يعرض 1 - 16 نتائج من 16 نتيجة بحث عن '"Máquinas de Boltzmann"', وقت الاستعلام: 0.69s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: Farguell Matesanz, Enric

    المساهمون: University/Department: Universitat Ramon Llull. EALS - Electrònica

    Thesis Advisors: efarguell@hotmail.com, Mazzanti Castrillejo, Ferran, Garriga Berga, Carles

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  2. 2
    Academic Journal
  3. 3
  4. 4
    Dissertation/ Thesis

    المساهمون: Giraldo Gallo, José Jairo, Seoane Bartolomé, Beatriz

    وصف الملف: 39 páginas; application/pdf

    Relation: D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for boltzmann machines. Cognitive science, 9(1):147–169, 1985.; D. J. Amit and V. Martin-Mayor. Field theory, the renormalization group, and critical phenomena: graphs to computers. World Scientific Publishing Company, 2005.; A. Bakk and J. S. Høye. One-dimensional ising model applied to protein folding. Physica A: Statistical Mechanics and its Applications, 323:504–518, 2003.; H. Ballesteros and V. Martín-Mayor. Test for random number generators: Schwinger-Dyson equations for the ising model. Physical Review E, 58(5):6787, 1998.; S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith. Cython: The best of both worlds. Computing in Science & Engineering, 13(2):31–39, 2011.; N. Béreux, A. Decelle, C. Furtlehner, and B. Seoane. Learning a restricted Boltzmann machine using biased Monte Carlo sampling. arXiv preprint arXiv:2206.01310, 2022.; C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York, 2006.; B. Bravi, J. Tubiana, S. Cocco, R. Monasson, T. Mora, and A. M. Walczak. Rbm-mhc: A semi-supervised machine-learning method for sample-specific prediction of antigen presentation by hla-i alleles. Cell systems, 12(2):195–202, 2021.; L. Brocchieri and S. Karlin. Protein length in eukaryotic and prokaryotic proteomes. Nucleic acids research, 33(10):3390–3400, 2005.; G. Cossu, L. Del Debbio, T. Giani, A. Khamseh, and M. Wilson. Machine learning determination of dynamical parameters: The ising model case. Physical Review B, 100(6):064304, 2019.; A. Decelle. TorchRBM. https://github.com/AurelienDecelle/TorchRBM, 2021. Accessed: 20-07-2022.; A. Decelle and C. Furtlehner. Restricted Boltzmann machine: Recent advances and mean-field theory. Chinese Physics B, 30(4):040202, 2021.; A. Decelle, C. Furtlehner, and B. Seoane. Equilibrium and non-equilibrium regimes in the learning of restricted boltzmann machines. arXiv preprint arXiv:2105.13889, 2021.; A. Fischer and C. Igel. An introduction to restricted boltzmann machines. In Iberoamerican congress on pattern recognition, pages 14–36. Springer, 2012.; M. Harsh, J. Tubiana, S. Cocco, and R. Monasson. ‘place-cell’ emergence and learning of invariant data with restricted boltzmann machines: breaking and dynamical restoration of continuous symmetries in the weight space. Journal of Physics A: Mathematical and Theoretical, 53(17):174002, 2020.; W. K. Hastings. Monte carlo sampling methods using markov chains and their applications. Biometrika, 57(1):97–109, 1953.; T. L. Hill. Generalization of the one-dimensional Ising model applicable to helix transitions in nucleic acids and proteins. The Journal of Chemical Physics, 30(2):383–387, 1959.; G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural computation, 14(8):1771–1800, 2002.; G. E. Hinton. A practical guide to training restricted Boltzmann machines. In Neural networks: Tricks of the trade, pages 599–619. Springer, 2012.; G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504–507, 2006.; R. D. Hjelm, V. D. Calhoun, R. Salakhutdinov, E. A. Allen, T. Adali, and S. M. Plis. Restricted boltzmann machines for neuroimaging: an application in identifying intrinsic networks. NeuroImage, 96:245–260, 2014.; N. Le Roux and Y. Bengio. Representational power of restricted Boltzmann machines and deep belief networks. Neural computation, 20(6):1631–1649, 2008.; Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.; P. Mehta, M. Bukov, C.-H. Wang, A. G. Day, C. Richardson, C. K. Fisher, and D. J. Schwab. A high-bias, low-variance introduction to machine learning for physicists. Physics reports, 810:1–124, 2019.; R. G. Melko, G. Carleo, J. Carrasquilla, and J. I. Cirac. Restricted boltzmann machines in quantum physics. Nature Physics, 15(9):887–892, 2019.; N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state calculations by fast computing machines. The journal of chemical physics, 21(6):1087–1092, 1953.; G. Montúfar. Restricted Boltzmann machines: Introduction and review. In Information Geometry and Its Applications IV, pages 75–115. Springer, 2016.; F. Ricci-Tersenghi. The Bethe approximation for solving the inverse Ising problem: a comparison with other inference methods. Journal of Statistical Mechanics: Theory and Experiment, 2012(08):P08015, 2012.; D. Sherrington and S. Kirkpatrick. Solvable model of a spin-glass. Physical review letters, 35(26):1792, 1975.; D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al. A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.; P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. In D. E. Rumelhart and J. L. McLelland, editors, Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations, chapter 6, pages 194–281. MIT Press, Cambridge, 1986.; T. Tieleman. Training restricted boltzmann machines using approximations to the likelihood gradient. In Proceedings of the 25th international conference on Machine learning, pages 1064–1071, 2008.; J. Tubiana, S. Cocco, and R. Monasson. Learning protein constitutive motifs from sequence data. Elife, 8:e39397, 2019.; G. Van Rossum and F. L. Drake Jr. Python reference manual. Centrum voor Wiskunde en Informatica Amsterdam, 1995.; U. Wolff. Collective Monte Carlo updating for spin systems. Physical Review Letters, 62(4):361, 1989.; B. Yelmen, A. Decelle, L. Ongaro, D. Marnetto, C. Tallec, F. Montinaro, C. Furtlehner, L. Pagani, and F. Jay. Creating artificial human genomes using generative neural networks. PLoS genetics, 17(2):e1009303, 2021.; https://repositorio.unal.edu.co/handle/unal/83483; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  5. 5

    المؤلفون: Roder, Mateus

    المساهمون: Universidade Estadual Paulista (Unesp), Papa, João Paulo [UNESP]

    المصدر: Repositório Institucional da UNESP
    Universidade Estadual Paulista (UNESP)
    instacron:UNESP

  6. 6
    Dissertation/ Thesis
  7. 7
  8. 8
    Dissertation/ Thesis
  9. 9
  10. 10

    المؤلفون: González González, Isaac

    المساهمون: González, Ana M, Rodríguez, Francisco de Borja, UAM. Departamento de Tecnología Electrónica y de las Comunicaciones, Rodríguez Ortiz, Francisco Borja

    المصدر: Biblos-e Archivo. Repositorio Institucional de la UAM
    instname

    وصف الملف: application/pdf

  11. 11
    Dissertation/ Thesis
  12. 12
    Dissertation/ Thesis
  13. 13
  14. 14
    Dissertation/ Thesis
  15. 15

    المساهمون: Universidade Estadual Paulista (Unesp), Papa, João Paulo [UNESP], Costa, Kelton Augusto Pontara da [UNESP]

    المصدر: Repositório Institucional da UNESP
    Universidade Estadual Paulista (UNESP)
    instacron:UNESP

  16. 16
    Dissertation/ Thesis