يعرض 1 - 20 نتائج من 1,698 نتيجة بحث عن '"Lithospheric Mantle"', وقت الاستعلام: 0.72s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Dissertation/ Thesis
  8. 8
    Academic Journal
  9. 9
    Academic Journal

    المساهمون: Förster, B., Aulbach, S., Bebout, G. E., Bianchini, G., Natali, C., Braga, R.

    وصف الملف: ELETTRONICO

    Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:001346994400001; volume:648; firstpage:1; lastpage:14; numberofpages:14; journal:EARTH AND PLANETARY SCIENCE LETTERS; https://hdl.handle.net/11585/996782; https://www.sciencedirect.com/science/article/pii/S0012821X24005065

  10. 10
    Academic Journal
  11. 11
    Academic Journal

    المساهمون: The study was supported by the Ministry of Science and Higher Education of the Russian Federation on state assignments IGM SB RAS, Novosibirsk (projects 122041400193-7 and 122041400237-8), DPMGI SB RAS (FUFG-2024-0007 project), Yakutsk, GI SB RAS, Ulan-Ude, and under support of Russian Science Foundation (grants 23-63-10017, 24-27-00411)., Исследование выполнено при поддержке Минобрнауки РФ по государственным заданиям ИГМ СО РАН, г. Новосибирск (проекты 122041400193-7 и 122041400237-8), ИГАБМ СО РАН (проект FUFG-2024-0007), г. Якутск, ГИ СО РАН, г. Улан-Удэ, и при поддержке Российского научного фонда (гранты 23-63-10017, 24-27-00411).

    المصدر: Geodynamics & Tectonophysics; Том 15, № 5 (2024); 0782 ; Геодинамика и тектонофизика; Том 15, № 5 (2024); 0782 ; 2078-502X

