-
1Dissertation/ Thesis
المؤلفون: Lizarazo Aparicio, María Cristina
المساهمون: Gutiérrez Álvarez, Luis Felipe, Grupo de Investigación en Biomoléculas Alimentarias
مصطلحات موضوعية: 660 - Ingeniería química::664 - Tecnología de alimentos, Tecnología de alimentos, Vegetable oils, Aceites vegetales, Oleogeles, Sacha inchi, Aceites estructurados, Torta de prensa de aceite, Estabilidad oxidativa, Valorización de biomasa, Oleogels, Structured oils, Oil press-cake, Oxidative stability, Biomass valorization
وصف الملف: xi, 83 páginas; application/pdf
Relation: Abdollahi, M., Goli, S. A. H., & Soltanizadeh, N. (2020). Physicochemical Properties of Foam-Templated Oleogel Based on Gelatin and Xanthan Gum. European Journal of Lipid Science and Technology, 122(2), 1–9. https://doi.org/10.1002/ejlt.201900196; Abdolmaleki, K., Alizadeh, L., Nayebzadeh, K., Hosseini, S. M., & Shahin, R. (2019). Oleogel production based on binary and ternary mixtures of sodium caseinate, xanthan gum, and guar gum: Optimization of hydrocolloids concentration and drying method. Journal of Texture Studies, 51(2), 290–299. https://doi.org/10.1111/jtxs.12469; Ahmadzadeh, S., Chen, W., & Rizvi, S. S. H. (2022). Oleogelation using modified milk protein concentrate produced by supercritical fluid extrusion. Lwt, 160(August 2021), 113114. https://doi.org/10.1016/j.lwt.2022.113114; Alizadeh, L., Abdolmaleki, K., Nayebzadeh, K., & Hosseini, S. M. (2020). Oleogel Fabrication Based on Sodium Caseinate, Hydroxypropyl Methylcellulose, and Beeswax: Effect of Concentration, Oleogelation Method, and Their Optimization. JAOCS, Journal of the American Oil Chemists’ Society, 97(5), 485–496. https://doi.org/10.1002/aocs.12341; Alvarez-Ramirez, J., Vernon-Carter, E. J., Carrera-Tarela, Y., Garcia, A., & Roldan-Cruz, C. (2020). Effects of candelilla wax/canola oil oleogel on the rheology, texture, thermal properties and in vitro starch digestibility of wheat sponge cake bread. Lwt, 130, 109701. https://doi.org/10.1016/j.lwt.2020.109701; Alvarez, M. D., Cofrades, S., Espert, M., Salvador, A., & Sanz, T. (2021). Thermorheological characterization of healthier reduced-fat cocoa butter formulated by substitution with a hydroxypropyl methylcellulose (Hpmc)-based oleogel. Foods, 10(4). https://doi.org/10.3390/foods10040793; Anal, A. K., Shrestha, S., & Sadiq, M. B. (2019). Biopolymeric-based emulsions and their effects during processing, digestibility and bioaccessibility of bioactive compounds in food systems. Food Hydrocolloids, 87(August 2018), 691–702. https://doi.org/10.1016/j.foodhyd.2018.09.008; AOCS. (2020). Official Methods and Recommended Practices of the AOCS (7th ed.): Champaign IL, USA: AOCS Press.; Astrup, A., Magkos, F., Bier, D. M., Brenna, J. T., de Oliveira Otto, M. C., Hill, J. O., King, J. C., Mente, A., Ordovas, J. M., Volek, J. S., Yusuf, S., & Krauss, R. M. (2020). Saturated Fats and Health: A Reassessment and Proposal for Food-Based Recommendations: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 76(7), 844–857. https://doi.org/10.1016/j.jacc.2020.05.077; Baris Ozel and Mecit Halil Oztop. (2023). Rheology of food bigel system. In Advances in Food Rheology and Its Applications. LTD. https://doi.org/10.1016/b978-0-12-823983-4.00022-4; Barroso, N. G., Santos, M. A. S., Okuro, P. K., & Cunha, R. L. (2022). Composition and process approaches that underpin the mechanical properties of oleogels. JAOCS, Journal of the American Oil Chemists’ Society, 99(11), 971–984. https://doi.org/10.1002/aocs.12635; Bascuas, S., Espert, M., Llorca, E., Quiles, A., Salvador, A., & Hernando, I. (2021). Structural