. A. (2013). The motor cortex: a network tuned to 7-14 hz. Frontiers in neural circuits, 7:21.; Charan, J. and Kantharia, N. (2013). How to calculate sample size in animal studies? Journal of pharmacology & pharmacotherapeutics, 4(4):303.; Chen, G., Zhang, Y., Li, X., Zhao, X., Ye, Q., Lin, Y., Tao, H. W., Rasch, M. J., and Zhang, X. (2017). Distinct inhibitory circuits orchestrate cortical beta and gamma band oscillations. Neuron, 96(6):1403–1418.; Chistiakova, M., Bannon, N. M., Bazhenov, M., and Volgushev, M. (2014). Heterosynaptic plasticity: multiple mechanisms and multiple roles. The Neuroscientist, 20(5):483–498.; Chung, J. W., Ofori, E., Misra, G., Hess, C. W., and Vaillancourt, D. E. (2017). Betaband activity and connectivity in sensorimotor and parietal cortex are important for accurate motor performance. Neuroimage, 144:164–173.; Cicinelli, P., Traversa, R., Oliveri, M., Palmieri, M. G., Filippi, M. M., Pasqualetti, P., and Rossini, P. M. (2000). Intracortical excitatory and inhibitory phenomena to paired transcranial magnetic stimulation in healthy human subjects: differences between the right and left hemisphere. Neuroscience letters, 288(3):171–174.; Citri, A. and Malenka, R. C. (2008). Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology, 33(1):18–41.; David-J¨urgens, M. and Dinse, H. R. (2010). Effects of aging on paired-pulse behavior of rat somatosensory cortical neurons. Cerebral Cortex, 20(5):1208–1216.; Dib-Hajj, S. D., Cummins, T. R., Black, J. A., andWaxman, S. G. (2010). Sodium channels in normal and pathological pain. Annual Review of Neuroscience.; Dina, L. (2017). Roger sperry’s split brain experiments. Embryo Project Encyclopedia, 27; Diwakar, S., Lombardo, P., Solinas, S., Naldi, G., and D’Angelo, E. (2011). Local field potential modeling predicts dense activation in cerebellar granule cells clusters under ltp and ltd control. PloS one, 6(7):e21928.; Doesburg, S. M., Ibrahim, G. M., Smith, M. L., Sharma, R., Viljoen, A., Chu, B., Rutka, J. T., Snead III, O. C., and Pang, E. W. (2013). Altered rolandic gamma-band activation associated with motor impairment and ictal network desynchronization in childhood epilepsy. PLoS One, 8(1):e54943.; Dooley, J. C., Glanz, R. M., Sokoloff, G., and Blumberg, M. S. (2020). Self-generated whisker movements drive state-dependent sensory input to developing barrel cortex.; Dorst, M. C., Tokarska, A., Zhou, M., Lee, K., Stagkourakis, S., Broberger, C., Masmanidis, S., and Silberberg, G. (2020). Polysynaptic inhibition between striatal cholinergic interneurons shapes their network activity patterns in a dopamine-dependent manner. Nature Communications, 11(1):5113.; Ebbesen, C. L. and Brecht, M. (2017). Motor cortex—to act or not to act? Nature Reviews Neuroscience, 18(11):694–705.; Ebbesen, C. L., Doron, G., Lenschow, C., and Brecht, M. (2017a). Vibrissa motor cortex activity suppresses contralateral whisking behavior. Nature neuroscience, 20(1):82–89.; Ebbesen, C. L., Doron, G., Lenschow, C., and Brecht, M. (2017b). Vibrissa motor cortex activity suppresses contralateral whisking behavior. Nature neuroscience, 20(1):82–89.; Economo, M. N., Viswanathan, S., Tasic, B., Bas, E., Winnubst, J., Menon, V., Graybuck, L. T., Nguyen, T. N., Smith, K. A., Yao, Z., et al. (2018). Distinct descending motor cortex pathways and their roles in movement. Nature, 563(7729):79–84.; Estebanez, L., Hoffmann, D., Voigt, B. C., and Poulet, J. F. (2017). Parvalbuminexpressing gabaergic neurons in primary motor cortex signal reaching. Cell reports, 20(2):308– 318.; Falandysz, J., Medyk, M., and Treu, R. (2018). Bio-concentration potential and associations of heavy metals in amanita muscaria (l.) lam. from northern regions of poland. Environmental Science and Pollution Research, 25:25190–25206.; Feurra, M., Bianco, G., Santarnecchi, E., Del Testa, M., Rossi, A., and Rossi, S. (2011). Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials. Journal of Neuroscience, 31(34):12165–12170.; Fries, P. (2009). Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annual review of neuroscience, 32:209–224.; Funken, M., Malan, D., Sasse, P., and Bruegmann, T. (2019). Optogenetic hyperpolarization of cardiomyocytes terminates ventricular arrhythmia. Frontiers in physiology, 10:498.; F´er´ezou, I., Haiss, F., Gentet, L. J., Aronoff, R., Weber, B., and Petersen, C. C. H. (2007a). Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron.; F´er´ezou, I., Haiss, F., Gentet, L. J., Aronoff, R.,Weber, B., and Petersen, C. C. H. (2007b). Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron.; Gaetz, W., Edgar, J. C., Wang, D., and Roberts, T. P. (2011). Relating meg measured motor cortical oscillations to resting γ-aminobutyric acid (gaba) concentration. Neuroimage, 55(2):616–621.; Gao, L., Wu, H., Cheng, W., Lan, B., Ren, H., Zhang, L., and Wang, L. (2021). Enhanced descending corticomuscular coupling during hand grip with static force compared with enhancing force. Clinical EEG and Neuroscience, 52(6):436–443.; Gauthier-Uma˜na, C., Valderrama, M., M´unera, A., and Nava-Mesa, M. O. (2023). Boardftd- pacc: a graphical user interface for the synaptic and cross-frequency analysis derived from neural signals. Brain Informatics, 10(1):1–17.; Gloor, C., Luft, A., and Hosp, J. (2015). Biphasic plasticity of dendritic fields in layer v motor neurons in response to motor learning. Neurobiology of learning and memory, 125:189– 194.; Gokin, A. P., Philip, B., and Strichartz, G. R. (2001). Preferential block of small myelinated sensory and motor fibers by lidocaine: In vivoelectrophysiology in the rat sciatic nerve. The Journal of the American Society of Anesthesiologists, 95(6):1441–1454.; Greenough, W. T., Larson, J. R., and Withers, G. S. (1985). Effects of unilateral and bilateral training in a reaching task on dendritic branching of neurons in the rat motorsensory forelimb cortex. Behavioral and neural biology, 44(2):301–314.; Gross, J., Schnitzler, A., Timmermann, L., and Ploner, M. (2007). Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS biology, 5(5):e133.; Haider, B., Duque, A., Hasenstaub, A. R., and McCormick, D. A. (2006). Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. Journal of Neuroscience, 26(17):4535–4545.; Hattox, A. M., Priest, C. A., and Keller, A. (2002). Functional circuitry involved in the regulation of whisker movements. Journal of Comparative Neurology, 442(3):266–276.; Herreras, O. (2016). Local field potentials: myths and misunderstandings. Frontiers in neural circuits, 10:101.; Hess, G. (2004a). Synaptic plasticity of local connections in rat motor cortex. Acta neurobiologiae experimentalis, 64(2):271–276.; Hess, G. (2004b). Synaptic plasticity of local connections in rat motor cortex. Acta neurobiologiae experimentalis, 64(2):271–276.; Hess, G. and Donoghue, J. P. (1994). Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. Journal of neurophysiology, 71 6:2543–7.; H¨offken, O., Veit, M., Knossalla, F., Lissek, S., Bliem, B., Ragert, P., Dinse, H. R., and Tegenthoff, M. (2007). Sustained increase of somatosensory cortex excitability by tactile coactivation studied by paired median nerve stimulation in humans correlates with perceptual gain. The Journal of Physiology, 584(2):463–471.; Hooks, B. M. (2017). Sensorimotor convergence in circuitry of the motor cortex. The Neuroscientist, 23(3):251–263.; Hooks, B. M., Mao, T., Gutnisky, D. A., Yamawaki, N., Svoboda, K., and Shepherd, G. M. (2013). Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. Journal of Neuroscience, 33(2):748–760.; Hu, S., Liu, Y., Chen, T., Liu, Z., Yu, Q., Deng, L., Yin, Y., and Hosaka, S. (2013). Emulating the paired-pulse facilitation of a biological synapse with a niox-based memristor. Applied Physics Letters, 102(18):183510.; Hussain, S. J., Cohen, L. G., and B¨onstrup, M. (2019). Beta rhythm events predict corticospinal motor output. Scientific Reports, 9(1):18305.; Ibarra-Lecue, I., Haegens, S., and Harris, A. Z. (2022). Breaking down a rhythm: Dissecting the mechanisms underlying task-related neural oscillations. Frontiers in Neural Circuits, 16.; Ibrahim, G. M., Akiyama, T., Ochi, A., Otsubo, H., Smith, M. L., Taylor, M. J., Donner, E., Rutka, J. T., Snead III, O. C., and Doesburg, S. M. (2012). Disruption of rolandic gammaband functional connectivity by seizures is associated with motor impairments in children with epilepsy. PloS one, 7(6):e39326.; Igarashi, J., Isomura, Y., Arai, K., Harukuni, R., and Fukai, T. (2013). A θ–γ oscillation code for neuronal coordination during motor behavior. Journal of Neuroscience, 33(47):18515– 18530.; Innocenti, G. M., Vercelli, A., and Caminiti, R. (2014). The diameter of cortical axons depends both on the area of origin and target. Cerebral Cortex, 24(8):2178–2188.; Iriki, A., Pavlides, C., Keller, A., and Asanuma, H. (1991). Long-term potentiation of thalamic input to the motor cortex induced by coactivation of thalamocortical and corticocortical afferents. Journal of neurophysiology, 65(6):1435–1441.; Ishikawa, M., Otaka, M., Huang, Y. H., Neumann, P. A., Winters, B. D., Grace, A. A., Schl¨uter, O. M., and Dong, Y. (2013). Dopamine triggers heterosynaptic plasticity. Journal of Neuroscience, 33(16):6759–6765.; Jensen, O. and Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. European journal of Neuroscience, 15(8):1395– 1399.; Jia, Q., Ye, C., Naskar, S., In´acio, A. R., and Lee, M. K. (2022). Posteromedial thalamic nucleus activity significantly contributes to perceptual discrimination.; Jones, M. W. and Wilson, M. A. (2005). Theta rhythms coordinate hippocampal–prefrontal interactions in a spatial memory task. PLoS biology, 3(12):e402.; Jones, T. A., Chu, C. J., Grande, L. A., and Gregory, A. D. (1999). Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. Journal of Neuroscience, 19(22):10153–10163.; Joundi, R. A., Jenkinson, N., Brittain, J.-S., Aziz, T. Z., and Brown, P. (2012). Driving oscillatory activity in the human cortex enhances motor performance. Current Biology, 22(5):403–407.; Kaas, J. H. (2014). Mutable Brain: Dynamic and Plastic Features of the Developing and Mature Brain. CRC Press.; Kami, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., and Ungerleider, L. G. (1995). Functional mri evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(6545):155–158.; Karameh, F. N., Dahleh, M. A., Brown, E. N., and Massaquoi, S. G. (2006). Modeling the contribution of lamina 5 neuronal and network dynamics to low frequency eeg phenomena. Biological cybernetics, 95:289–310.; Kauer, J. A. and Malenka, R. C. (2006). Ltp: Ampa receptors trading places. Nature neuroscience, 9(5):593–594.; Kozai, T. D. Y., Jaquins-Gerstl, A., Vazquez, A. L., Michael, A. C., and Cui, X. T. (2015). Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. Acs Chemical Neuroscience.; Krishnan, C. (2019). Effect of paired-pulse stimulus parameters on the two phases of short interval intracortical inhibition in the quadriceps muscle group. Restorative neurology and neuroscience, 37(4):363–374.; Lee, C., Cˆot´e, S. L., Raman, N., Chaudhary, H., Mercado, B. C., and Chen, S. X. (2023). Whole-brain mapping of long-range inputs to the vip-expressing inhibitory neurons in the primary motor cortex. Frontiers in Neural Circuits, 17:41.; Lee, S.