يعرض 1 - 20 نتائج من 59 نتيجة بحث عن '"Llano Ramírez, Gonzalo"', وقت الاستعلام: 0.56s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: Llano Ramírez, Gonzalo

    Thesis Advisors: REIG PASCUAL, JUAN, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions

    المصدر: Riunet.

  2. 2
    Dissertation/ Thesis

    المؤلفون: LLANO RAMÍREZ, GONZALO

    المساهمون: University/Department: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions

    Thesis Advisors: REIG PASCUAL, JUAN

    المصدر: Riunet

  3. 3
  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المصدر: Revista Ingenierías Universidad de Medellín; Vol. 15, núm. 28 (2016) ; 2248-4094 ; 1692-3324

    وصف الملف: p. 103-124; Electrónico; application/pdf; text/html

    Relation: http://revistas.udem.edu.co/index.php/ingenierias/article/view/1060; 15; 28; 103; 124; Food and Agriculture Organization for the United Nations, “FAO Statistical Yearbook 2013: World food and agriculture,” Roma, 2013.; C. Silva, M. Moraes, y J. Molin, “Adoption and use of precision agriculture technologies in the sugarcane industry of São Paulo state, Brazil,” Precision Agriculture, vol. 12, n.° 1, pp. 67–81, 2010.; R. Bramley, “Lessons from nearly 20 years of Precision Agriculture research, development, and adoption as a guide to its appropriate application,” Crop. Pasture Science, vol. 60, n.° 3, pp. 197–217, 2009.; R. Plumb, “Precision agriculture in the 21st century: geospatial and information technologies in crop management,” Pest Management Science, vol. 56, n.° 8, pp. 723–723, 2000.; R. Grisso, M. Alley, P. McClellan, D. Brann, y S. Donohue, “Precision Farming. A Comprehensive Approach,” Virginia Cooperative Extension, Publication 442-500, Virginia State University, 2009.; A. Dobermann, S. Blackmore, S. Cook, y V. Adamchuk, “Precision Farming: Challenges and Future Directions,” presentado en Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 2004.; P. Tozer, “Uncertainty and investment in precision agriculture – Is it worth the money?” Agricultural Systems, vol. 100, n.° 1–3, pp. 80–87, 2009.; M. Rilwani y J. Oghenereemusua, “Geoinformatics in Agricultural Development: Challenges and Prospects in Nigeria,” Journal of Social Sciences, vol. 21, n.° 1, pp. 49–57, 2009.; B. Kitchenham y S. Charters, “Guidelines for performing Systematic Literature Reviews in Software Engineering,” Keele University and Durham University Joint Report, UK, EBSE 2007-001, 2007.; J. Cock et al., “Crop management based on field observations: Case studies in sugarcane and coffee,” Agricultural Systems, vol. 104, n.° 9, pp. 755–769, 2011.; J. Demattê, L. Demattê, E. Alves, R. Negrão, y J. L. Morelli, “Precision agriculture for sugarcane management: a strategy applied for brazilian conditions,” Acta Scientiarum. Agronomy, vol. 36, n.° 1, pp. 111–117, 2014.; D. López et al., “Sistema integrado para recomendar dosis de fertilización en caña de azúcar (SIRDF),” Terra Latinoamericana, vol. 20, n.° 3, pp. 347-358, 2002.; B. Stray, J. van Vuuren, y C. Bezuidenhout, “An optimisation-based seasonal sugarcane harvest scheduling decision support system for commercial growers in South Africa,” Computers and Electronics in Agriculture, vol. 83, pp. 21–31, 2012.; C. Zhang, D. Walters, y J. M. Kovacs, “Applications of Low Altitude Remote Sensing in Agriculture upon Farmers’ Requests – A Case Study in Northeastern Ontario, Canada,” PLoS ONE, vol. 9, n.