and sensory studies on chocolate spreads with hydrocolloid-based oleogels as a fat alternative. Lwt, 135(September 2020), 110228. https://doi.org/10.1016/j.lwt.2020.110228; Bascuas, S., Hernando, I., Moraga, G., & Quiles, A. (2019). Structure and stability of edible oleogels prepared with different unsaturated oils and hydrocolloids. International Journal of Food Science and Technology, 55(4), 1458–1467. https://doi.org/10.1111/ijfs.14469; Bascuas, S., Morell, P., Hernando, I., & Quiles, A. (2021). Recent trends in oil structuring using hydrocolloids. Food Hydrocolloids, 118(January), 106612. https://doi.org/10.1016/j.foodhyd.2021.106612; Bascuas, S., Salvador, A., Hernando, I., & Quiles, A. (2020). Designing Hydrocolloid-Based Oleogels With High Physical, Chemical, and Structural Stability. Frontiers in Sustainable Food Systems, 4(July), 1–8. https://doi.org/10.3389/fsufs.2020.00111; Bascuas Véntola, M. S. (2021). Estructuración de aceites mediante el uso de hidrocoloides para sustituir grasas plásticas en los alimentos.; Bot, A., Den Adel, R., & Roijers, E. C. (2008). Fibrils of γ-oryzanol + β-sitosterol in edible oil organogels. JAOCS, Journal of the American Oil Chemists’ Society, 85(12), 1127–1134. https://doi.org/10.1007/s11746-008-1298-7; Bueno-Borges, L. B., Sartim, M. A., Gil, C. C., Sampaio, S. V., Rodrigues, P. H. V., & Regitano-d’Arce, M. A. B. (2018). Sacha inchi seeds from sub-tropical cultivation: effects of roasting on antinutrients, antioxidant capacity and oxidative stability. Journal of Food Science and Technology, 55(10), 4159–4166. https://doi.org/10.1007/s13197-018-3345-1; Blake, A. I., & Marangoni, A. G. (2015). The Use of Cooling Rate to Engineer the Microstructure and Oil Binding Capacity of Wax Crystal Networks. Food Biophysics, 10(4), 456-465.; Chen, B., McClements, D. J., & Decker, E. A. (2013). Design of foods with bioactive lipids for improved health. Annual Review of Food Science and Technology, 4(1), 35–56. https://doi.org/10.1146/annurev-food-032112-135808; Chen, C. H., & Terentjev, E. M. (2009). Aging and metastability of monoglycerides in hydrophobic solutions. Langmuir, 25(12), 6717–6724. https://doi.org/10.1021/la9002065; Chen, K., & Zhang, H. (2020). Fabrication of Oleogels via a Facile Method by Oil Absorption in the Aerogel Templates of Protein-Polysaccharide Conjugates. ACS Applied Materials and Interfaces, 12(6), 7795–7804. https://doi.org/10.1021/acsami.9b21435; Chirinos, R., Aquino, M., Pedreschi, R., & Campos, D. (2016). Optimized Methodology for Alkaline and Enzyme-Assisted Extraction of Protein from Sacha Inchi (Plukenetia volubilis) Kernel Cake. Journal of Food Process Engineering, 40(2). https://doi.org/10.1111/jfpe.12412; Chirinos, R., Pedreschi, R., Domínguez, G., & Campos, D. (2015). Comparison of the physico-chemical and phytochemical characteristics of the oil of two Plukenetia species. Food Chemistry, 173, 1203–1206. https://doi.org/10.1016/j.foodchem.2014.10.120; Chirinos, R., Zuloeta, G., Pedreschi, R., Mignolet, E., Larondelle, Y., & Campos, D. (2013). Sacha inchi (Plukenetia volubilis): A seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity. Food Chemistry, 141(3), 1732–1739. https://doi.org/10.1016/j.foodchem.2013.04.078; Cisneros, F. H., Paredes, D., Arana, A., & Cisneros-Zevallos, L. (2014). Chemical composition, oxidative stability and antioxidant capacity of oil extracted from roasted seeds of Sacha-inchi (Plukenetia volubilis L.). Journal of Agricultural and Food Chemistry, 