-H., Carvell, G. E., and Simons, D. J. (2008). Motor modulation of afferent somatosensory circuits. Nature Neuroscience.; Li, H., Chalavi, S., Rasooli, A., Rodr´ıguez-Nieto, G., Seer, C., Mikkelsen, M., Edden, R. A., Sunaert, S., Peeters, R., Mantini, D., et al. (2023). Baseline gaba+ levels in areas associated with sensorimotor control predict initial and long-term motor learning progress. Human Brain Mapping.; Lind´en, H., Tetzlaff, T., Potjans, T. C., Pettersen, K. H., Gr¨un, S., Diesmann, M., and Einevoll, G. T. (2011). Modeling the spatial reach of the lfp. Neuron, 72(5):859–872.; Ludvig, N., Baptiste, S. L., Tang, H. M., Medveczky, G., Von Gizycki, H., Charchaflieh, J., Devinsky, O., and Kuzniecky, R. I. (2009). Localized transmeningeal muscimol prevents neocortical seizures in rats and nonhuman primates: therapeutic implications. Epilepsia, 50(4):678–693.; Maggiolini, E., Veronesi, C., and Franchi, G. (2007). Plastic changes in the vibrissa motor cortex in adult rats after output suppression in the homotopic cortex. European Journal of Neuroscience, 25(12):3678–3690.; Majdi, S., Najafinobar, N., Dunevall, J., Lovric, J., and Ewing, A. G. (2017). Dmso chemically alters cell membranes to slow exocytosis and increase the fraction of partial transmitter released. ChemBioChem, 18(19):1898–1902.; Malenka, R. C. (2003). The long-term potential of ltp. Nature Reviews Neuroscience, 4(11):923–926.; Manita, S., Suzuki, T., Inoue, M., Kudo, Y., and Miyakawa, H. (2007). Paired-pulse ratio of synaptically induced transporter currents at hippocampal ca1 synapses is not related to release probability. Brain research, 1154:71–79.; Mao, T., Kusefoglu, D., Hooks, B. M., Huber, D., Petreanu, L., and Svoboda, K. (2011). Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron, 72(1):111–123.; Martin, J. H. and Ghez, C. (1999). Pharmacological inactivation in the analysis of the central control of movement. Journal of neuroscience methods, 86(2):145–159.; Matsumoto, R., Kinoshita, M., Taki, J., Hitomi, T., Mikuni, N., Shibasaki, H., Fukuyama, H., Hashimoto, N., and Ikeda, A. (2005). In vivo epileptogenicity of focal cortical dysplasia: a direct cortical paired stimulation study. Epilepsia, 46(11):1744–1749.; Melzer, S. and Monyer, H. (2020). Diversity and function of corticopetal and corticofugal gabaergic projection neurons. Nature Reviews Neuroscience, 21(9):499–515.; Micheva, K. D., Wolman, D., Mensh, B. D., Pax, E., Buchanan, J., Smith, S. J., and Bock, D. D. (2016). A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. elife, 5:e15784.; M´unera, A., Cuestas, D., and Troncoso, J. (2012). Peripheral facial nerve lesions induce changes in the firing properties of primary motor cortex layer 5 pyramidal cells. Neuroscience, 223:140–151.; Mu˜noz-Cabrera, J. M., Sandoval-Hern´andez, A. G., Ni˜no, A., B´aez, T., Bustos-Rangel, A., Cardona-G´omez, G. P., M´unera, A., and Arboleda, G. (2019). Bexarotene therapy ameliorates behavioral deficits and induces functional and molecular changes in very-old triple transgenic mice model of alzheimer´ s disease. PloS one, 14(10).; Musall, S. (2015). The relation of sensory adaptation and stimulus perception in the rat whisker-system. PhD thesis, University of Zurich.; M´unera, A. (2019). Vibrissal primary motor cortex (vm1) functional interactions during motor command generation. Simposio Max Planck, Colombia, Fronteras de la Ciencia, Bogot ´a, DC, Bogot´a, Colombia.; Ni, Z., Gunraj, C., Kailey, P., Cash, R. F., and Chen, R. (2014). Heterosynaptic modulation of motor cortical plasticity in human. Journal of Neuroscience, 34(21):7314–7321.; Nie, J. Z., Flint, R. D., Prakash, P., Hsieh, J. K., Mugler, E. M., Tate, M. C., Rosenow, J. M., and Slutzky, M. W. (2024). High-gamma activity is coupled to low-gamma oscillations in precentral cortices and modulates with movement and speech. Eneuro.; Nishimura, K., Shimada, R., Yamana, K., Kawasaki, R., Nakaya, T., and Ikeda, A. (2022). Effect of ¡i¿meso¡/i¿positioned substituents on the stability and photodynamic activity of lipid-membrane-incorporated porphyrin derivatives. Chemmedchem.; Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M.