° 11, pp. 1-9, 2014.; G. López, “Diseño de un programa de ortorectificación y georreferenciación de imágenes aéreas aplicadas a campos de caña de azúcar,” Pontificia Universidad Católica del Perú, Lima, Perú, 2014.; G. Schneider, A. Hadad, y A. Kemerer, “Implementación de un software para el análisis de imágenes aéreas multiespectrales de caña de azúcar,” Ventana Informática, vol. 28, n.° 1, pp. 13–29, 2013.; E. Hunt, C. Daughtry, S. Mirsky, y W. Hively, “Remote Sensing With Simulated Unmanned Aircraft Imagery for Precision Agriculture Applications,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, n.° 11, pp. 4566–4571, 2014.; F. Urbano, “Redes de sensores inalámbricos aplicadas a optimización en agricultura de precisión para cultivos de café en Colombia,” Journal de Ciencia e Ingeniería, vol. 5, n.° 1, pp. 46–52, 2013.; K. Sudduth, S. Drummond, y N. Kitchen, “Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture,” Computers and Electronics in Agriculture, vol. 31, n.° 3, pp. 239–264, 2001.; N. Nawi, G. Chen, y T. Jensen, “In-field measurement and sampling technologies for monitoring quality in the sugarcane industry: a review,” Precision Agriculture, vol. 15, n.° 6, pp. 684–703, 2014.; R. Price, R. Johnson, R. Viator, J. Larsen, y A. Peters, “Fiber Optic Yield Monitor for a Sugarcane Harvester,” Transactions of the ASABE, vol. 54, n.° 1, pp. 31–39, 2011.; J. Molin, F. Frasson, L. Amaral, F. Povh, y J. Salvi, “Capability of an optical sensor in verifying the sugarcane response to nitrogen rates,” Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 14, n.° 12, pp. 1345–1349, 2010.; Z. de Souza et al., “Analyze the soil attributes and sugarcane yield culture with the use of geostatistics and decision trees,” Ciência Rural, vol. 40, n.° 4, pp. 840–847, 2010.; J. Carbonell, “Experiencia del sector cañicultor en agricultura específica por sitio,” Palmas, vol. 29, n.° 2, pp. 65–70, 2008.; J. Markley y J. Hughes, “Understanding the Barriers to the Implementation of Precision Agriculture in the Central Region,” presentado en 35th Annual Conference of the Australian Society of Sugar Cane Technologists, Townsville, Australia, 2013.; J. Serrano, J. Peça, J. Silva, y S. Shahidian, “Aplicação de fertilizantes: tecnologia, eficiência energética e ambiente”. Revista de Ciências Agrárias, vol. 37, n.° 3, pp. 270–279, 2014.; J. Ye, B. Chen, Q. Liu, y Y. Fang, “A precision agriculture management system based on Internet of Things and WebGIS,” presentado en 2013 21st International Conference on Geoinformatics (GEOINFORMATICS), Kaifeng, China, 2013.; B. Keating y R. McCown, “Advances in farming systems analysis and intervention,” Agricultural Systems, vol. 70, n.° 2–3, pp. 555–579, 2001.; C. Driemeier et al., “Data Analysis Workflow for Experiments in Sugarcane Precision Agriculture,” in 2014 IEEE 10th International Conference on e-Science (e-Science), Guarujá, Brasil, 2014.; Y. Wang, Y. Wang, X. Qi, y L. Xu, “OPAIMS: open architecture precision agriculture information monitoring system,” presentado en Proceedings of the 2009 International conference on Compilers, architecture, and synthesis for embedded systems, Grenoble, Francia, 2009.; Revista Ingenierías Universidad de Medellín; http://hdl.handle.net/11407/3553; http://dx.doi.org/10.22395/rium.v15n28a6; reponame:Repositorio Institucional Universidad de Medellín; repourl:https://repository.udem.edu.co/; instname:Universidad de Medellín