62(22), 5191–5197. https://doi.org/10.1021/jf500936j; Co, E. D., & Marangoni, A. G. (2012). Organogels: An alternative edible oil-structuring method. JAOCS, Journal of the American Oil Chemists’ Society, 89(5), 749–780. https://doi.org/10.1007/s11746-012-2049-3; Co, E. D., & Marangoni, A. G. (2018). Oleogels: An Introduction. In Edible Oleogels. AOCS Press. https://doi.org/10.1016/b978-0-12-814270-7.00001-0; da Pieve, S., Calligaris, S., Co, E., Nicoli, M. C., & Marangoni, A. G. (2010). Shear Nanostructuring of monoglyceride organogels. Food Biophysics, 5(3), 211–217. https://doi.org/10.1007/s11483-010-9162-3; da Silva, S. L., Amaral, J. T., Ribeiro, M., Sebastião, E. E., Vargas, C., de Lima Franzen, F., Schneider, G., Lorenzo, J. M., Fries, L. L. M., Cichoski, A. J., & Campagnol, P. C. B. (2019). Fat replacement by oleogel rich in oleic acid and its impact on the technological, nutritional, oxidative, and sensory properties of Bologna-type sausages. Meat Science, 149(November 2018), 141–148. https://doi.org/10.1016/j.meatsci.2018.11.020; Davidovich-Pinhas, M., Barbut, S., & Marangoni, A. G. (2016). Development, Characterization, and Utilization of Food-Grade Polymer Oleogels. Annual Review of Food Science and Technology, 7(December 2015), 65–91. https://doi.org/10.1146/annurev-food-041715-033225; De Boer, A. A., Ismail, A., Marshall, K., Bannenberg, G., Yan, K. L., & Rowe, W. J. (2018). Examination of marine and vegetable oil oxidation data from a multi-year, third-party database. Food Chemistry, 254(February), 249–255. https://doi.org/10.1016/j.foodchem.2018.01.180; de Vries, A. (2017). Structuring oil by protein building blocks. In Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Science.; de Vries, A., Hendriks, J., Van Der Linden, E., & Scholten, E. (2015). Protein Oleogels from Protein Hydrogels via a Stepwise Solvent Exchange Route. Langmuir, 31(51), 13850–13859. https://doi.org/10.1021/acs.langmuir.5b03993; de Vries, A., Wesseling, A., van der Linden, E., & Scholten, E. (2017). Protein oleogels from heat-set whey protein aggregates. Journal of Colloid and Interface Science, 486, 75–83. https://doi.org/10.1016/j.jcis.2016.09.043; del-Castillo, Á. M. R., Gonzalez-Aspajo, G., de Fátima Sánchez-Márquez, M., & Kodahl, N. (2019). Ethnobotanical Knowledge in the Peruvian Amazon of the Neglected and Underutilized Crop Sacha Inchi (Plukenetia volubilis L.). Economic Botany, 73(2), 281–287. https://doi.org/10.1007/s12231-019-09459-y; Dickinson, E. (2008). Interfacial structure and stability of food emulsions as affected by protein–polysaccharide interactions. Soft Matter, 4, 932–942. https://doi.org/10.1039/b800106e; dos Santos Carvalho, J. D., Rabelo, R. S., & Hubinger, M. D. (2022). Thermo-rheological properties of chitosan hydrogels with hydroxypropyl methylcellulose and methylcellulose. International Journal of Biological Macromolecules, 209(PA), 367–375. https://doi.org/10.1016/j.ijbiomac.2022.04.035; Espert, M., Hern, M. J., Sanz, T., & Salvador, A. (2021). Food Hydrocolloids Reduction of saturated fat in chocolate by using sunflower oil-hydroxypropyl methylcellulose based oleogels. 