-M., and Kato, K. (2000). Calcium stores regulate the polarity and input specificity of synaptic modification. Nature, 408(6812):584– 588.; Nitsche, M. A. and Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of physiology, 527(Pt 3):633.; Nowak, M., Zich, C., and Stagg, C. J. (2018). Motor cortical gamma oscillations: what have we learnt and where are we headed? Current behavioral neuroscience reports, 5:136–142.; Nu˜nez, A. and Bu˜no, W. (2021). The theta rhythm of the hippocampus: from neuronal and circuit mechanisms to behavior. Frontiers in cellular neuroscience, 15:649262.; Obara, K., Matsuoka, Y., Iwata, N., Abe, Y., Ikegami, Y., Fujii, A., Yoshioka, K., and Tanaka, Y. (2023). Dimethyl sulfoxide enhances acetylcholine-induced contractions in rat urinary bladder smooth muscle by inhibiting acetylcholinesterase activities. Biological and Pharmaceutical Bulletin.; Oswald, M. J., Tantirigama, M. L., Sonntag, I., Hughes, S. M., and Empson, R. M. (2013). Diversity of layer 5 projection neurons in the mouse motor cortex. Frontiers in cellular neuroscience, 7:174.; Papale, A. E. and Hooks, B. M. (2018). Circuit changes in motor cortex during motor skill learning. Neuroscience, 368:283–297.; Peters, A. J., Liu, H., and Komiyama, T. (2017). Learning in the rodent motor cortex. Annual review of neuroscience, 40:77–97.; Pi, H.-J., Hangya, B., Kvitsiani, D., Sanders, J. I., Huang, Z. J., and Kepecs, A. (2013). Cortical interneurons that specialize in disinhibitory control. Nature, 503(7477):521–524.; Pimiento, J., Ram´ırez, E., Mart´ınez, A., and M´unera, A. (2023). La potenciaci ´On de las proyecciones interhemisf´Ericas a la corteza motora primaria de las vibrisas se propaga heterosin´Apticamente al procesamiento de informaci ´On somatosensorial. Congreso Nacional de Neurociencias - COLNE, Cali, colombia.; Ram´ırez Mosquera, E. (2021). Estimulaci´on cortical motora contralateral como mecanismo para inducir plasticidad sin´aptica en la corteza motora primaria de las vibrisas. Magister thesis.; Raymond, C. R. (2007). Ltp forms 1, 2 and 3: different mechanisms for the ‘long’in long-term potentiation. Trends in neurosciences, 30(4):167–175.; Reis, J., Swayne, O. B., Vandermeeren, Y., Camus, M., Dimyan, M. A., Harris-Love, M., Perez, M. A., Ragert, P., Rothwell, J. C., and Cohen, L. G. (2008). Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. The Journal of physiology, 586(2):325–351.; Rema, V., Armstrong-James, M., and Ebner, F. (1998). Experience-dependent plasticity of adult rat s1 cortex requires local nmda receptor activation. Journal of Neuroscience, 18(23):10196–10206.; Rock, C. and junior Apicella, A. (2015). Callosal projections drive neuronal-specific responses in the mouse auditory cortex. Journal of Neuroscience, 35(17):6703–6713.; Rock, C., Zurita, H., Lebby, S., Wilson, C. J., and Apicella, A. j. (2018a). Cortical circuits of callosal gabaergic neurons. Cerebral Cortex, 28(4):1154–1167.; Rock, C., Zurita, H., Lebby, S., Wilson, C. J., and Apicella, A. j. (2018b). Cortical circuits of callosal gabaergic neurons. Cerebral Cortex, 28(4):1154–1167.; Roopun, A. K., Middleton, S. J., Cunningham, M. O., LeBeau, F. E., Bibbig, A., Whittington, M. A., and Traub, R. D. (2006). A beta2-frequency (20–30 hz) oscillation in nonsynaptic