  6. 6
    Academic Journal
  7. 7
    Conference
  8. 8
  9. 9
    Conference
  10. 10
    Book
  11. 11
    Conference
  12. 12
    Academic Journal
  13. 13
    Conference

    Time: Barcelona de Lat: 41 23 54 N degrees minutes Lat: 41.3984 decimal degrees Long: 002 10 27 E degrees minutes Long: 2.1741 decimal degrees

    وصف الملف: 5 páginas; Digital; application/pdf

    Relation: Conference: Vehicular Technology Conference, 2009. VTC Spring 2009. IEEE 69th; http://ieeexplore.ieee.org/document/5073882/?part=1; http://hdl.handle.net/10906/81957; http://dx.doi.org/10.1109/VETECS.2009.5073882; instname: Universidad Icesi; reponame: Biblioteca Digital; repourl: https://repository.icesi.edu.co/

  14. 14
    Academic Journal

    المصدر: Ciencia e Ingenieria Neogranadina; Vol. 24 No. 2 (2014); 111-132 ; Ciencia e Ingeniería Neogranadina; Vol. 24 Núm. 2 (2014); 111-132 ; Ciencia e Ingeniería Neogranadina; v. 24 n. 2 (2014); 111-132 ; 1909-7735 ; 0124-8170

    وصف الملف: application/pdf; text/html

    Relation: http://revistas.unimilitar.edu.co/index.php/rcin/article/view/396/173; http://revistas.unimilitar.edu.co/index.php/rcin/article/view/396/1811; United Nations Environment Programme (UNEP). (2012). Global Outlook on Sustainable Consumption and Production Policies: Taking Action Together. Paris, Francia: UNEP.; United Nations. (1992). United Nations Framework Convention on Climate Change.; Departamento Nacional de Planeación. (2011). Plan Nacional de Desarrollo 2010-2014. Recuperado en enero de 2014, de: www.dnp.gov.co/LinkClick.aspx?fileticket=_8KOB4G8yNA%3d&tabid=1238; Facultad de Ingeniería, Universidad de los Andes. (2008). Proyecciones de Emisiones de Gases de Efecto Invernadero y Posibilidades de Mitigación en Colombia. CEPAL [Documento PDF]. Recuperado el 6 de octubre de 2014, de http://www.cepal.org/dmaah/noticias/noticias/6/34276/cc10_universidad_andes_colombia_estudio.pdf; Tsugawa, S. (2010). Energy ITS Program. IEEE Forum on Integrated and Sustainable Transportation Systems (FISTS) and ITS Energy Symposium. IEEE: Japón.; Tsugawa, S. & Kato, S. (2010). Energy ITS: Another Application of Vehicular Communications. IEEE Communications Magazine, 48 (11), pp. 120-126. http://dx.doi.org/10.1109/MCOM.2010.5621978; Kelly, T. & Adolph, M. (2008). ITU-T Initiatives on Climate Change. IEEE Communications Magazine, 46 (10), pp. 108-114. http://dx.doi.org/10.1109/MCOM.2008.4644127; Mahajan, A. et al. (2005). Evaluation of Mobility Models for Vehicular Ad-hoc Network Simulations. Reporte Técnico N.051220.Florida State University: Tallahassee.; Karagiannis, G. et al. (2011). Vehicular Networking: A Survey and Tutorial on Requirements, Architectures, Challenges, Standards and Solutions. IEEE Communications Surveys & Tutorials, 13 (4), pp. 584-616. http://dx.doi.org/10.1109/SURV.2011.061411.00019; Baldessari, R. et al. (2006). Flexible Connectivity Management in Vehicular Communication Networks. Proceedings of International Workshop on Intelligent Transportation. Alemania.; Wu, H. (2005). Analysis and Design of Vehicular Networks. (Tesis de doctorado inédita). College of Computing, Georgia Institute of Technology, Atlanta, EE.UU, p.159.; Gerla, M. & Kleinrock, L. (2011). Vehicular Networks and the Future of Mobile Internet. ScienceDirect Computer Networks, 55(2), pp. 457-469. http://dx.doi.org/10.1016/j.comnet.2010.10.015; Moustafa, H. & Zhang, Y., (2009). Vehicular Networks: Techniques, Standards and Applications. Boston, EE.UU: Auerbach Publications, p. 445. http://dx.doi.org/10.1201/9781420085723; Martínez, F. et al. (2011). A Survey and Comparative Study of Simulators for Vehicular ad hoc Networks (VANETs).Wiley Wireless Communications and Mobile Computing, 11(7), pp. 813-828. http://dx.doi.org/10.1002/wcm.859; Pachón, A., Nieto, C. & Velasco, M. (2010). Modelos de Comportamiento de las Redes Vehiculares en sus Escenarios más Representativos, utilizando simulación en la herramienta NCTUns. Sistemas y Telemática: Revista de la Facultad de Ingeniería, Universidad ICESI, 8(15), pp. 13-25. http://dx.doi.org/10.18046/syt.v8i15.1018; Boukerche, A. (2009). Algorithms and Protocols for Wireless and Mobile Ad Hoc Networks. New Jersey, EE.UU: John Wiley & Sons, p. 500.; Hartenstein, H. & Laberteaux, K. (2008). A Tutorial Survey on Vehicular ad hoc Networks. IEEE Communications Magazine, 46(6), pp. 164-171. http://dx.doi.org/10.1109/MCOM.2008.4539481; Jian, D. & Delgrossi, L. (2008). IEEE 802.11p: Towards an International Standard for Wireless Access in Vehicular Environments. IEEE Vehicular Technology Conference (VTC Fall). IEEE: Calgary, Canadá.; Emmelmann, M., Bochow, B. & Kellum, C. (2010). Vehicular Networking: Automotive Applications and Beyond. Chichester, Reino Unido: John Wiley & Sons, p. 314. http://dx.doi.org/10.1002/9780470661314; IEEE. (2010). IEEE 802.11p, Amendment to Standard for Information Technology Telecommunications and Information Exchange Between Systems- Local and Metropolitan Area Networks-Specific requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications-Amendment 7: Wireless Access. Vehicular Environment, IEEE Std. IEEE 802.11p.; IEEE. (2013). IEEE P1609.0, Draft Standard for Wireless Access in Vehicular Environments (WAVE) Architecture, IEEE Std. IEEE 1609.0.; IEEE. (2006).IEEE 1609.4, Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE) Multi-Channel Operation, IEEE Std. IEEE 1609.4.; IEEE. (2007). IEEE 1609.3, IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE)-Networking Services, IEEE Std. IEEE 1609.3.; IEEE. (2006). IEEE 1609.2, Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE) Security Services for Applications and Management Messages, IEEE Std. IEEE 1609.2.; IEEE. (1998).IEEE 802.2-1998, IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements—Part 2: Logical Link Control.; Sjöberg, K. (2013). Medium access control for vehicular ad hoc networks. (Tesis de doctorado inédita). Chalmers University of Technology, Göteborg, Suecia, p.127.; Kosch, T. et al. (2009). Communication Architecture for Cooperative Systems in Europe. IEEE Communications Magazine, 47(5), pp.116-125. http://dx.doi.org/10.1109/MCOM.2009.4939287; Dar, K. et al. (2010). Wireless Communication Technologies for ITS Applications. Topics in Automotive Networking. IEEE Communications Magazine, 48(5), pp.156-162. http://dx.doi.org/10.1109/MCOM.2010.5458377; Papadimitratos, P. et al. (2009). Vehicular Communication Systems: Enabling Technologies, Applications and Future Outlook on Intelligent Transportation. IEEE Communications Magazine, 47(11), pp.84-95. http://dx.doi.org/10.1109/MCOM.2009.5307471; Härri, J. et al. (2011). Vehicular Mobility Simulation with VanetMobiSim. SAGE Transactions of the Society for Modeling and Simulation International, 87(4), pp.275-300. http://dx.doi.org/10.1177/0037549709345997; Hartenstein, H. & Laberteaux, K. (2010). VANET: Vehicular Applications and Inter-networking Technologies. Torquay, Reino Unido: John Wiley & Sons, p.466. http://dx.doi.org/10.1002/9780470740637; Gainaru, A., Dobre, C. & Cristea, V. (2009). A Realistic Mobility Model Based on Social Networks for the Simulation of VANETs. 69th Vehicular Technology Conference. Barcelona, España. http://dx.doi.org/10.1109/vetecs.2009.5073334; Camp, T., Boleng, J. & Davies, V. (2002). A Survey of Mobility Models for ad hoc Network Research. Wireless Communications & Mobile Computing, 2(5), pp.483-502. http://dx.doi.org/10.1002/wcm.72; Cruz, J. (2009). Estudio y Simulación de una Red ad hoc Vehicular VANET. (Tesis de pregrado inédita). Facultad de Ingeniería Electrónica, Escuela Politécnica del Ejército, Quito, Ecuador, p.156.; Pardo, A. (2011). C4R: Generación de Modelos de Movilidad para Redes de Vehículos a partir de Mapas Reales (Tesis de pregrado inédita). Departamento de Informática e Ingeniería de Sistemas, Escuela Universitaria Politécnica de Teruel, Zaragoza, Espa-a, p.91.; Härri, J., Filali, F. & Bonnet, C. (2009). Mobility Models for Vehicular ad hoc Networks: A Survey and Taxonomy. IEEE Communications Surveys & Tutorials, 11 (4), pp.19-41. http://dx.doi.org/10.1109/SURV.2009.090403; Leiva, R. (2007). Simulación de VANETs (Vehicular Ad Hoc Networks) (Tesis de pregrado inédita). Departament d'Enginyeria Telemàtica, Universitat Politècnica de Catalunya, Barcelona, Espa-a, p.75.; Orozco, O., Chavarro, D. & Calderón, O. (2013). Impacto de la Velocidad y Modelo de Movilidad en una Comunicación de Datos de una Red Vehicular (Tesis de pregrado inédita). Facultad de Ingeniería Electrónica y Telecomunicaciones, Universidad del Cauca, Popayán, Colombia, p. 93.; Kesting, A., Treiber, M. & Helbing, D., (2008). Agents for Traffic Simulation. En Multi-Agent Systems: Simulation and Applications. Boca Raton, Florida, EE.UU: Taylor & Francis Group, p.566.; Dressler, F. et al. (2011). Towards Realistic Simulations of Inter-Vehicle Communications: Models, Techniques and Pitfalls. IEEE Vehicular Technology Magazine, 6(3), pp.43-51. http://dx.doi.org/10.1109/MVT.2011.941898; http://revistas.unimilitar.edu.co/index.php/rcin/article/view/396

  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20
    Academic Journal