120(April 2021), 0–5. https://doi.org/10.1016/j.foodhyd.2021.106917; Espert, M., Hernández, M. J., Sanz, T., & Salvador, A. (2022). Rheological properties of emulsion templated oleogels based on xanthan gum and different structuring agents. Current Research in Food Science, 5(March), 564–570. https://doi.org/10.1016/j.crfs.2022.03.001; Espert, M., Salvador, A., & Sanz, T. (2020). Cellulose ether oleogels obtained by emulsion-templated approach without additional thickeners. Food Hydrocolloids, 109(March), 106085. https://doi.org/10.1016/j.foodhyd.2020.106085; Fanali, C., Dugo, L., Cacciola, F., Beccaria, M., Grasso, S., Dachà, M., Dugo, P., & Mondello, L. (2011). Chemical characterization of Sacha inchi (Plukenetia volubilis L.) oil. Journal of Agricultural and Food Chemistry, 59(24), 13043–13049. https://doi.org/10.1021/jf203184y; Farooq, S., Ahmad, M. I., Zhang, Y., Chen, M., & Zhang, H. (2023). Preparation, characterization and digestive mechanism of plant-derived oil bodies-based oleogels structured by chitosan and vanillin. Food Hydrocolloids, 136(PA), 108247. https://doi.org/10.1016/j.foodhyd.2022.108247; Feichtinger, A., Nibbelink, D. G., Poppe, S., Bozzo, L., Landman, J., & Scholten, E. (2022). Protein oleogels prepared by solvent transfer method with varying protein sources. Food Hydrocolloids, 132(May), 107821. https://doi.org/10.1016/j.foodhyd.2022.107821; Mohanan, A., Tang, Y. R., Nickerson, M. T., & Ghosh, S. (2020b). Oleogelation using pulse protein-stabilized foams and their potential as a baking ingredient. RSC Advances, 10(25), 14892–14905. https://doi.org/10.1039/c9ra07614j; Morenga, L. Te, & Montez, J. M. (2017). Health effects of saturated and trans-fatty acid intake in children and adolescents: Systematic review and meta-analysis. PLoS ONE, 12(11). https://doi.org/10.1371/journal.pone.0186672; Mozaffarian, D., & Clarke, R. (2009). Quantitative effects on cardiovascular risk factors and coronary heart disease risk of replacing partially hydrogenated vegetable oils with other fats and oils. European Journal of Clinical Nutrition, 63(S2), S22–S33. https://doi.org/10.1038/sj.ejcn.1602976; Muangrat, R., Veeraphong, P., & Chantee, N. (2018). Screw press extraction of Sacha inchi seeds: Oil yield and its chemical composition and antioxidant properties. Journal of Food Processing and Preservation, 42(6), 1–10. https://doi.org/10.1111/jfpp.13635; Nettleton, J. A., Brouwer, I. A., Geleijnse, J. M., & Hornstra, G. (2017). Saturated Fat Consumption and Risk of Coronary Heart Disease and Ischemic Stroke: A Science Update. Annals of Nutrition and Metabolism, 70(1), 26–33. https://doi.org/10.1159/000455681; Niu, Y. X., Li, W., Zhu, J., Huang, Q., Jiang, M., & Huang, F. (2012). Aqueous enzymatic extraction of rapeseed oil and protein from dehulled cold-pressed double-low rapeseed cake. International Journal of Food Engineering, 8(3). https://doi.org/10.1515/1556-3758.2530; Oh, I., Lee, J. H., Lee, H. G., & Lee, S. (2019). Feasibility of hydroxypropyl methylcellulose oleogel as an animal fat replacer for meat patties. Food Research International, 122(August 2018), 566–572. https://doi.org/10.1016/j.foodres.2019.01.012; Okuro, P. K., Martins, A. J., Vicente, A. A., & Cunha, R. L. (2020). Perspective on oleogelator mixtures, structure design and behaviour towards digestibility of oleogels. Current Opinion in Food Science, 35, 27–35. https://doi.org/10.1016/j.cofs.2020.01.001; Ozel, B., & Oztop, M. H. (2023). Chapter 22 - Rheology of food hydrogels, and organogels. In J. Ahmed & S. Basu (Eds.), Advances in Food Rheology and Its Applications (Second Edition) (pp. 661-688): Woodhead Publishing.; Pan, J., Tang, L., Dong, Q., Li, Y., & Zhang, H. (2021). Effect of oleogelation on physical properties and oxidative stability of camellia oil-based oleogels and oleogel emulsions. Food Research International, 140(July 2020), 110057. https://doi.org/10.1016/j.foodres.2020.110057; Paper, F. A. O. F. (2010). Fats