networks of somatosensory cortex. Proceedings of the National Academy of Sciences, 103(42):15646–15650.; Saito, K., Onishi, H., Miyaguchi, S., Kotan, S., and Fujimoto, S. (2015). Effect of pairedpulse electrical stimulation on the activity of cortical circuits. Frontiers in Human Neuroscience, 9:671.; Sakamoto, T., Porter, L. L., and Asanuma, H. (1987). Long-lasting potentiation of synaptic potentials in the motor cortex produced by stimulation of the sensory cortex in the cat: a basis of motor learning. Brain research, 413(2):360–364.; Sano, S., Yokono, S., Kinoshita, H., Ogli, K., Satake, H., Kageyama, T., and Kaneshina, S. (1999). Intra-axonal continuous measurement of lidocaine concentration and ph in squid giant axon. Canadian Journal of Anesthesia, 46:1156–1163.; Scheeringa, R., Fries, P., Petersson, K.-M., Oostenveld, R., Grothe, I., Norris, D. G., Hagoort, P., and Bastiaansen, M. C. (2011). Neuronal dynamics underlying high-and lowfrequency eeg oscillations contribute independently to the human bold signal. Neuron, 69(3):572–583.; Schwarz, C. and Chakrabarti, S. (2015). Whisking control by motor cortex. Scholarpedia, 10(3):7466. revision #150634.; Sherman, M. A., Lee, S., Law, R., Haegens, S., Thorn, C. A., H¨am¨al¨ainen, M. S., Moore, C. I., and Jones, S. R. (2016). Neural mechanisms of transient neocortical beta rhythms: Converging evidence from humans, computational modeling, monkeys, and mice. Proceedings of the National Academy of Sciences, 113(33):E4885–E4894.; Slater, B. J. and Isaacson, J. S. (2020). Interhemispheric callosal projections sharpen frequency tuning and enforce response fidelity in primary auditory cortex. Eneuro, 7(4).; Sohal, V. S., Zhang, F., Yizhar, O., and Deisseroth, K. (2009a). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459(7247):698–702.; Sohal, V. S., Zhang, F., Yizhar, O., and Deisseroth, K. (2009b). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459(7247):698–702.; Stedehouder, J. and Kushner, S. (2017). Myelination of parvalbumin interneurons: a parsimonious locus of pathophysiological convergence in schizophrenia. Molecular psychiatry, 22(1):4–12.; Stefan, K., Kunesch, E., Benecke, R., Cohen, L. G., and Classen, J. (2002). Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. The Journal of physiology, 543(2):699–708.; Swanson, O. K. and Maffei, A. (2019). From hiring to firing: activation of inhibitory neurons and their recruitment in behavior. Frontiers in molecular neuroscience, 12:168.; Szadai, Z., Pi, H.-J., Chevy, Q., ´ Ocsai, K., Albeanu, D. F., Chiovini, B., Szalay, G., Katona, G., Kepecs, A., and R´ozsa, B. (2022). Cortex-wide response mode of vip-expressing inhibitory neurons by reward and punishment. Elife, 11:e78815.; Tam, W.-k., Wu, T., Zhao, Q., Keefer, E., and Yang, Z. (2019). Human motor decoding from neural signals: a review. BMC Biomedical Engineering, 1:1–22.; Tan, L. L., Oswald, M. J., Heinl, C., Retana Romero, O. A., Kaushalya, S. K., Monyer, H., and Kuner, R. (2019). Gamma oscillations in somatosensory cortex recruit prefrontal and descending serotonergic pathways in aversion and nociception. Nature communications, 10(1):983.; Teskey, G. C. and Kolb, B. (2011). Functional organization of rat and mouse motor cortex. In Animal Models of Movement Disorders, pages 117–137. Springer.; Thomson, A. M. (2010). Neocortical layer 6, a review. Frontiers in neuroanatomy, 4:13.; Tomasi, S., Caminiti, R., and Innocenti, G. M. (2012). Areal differences in diameter and length of corticofugal projections. Cerebral Cortex, 22(6):1463–1472.; Tomassy, G. S., Berger, D. R., Chen, H.-H., Kasthuri, N., Hayworth, K. J., Vercelli, A., Seung, H. S., Lichtman, J. W., and Arlotta, P. (2014). Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science, 344(6181):319–324.; Torii, T., Sato, A., Iwahashi, M., and Iramina, K. (2019). Using repetitive paired-pulse transcranial magnetic stimulation for evaluation motor cortex excitability. AIP Advances, 9(12).; Torp, K. D., Metheny, E., and Simon, L. V. (2022). Lidocaine toxicity. In StatPearls [Internet]. StatPearls Publishing.; Tremblay, R., Lee, S., and Rudy, B. (2016). Gabaergic interneurons in the neocortex: from cellular properties to circuits. Neuron, 91(2):260–292.; Urrutia-Pi˜nones, J., Morales-Moraga, C., Sanguinetti-Gonz´alez, N., Escobar, A. P., and Chiu, C. Q. (2022). Long-range gabaergic projections of cortical origin in brain function. Frontiers in Systems Neuroscience, 16:841869.; Van Der Cruijsen, J., Manoochehri, M., Jonker, Z. D., Andrinopoulou, E.-R., Frens, M. A., Ribbers, G. M., Schouten, A. C., and Selles, R. W. (2021). Theta but not beta power is positively associated with better explicit motor task learning. NeuroImage, 240:118373.; Volgushe, M., Voronin, L. L., Chistiakova, M., and Singer, W. (1997). Relations between long-term synaptic modifications and paired-pulse interactions in the rat neocortex. European Journal of Neuroscience, 9(8):1656–1665.; Wang, L., Conner, J. M., Rickert, J., and Tuszynski, M. H. (2011). Structural plasticity within highly specific neuronal populations identifies a unique parcellation of motor learning in the adult brain. Proceedings of the National Academy of Sciences, 108(6):2545–2550.; Wendiggensen, P., Prochnow, A., Pscherer, C., M¨unchau, A., Frings, C., and Beste, C. (2023). Interplay between alpha and theta band activity enables management of perceptionaction representations for goal-directed behavior. Communications Biology, 6(1):494.; Williams, R. H. and Riedemann, T. (2021). Development, diversity, and death of mgederived cortical interneurons. International Journal of Molecular Sciences, 22(17):9297.; Wise, S. (2001). Motor cortex. In Smelser, N. J. and Baltes, P. B., editors, International Encyclopedia of the Social & Behavioral Sciences, pages 10137–10140. Pergamon, Oxford.; Wong, F. K., Bercsenyi, K., Sreenivasan, V., Portal´es, A., Fern´andez-Otero, M., and Mar´ın, O. (2018). Pyramidal cell regulation of interneuron survival sculpts cortical networks. Nature, 557(7707):668–673.; Wu, G. K., Arbuckle, R., Liu, B.-h., Tao, H. W., and Zhang, L. I. (2008). Lateral sharpening of cortical frequency tuning by approximately balanced inhibition. Neuron, 58(1):132– 143.; Xu, W., de Carvalho, F., and Jackson, A. (2019). Sequential neural activity in primary motor cortex during sleep. Journal of Neuroscience, 39(19):3698–3712.; Yang, G., Pan, F., and Gan, W.-B. (2009). Stably maintained dendritic spines are associated with lifelong memories. Nature, 462(7275):920–924.; Yordanova, J., Falkenstein, M., and Kolev, V. (2020). Aging-related changes in motor response-related theta activity. International Journal of Psychophysiology, 153:95–106.; Yordanova, J., Falkenstein, M., and Kolev, V. (2024). Aging alters functional connectivity of motor theta networks during sensorimotor reactions. Clinical Neurophysiology, 158:137– 148.; Yu, H., Ba, S., Guo, Y., Guo, L., and Xu, G. (2022). Effects of motor imagery tasks on brain functional networks based on eeg mu/beta rhythm. Brain Sciences, 12(2):194.; Yu, X. and Zuo, Y. (2011). Spine plasticity in the motor cortex. Current opinion in neurobiology, 21(1):169–174.; Zeigler, P. and Keller, A. (2009). Whisking pattern generation. Scholarpedia, 4(12):7271. revision #150519.; Zhao, S., Zhou, J., Zhang, Y., and Wang, D.-H. (2023). γ and β band oscillation in working memory given sequential or concurrent multiple items: A spiking network model. eneuro, 10(11).; Zhou, M., Liang, F., Xiong, X. R., Li, L., Li, H., Xiao, Z., Tao, H. W., and Zhang, L. I. (2014). Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex. Nature neuroscience, 17(6):841–850.; Zhu, D.-Y., Cao, T.-T., Fan, H.-W., Zhang, M.-Z., Duan, H.-K., Li, J., Zhang, X.-J., Li, Y.-Q., Wang, P., and Chen, T. (2022). The increased in vivo firing of pyramidal cells but not interneurons in the anterior cingulate cortex after neuropathic pain. Molecular Brain, 15(1):1–10.; https://repositorio.unal.edu.co/handle/unal/86185; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