and fatty acids in human nutrition. Report of an expert consultation. In FAO food and nutrition paper (Vol. 91).; Park, C., Jimenez-Flores, R., & Maleky, F. (2020). Quantifications of oleocolloid matrices made of whey protein and oleogels. Foods, 9(11). https://doi.org/10.3390/FOODS9111697; Patel, A., Desai, S. S., Mane, V. K., Enman, J., Rova, U., Christakopoulos, P., & Matsakas, L. (2022). Futuristic food fortification with a balanced ratio of dietary ω-3/ω-6 omega fatty acids for the prevention of lifestyle diseases. Trends in Food Science and Technology, 120(January), 140–153. https://doi.org/10.1016/j.tifs.2022.01.006; Patel, A. R. (2015). Potential Food Applications of Oleogels. https://doi.org/10.1007/978-3-319-19138-6_5; Patel, A. R. (2018). Formation and Properties of Biopolymer ‐ Based Oleogels Formation of Polymer ‐ Based Oleogels.; Patel and Koen Dewettinck. (2015). Comparative evaluation of structured oil systems: shellac oleogel, HPMC oleogel and HIPE gel. European Journal of Lipid Science and Technology, 117, Issue, 1772–1781.; Patel, A. R., Cludts, N., Sintang, M. D. Bin, Lesaffer, A., & Dewettinck, K. (2014). Edible oleogels based on water soluble food polymers: Preparation, characterization and potential application. Food and Function, 5(11), 2833–2841. https://doi.org/10.1039/c4fo00624k; Patel, Cludts, N., Bin Sintang, M. D., Lewille, B., Lesaffer, A., & Dewettinck, K. (2014). Polysaccharide-based oleogels prepared with an emulsion-templated approach. ChemPhysChem, 15(16), 3435–3439. https://doi.org/10.1002/cphc.201402473; Patel, A. R., Schatteman, D., De Vos, W. H., Lesaffer, A., & Dewettinck, K. (2013). Preparation and rheological characterization of shellac oleogels and oleogel-based emulsions. Journal of Colloid and Interface Science, 411(2013), 114–121. https://doi.org/10.1016/j.jcis.2013.08.039; Patel, A. R., Schatteman, D., Lesaffer, A., & Dewettinck, K. (2013). A foam-templated approach for fabricating organogels using a water-soluble polymer. RSC Advances, 3(45), 22900–22903. https://doi.org/10.1039/c3ra44763d; Pernetti, M., van Malssen, K. F., Flöter, E., & Bot, A. (2007). Structuring of edible oils by alternatives to crystalline fat. Current Opinion in Colloid and Interface Science, 12(4–5), 221–231. https://doi.org/10.1016/j.cocis.2007.07.002; Pinho, E., Machado, S., & Soares, G. (2019). Smart Hydrogel for the pH-Selective Drug Delivery of Antimicrobial Compounds. Macromolecular Symposia, 385(1), 1–7. https://doi.org/10.1002/masy.201800182; Plazzotta, S., Calligaris, S., & Manzocco, L. (2020). Structural characterization of oleogels from whey protein aerogel particles. Food Research International, 132(December 2019), 109099. https://doi.org/10.1016/j.foodres.2020.109099; Plazzotta, S., Jung, I., Schroeter, B., Subrahmanyam, R. P., Smirnova, I., Calligaris, S., Gurikov, P., & Manzocco, L. (2021). Conversion of whey protein aerogel particles into oleogels: Effect of oil type on structural features. Polymers, 13(23). https://doi.org/10.3390/polym13234063; Pușcaș, A., Mureșan, V., & Muste, S. (2021). Application of analytical methods for the comprehensive analysis of oleogels—A review. Polymers, 13(12). https://doi.org/10.3390/polym13121934; Puscas, A., Muresan, V., Socaciu, C., & Muste, S. (2020). Oleogels in food: A review of current and potential applications. Foods, 9(1), 1–28. https://doi.org/10.3390/foods9010070; Rawdkuen, S., D’Amico, S., & Schoenlechner, R. (2022). Physicochemical, Functional, and In Vitro Digestibility of Protein Isolates from Thai and Peru Sacha Inchi (Plukenetia volubilis L.) Oil Press-Cakes. In Foods (Vol. 11, Issue 13, p. 1869). https://doi.org/10.3390/foods11131869; Rodrigo Valenzuela, B., Gladys Tapia, O., Marcela González, E., & Alfonso Valenzuela, B. (2011). Omega-3 fatty acids (EPA and DHA) and its application in diverse clinical situations. Revista Chilena de Nutricion, 38(3), 356–367. https://doi.org/10.4067/s0717-75182011000300011; Rogers, M. A., Wright, A. J., & Marangoni, A. G. (2008). Crystalline stability of self-assembled fibrillar networks of 12-hydroxystearic acid in edible oils. Food Research International, 41(10), 1026–1034. https://doi.org/10.1016/j.foodres.2008.07.012; Rogers, M. A., Wright, A. J., & Marangoni, A. G. (2009). Nanostructuring fiber morphology and solvent inclusions in 12-hydroxystearic acid / canola oil organogels. Current Opinion in Colloid and Interface Science, 14(1), 33–42. https://doi.org/10.1016/j.cocis.2008.02.004; Rohman, A., & Che Man, Y. B. (2012). Quantification and classification of corn and sunflower oils as adulterants in olive oil using chemometrics and FTIR spectra. The Scientific World Journal, 2012. https://doi.org/10.1100/2012/250795; Romoscanu, A. I., & Mezzenga, R. (2006). Emulsion-templated fully reversible protein-in-oil gels. Langmuir, 22(18), 7812–7818. https://doi.org/10.1021/la060878p; Rouilly, A., Orliac, O., Silvestre, F., & Rigal, L. (2003). Thermal denaturation of sunflower globulins in low moisture conditions. Thermochimica Acta, 398(1–2), 195–201. https://doi.org/10.1016/S0040-6031(02)00365-9; Ruiz, C., Díaz, C., Anaya, J., & Rojas, R. (2013). Aproximate analysis, antinutrients, fatty acids and amino acids profiles of seeds and cakes from 2 species of sacha inchi: Plukenetia volubilis and Plukenetia huayllabambana. Revista de La Sociedad Química Del Perú, 79(1), 29–36; Saengsorn, K., & Jimtaisong, A. (2017). Determination of hydrophilic–lipophilic balance value and emulsion properties of sacha inchi oil. Asian Pacific Journal of Tropical Biomedicine, 7(12), 1092–1096. https://doi.org/10.1016/j.apjtb.2017.10.011; Saini, R. K., & Keum, Y. S. (2016). Tocopherols and tocotrienols in plants and their products: A review on methods of extraction, chromatographic separation, and detection. Food Research International, 82, 59–70. https://doi.org/10.1016/j.foodres.2016.01.025; Saini, R. K., & Keum, Y. S. (2018). Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance — A review. Life Sciences, 203(January), 255–267. https://doi.org/10.1016/j.lfs.2018.04.049; Sanchez-Reinoso, Z., & Gutiérrez, L. F. (2017). Effects of the Emulsion Composition on the Physical Properties and Oxidative Stability of Sacha Inchi (Plukenetia volubilis L.) Oil Microcapsules Produced by Spray Drying. Food and Bioprocess Technology, 10(7), 1354–1366. https://doi.org/10.1007/s11947-017-1906-3; Schaink, H. M., van Malssen, K. F., Morgado-Alves, S., Kalnin, D., & van der Linden, E. (2007). Crystal network for edible oil organogels: Possibilities and limitations of the fatty acid and fatty alcohol systems. Food Research International, 40(9), 1185–1193. https://doi.org/10.1016/j.foodres.2007.06.013; Scholten, E. (2018a). Protein Oleogels: Network Formation of Proteins in Hydrophobic Conditions. In Edible Oleogels. Elsevier Inc. https://doi.org/10.1016/b978-0-12-814270-7.00012-5; Scholten, E. (2018b). Protein Oleogels. In Edible Oleogels. Elsevier Inc. https://doi.org/10.1016/b978-0-12-814270-7.00012-5; Scholten, E. (2019). Edible oleogels: how suitable are proteins as a structurant? Current Opinion in Food