8
المؤلفون: Vargas López, Derly Viviana
المساهمون: Múnera Galarza, Francisco Alejandro
المصدر: Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombiaمصطلحات موضوعية: Acetilación de histonas, 54 Química y ciencias afines / Chemistry, 15 Psicología / Psychology, 57 Ciencias de la vida, Biología / Life sciences, biology, Estrés agudo, GR receptor, HDAC2, Corticosterona, Spatial memory, Histone acetylation, 1 Filosofía y psicología / Philosophy and psychology, Epigenetics, Epigenética, Acute stress, Corticosterone, 5 Ciencias naturales y matemáticas / Science, TSA, Memoria espacial
وصف الملف: application/pdf
-
9
المؤلفون: Muñoz Cabrera, Jonathan Mauricio
المساهمون: Arboleda Bustos, Gonzalo Humberto (Thesis advisor), Múnera Galarza, Francisco Alejandro
المصدر: Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombiaمصطلحات موضوعية: Electrofisiología, Electrophysiology, Bexarotene, Enfermedad de Alzheimer, Plasticidad sináptica, 61 Ciencias médicas, Medicina / Medicine and health, Ratones 3xTG-EA, Hipocampo, Bexaroteno, 3xTg-AD mice, Alzheimer's disease, Hippocampus, Synaptic plasticity
وصف الملف: application/pdf
-
10Dissertation/ Thesis
المؤلفون: Folleco Eraso, Johanna Andrea
المساهمون: Múnera Galarza, Francisco Alejandro
مصطلحات موضوعية: 61 Ciencias médicas, Medicina / Medicine and health, Traumatismo craneoencefálico, Resveratrol, Neuroprotección, TCE, Neuroprotection
وصف الملف: application/pdf
Relation: Universidad Nacional de Colombia Sede Bogotá Facultad de Medicina; Facultad de Medicina; Folleco Eraso, Johanna Andrea (2015) Efectos neuroprotectores del resveratrol en trauma craneoencefálico inducido por el modelo de impacto aceleración por caída libre de peso. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.; https://repositorio.unal.edu.co/handle/unal/57492; http://bdigital.unal.edu.co/53768/
-
11
المؤلفون: Cárdenas Palacio, Carlos Andrés
المساهمون: Múnera Galarza, Francisco Alejandro (Thesis advisor)
مصطلحات موضوعية: Umbral a la presión, Escala House Brackmann, Parálisis de Bell, Cutaneous pressure thresholds, Discriminación de dos puntos, Sensibilidad a la temperatura, 61 Ciencias médicas, Medicina / Medicine and health, Two-point discrimination, Bell’s palsy, Cutaneous sensibility, House Brackmann scale, Thermal sensation
وصف الملف: application/pdf
-
12Dissertation/ Thesis
المؤلفون: Cárdenas Palacio, Carlos Andrés
المساهمون: Múnera Galarza, Francisco Alejandro (Thesis advisor)
مصطلحات موضوعية: 61 Ciencias médicas, Medicina / Medicine and health, Parálisis de Bell, Umbral a la presión, Discriminación de dos puntos, Sensibilidad a la temperatura, Escala House Brackmann, Bell’s palsy, Cutaneous sensibility, Cutaneous pressure thresholds, Two-point discrimination, Thermal sensation, House Brackmann scale
وصف الملف: application/pdf
Relation: Universidad Nacional de Colombia Sede Bogotá Facultad de Medicina; Facultad de Medicina; Cárdenas Palacio, Carlos Andrés (2010) Valoración de la sensibilidad cutánea en pacientes con parálisis facial periférica / Cutaneous sensibility ossessment in facial palsy patients. Maestría thesis, Universidad Nacional de Colombia.; https://repositorio.unal.edu.co/handle/unal/70388; http://bdigital.unal.edu.co/2653/