Science, 27, 36–42. https://doi.org/10.1016/j.cofs.2019.05.001; Shantha, N. C., & Decker, E. A. (1994). Rapid, Sensitive, Iron-Based Spectrophotometric Methods for Determination of Peroxide Values of Food Lipids. Journal of AOAC INTERNATIONAL, 77(2), 421-424.; Semenova, M. (2017). Protein–polysaccharide associative interactions in the design of tailor-made colloidal particles. Current Opinion in Colloid and Interface Science, 28, 15–21. https://doi.org/10.1016/j.cocis.2016.12.003; Silva-Avellaneda, E., Bauer-Estrada, K., Prieto-Correa, R. E., & Quintanilla-Carvajal, M. X. (2021). The effect of composition, microfluidization and process parameters on formation of oleogels for ice cream applications. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-86233-y; Sim, S. F., & Ting, W. (2012). An automated approach for analysis of Fourier Transform Infrared (FTIR) spectra of edible oils. Talanta, 88, 537–543. https://doi.org/10.1016/j.talanta.2011.11.030; Sintang, M. D. Bin, Rimauxb, T., Walle, D. Van de, Dewettinckc, K., & Patel, A. R. (2017). Studying the oil structuring properties of monoglycerides and phytosterols mixtures. European Journal of Lipid Science and Technology, 119(3), 1500517.; Sivakanthan, S., Fawzia, S., Madhujith, T., & Karim, A. (2022). Synergistic effects of oleogelators in tailoring the properties of oleogels: A review. Comprehensive Reviews in Food Science and Food Safety. https://doi.org/10.1111/1541-4337.12966; Stone, A. K., & Nickerson, M. T. (2012). Formation and functionality of whey protein isolate-(kappa-, iota-, and lambda-type) carrageenan electrostatic complexes. Food Hydrocolloids, 27(2), 271–277. https://doi.org/10.1016/j.foodhyd.2011.08.006; Stortz, T. A., Zetzl, A. K., Barbut, S., Cattaruzza, A., & Marangoni, A. G. (2012). Edible oleogels in food products to help maximize health benefits and improve nutritional profiles. In Lipid Technology (Vol. 24, Issue 7, pp. 151–154). https://doi.org/10.1002/lite.201200205; Takeyama, E., & Fukushima, M. (2013). Physicochemical properties of plukenetia volubilis L. seeds and oxidative stability of cold-pressed oil (green nut oil). Food Science and Technology Research, 19(5), 875–882. https://doi.org/10.3136/fstr.19.875; Tang, Y. R., & Ghosh, S. (2021). Canola protein thermal denaturation improved emulsion-templated oleogelation and its cake-baking application. RSC Advances, 11(41), 25141–25157. https://doi.org/10.1039/d1ra02250d; Tang, Y. R., Sharma, M., & Ghosh, S. (2022). Pulse and Oilseed Protein-based Oil Structuring for Baking Application. In J. F. Toro-Vazquez (Ed.), Development of Trans-free Lipid Systems and their Use in Food Products (pp. 0): The Royal Society of Chemistry.; Toro-Vazquez, J. F., Mauricio-Pérez, R., González-Chávez, M. M., Sánchez-Becerril, M., Ornelas-Paz, J. de J., & Pérez-Martínez, J. D. (2013). Physical properties of organogels and water in oil emulsions structured by mixtures of candelilla wax and monoglycerides. Food Research International, 54(2), 1360–1368. https://doi.org/10.1016/j.foodres.2013.09.046; Torres Sánchez, E. G., Hernández-Ledesma, B., & Gutiérrez, L.-F. (2023). Sacha Inchi Oil Press-cake: Physicochemical Characteristics, Food-related Applications and Biological Activity. Food Reviews International, 39(1), 148-159.; Vaclavik, V. A., & Christian, E. W. (2014). Essentials of food science. In Choice Reviews Online (Vol. 45, Issue 11). https://doi.org/10.5860/choice.45-6154; Vanegas-Azuero, A. M., & Gutiérrez, L. F. (2018). Physicochemical and sensory properties of yogurts containing sacha inchi (Plukenetia volubilis L.) seeds and β-glucans from Ganoderma lucidum. Journal of Dairy Science, 101(2), 1020–1033. https://doi.org/10.3168/jds.2017-13235; Vélez-Erazo, E. M., Bosqui, K., Rabelo, R. S., & Hubinger, M. D. (2021). Effect of ph and pea protein: Xanthan gum ratio on emulsions with high oil content and high internal phase emulsion formation. In Molecules (Vol. 26, Issue 18). https://doi.org/10.3390/molecules26185646; Vélez-Erazo, E. M., Bosqui, K., Rabelo, R. S., Kurozawa, L. E., & Hubinger, M. D. (2020). High internal phase emulsions (HIPE) using pea protein and different polysaccharides as stabilizers. Food Hydrocolloids, 105(October 2019). https://doi.org/10.1016/j.foodhyd.2020.105775; Vélez-Erazo, E. M., Okuro, P. K., Gallegos-Soto, A., da Cunha, R. L., & Hubinger, M. D. (2022). Protein-based strategies for fat replacement: Approaching different protein colloidal types, structured systems and food applications. Food Research International, 156(April). https://doi.org/10.1016/j.foodres.2022.111346; Wang, Q., Espert, M., Larrea, V., Quiles, A., Salvador, A., & Sanz, T. (2023). Comparison of different indirect approaches to design edible oleogels based on cellulose ethers. Food Hydrocolloids, 134(July 2022), 108007. https://doi.org/10.1016/j.foodhyd.2022.108007; Wang, T., Li, N., Zhang, W., Guo, Y., Yu, D., Cheng, J., & Wang, L. (2023). Construction of hemp seed protein isolate-phosphatidylcholine stablized oleogel-in-water gel system and its effect on structural properties and oxidation stability. Food Chemistry, 404(April 2022). https://doi.org/10.1016/j.foodchem.2022.134520; Wang, T., Wang, N., Dai, Y., Yu, D., & Cheng, J. (2023). Interfacial adsorption properties, rheological properties and oxidation kinetics of oleogel-in-water emulsion stabilized by hemp seed protein. Food Hydrocolloids, 137(December 2022), 108402. https://doi.org/10.1016/j.foodhyd.2022.108402; Wei, F., Miao, J., Tan, H., Feng, R., Zheng, Q., Cao, Y., & Lan, Y. (2021). Oleogel-structured emulsion for enhanced oxidative stability of perilla oil: Influence of crystal morphology and cooling temperature. Lwt, 139(August 2020), 110560. https://doi.org/10.1016/j.lwt.2020.110560; Wu, J., & Muir, A. D. (2008). Comparative structural, emulsifying, and biological properties of 2 major canola proteins, cruciferin and napin. Journal of Food Science, 73(3). https://doi.org/10.1111/j.1750-3841.2008.00675.x; Yılmaz, E., & Öğütcü, M. (2014). Properties and stability of hazelnut oil organogels with beeswax and monoglyceride. JAOCS, Journal of the American Oil Chemists’ Society, 91(6), 1007–1017. https://doi.org/10.1007/s11746-014-2434-1; Zhao, M., Xu, M., Monono, E., Rao, J., & Chen, B. (2020). Unlocking the potential of minimally processed corn germ oil and high oleic soybean oil to prepare oleogels for bakery application. Food and Function, 11(12), 10329–10340. https://doi.org/10.1039/d0fo02451a; Zhao, W., Wei, Z., & Xue, C. (2021). Recent advances on food-grade oleogels: Fabrication, application and research trends. Critical Reviews in Food Science and Nutrition, 0(0), 1–18. https://doi.org/10.1080/10408398.2021.1922354; Zheng, L., Zhong, J., Liu, X., Wang, Q., & Qin, X. (2023). Physicochemical properties and intermolecular interactions of a novel diacylglycerol oil oleogel made with ethyl cellulose as affected by γ-oryzanol. Food Hydrocolloids, 138(October 2022), 108484. https://doi.org/10.1016/j.foodhyd.2023.108484; https://repositorio.unal.edu.co/handle/unal/84435; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/