    وصف الملف: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/1918/846; Afanasiev V.P., Ashchepkov I.V., Verzhak V.V., O’Brien H., Palessky S.V., 2013. PT Conditions and Trace Element Variations of Picroilmenites and Pyropes from Placers and Kimberlites in the Arkhangelsk Region, NW Russia. Journal of Asian Earth Sciences 70–71, 45–63. https://doi.org/10.1016/j.jseaes.2013.03.002.; Afanasiev V.P., Pokhilenko N.P., 2022. Approaches to the Diamond Potential of the Siberian Craton: A New Paradigm. Ore Geology Reviews 147, 104980. https://doi.org/10.1016/j.oregeorev.2022.104980.; Agee C.B., 1998. Crystal-Liquid Density Inversions in Terrestrial and Lunar Magmas. Physics of the Earth and Planetary Interiors 107 (1–3), 63–74. https://doi.org/10.1016/S0031-9201(97)00124-6.; Allan P., 2024. Major Element Indicator Mineral Chemistry of the Lulo Kimberlite Province, Lunda Norte, Angola. In: Extended Abstracts of the 12th International Kimberlite Conference (July 8–12, 2024, Yellowknife). 12IKC-123. https://doi.org/10.29173/ikc4137.; Ashchepkov I., Logvinova A., Spetsius Z., Downes H., 2023. Thermobarometry of Diamond Inclusions: Mantle Structure and Evolution beneath Archean Cratons and Mobile Belts Worldwide. Geosystems and Geoenvironment 2 (2), 10056. https://doi.org/10.1016/j.geogeo.2022.100156.; Ащепков И.В. Программа мантийных термометров барометров, использование: реконструкции и калибровки PT методов // Вестник Отделения наук о Земле РАН. 2011. № 3. NZ6008. https://doi.org/10.2205/2011NZ000138.; Ashchepkov I.V., Ntaflos T., Logvinova A.M., Spetsius Z.V., Vladykin N.V., 2017. Monomineral Universal Clinopyroxene and Garnet Barometers for Peridotitic, Eclogitic and Basaltic Systems. Geoscience Frontiers 8 (4), 775–795. https://doi.org/10.1016/j.gsf.2016.06.012.; Ashchepkov I.V., Pokhilenko N.P., Vladykin N.V., Logvinova A.M., Kostrovitsky S.I., Afanasiev V.P., Pokhilenko L.N., Kuligi S.S. et al., 2010. Structure and Evolution of the Lithospheric Mantle beneath Siberian Craton, Thermobarometric Study. Tectonophysics 485 (1–4), 17–41. https://doi.org/10.1016/j.tecto.2009.11.013.; Бабушкина С.А. Вещественные, петрологические и минералогические особенности кимберлитов в связи с ревизией геохронологических данных (на примере трубки Малокуонамская, Якутия) // «Геология алмазов – настоящее и будущее». Воронеж: Воронежский государственный университет, 2005. C. 725–732.; Bowen D.C., Ferraris R.D., Palmer C.E., Ward J.D., 2009. On the Unusual Characteristics of the Diamonds from Letšengla-Terae Kimberlites, Lesotho. Lithos 112 (2), 767–774. https://doi.org/10.1016/j.lithos.2009.04.026.; Brey G.P., Köhler T., 1990. Geothermobarometry in Four-Phase Lherzolites. II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers. Journal of Petrology 31 (6), 1353–1378. https://doi.org/10.1093/petrology/31.6.1353.; Chatterjee A., Chalapathi Rao N.V., Pandey R., Pandey A., 2023. Mantle Transition Zone-Derived Eclogite Xenoliths Entrained in a Diamondiferous Mesoproterozoic (~1.1 Ga) Kimberlite from the Eastern Dharwar Craton, India: Evidence from a Coesite, K-Omphacite, and Majoritic Garnet Assemblage. Geological Magazine 160 (5), 874–887. https://doi.org/10.1017/S0016756822001315.; Chepurov A.I., Sonin V.M., Zhimulev E.I., Chepurov A.A., 2020. Preservation Conditions of CLIPPIR Diamonds in the Earth’s Mantle in a Heterogeneous Metal–Sulphide–Silicate Medium (Experimental Modeling). Journal of Mineralogical and Petrological Sciences 115 (3), 236–246. https://doi.org/10.2465/jmps.190818.; Chinn I., 2024. Deciphering the History of CLIPPIR Diamonds from Their Morphology and Surface Features. In: Extended Abstracts of the 12th International Kimberlite Conference (July 8–12, 2024, Yellowknife). 12IKC-4202. https://doi.org/10.29173/ikc4202.; Collerson K.D., Williams Q., Ewart A.E., Murphy D.T., 2010. Origin of HIMU and EM-1 Domains Sampled by Ocean Island Basalts, Kimberlites and Carbonatites: The Role of CO 2- Fluxed Lower Mantle Melting in Thermochemical Upwellings. Physics of the Earth and Planetary Interiors 181 (3–4), 112–131. https://doi.org/10.1016/j.pepi.2010.05.008.; Daver L., Bureau H., Boulard E., Gaillou E., Cartigny P., Pinti D.L., Belhadj O., Guignot N., Foy E., Estèv I., Baptiste B., 2022. From the Lithosphere to the Lower Mantle: An AqueousRich Metal-Bearing Growth Environment to Form Type Iib Blue Diamonds. Chemical Geology 613, 121163. https://doi.org/10.1016/j.chemgeo.2022.121163.; Dawson J.B., Stephens W.E., 1975. Statistical Classification of Garnets from Kimberlites and Xenoliths. The Journal of Geology 83 (5), 589–607. https://doi.org/10.1086/628143.; Foley S.F., 2011. A Reappraisal of Redox Melting in the Earth’s Mantle as a Function of Tectonic Setting and Time. Journal of Petrology 52 (7–8), 1363–1391. https://doi.org/10.1093/petrology/egq061.; Гаранин В.К., Кудрявцева Г.П., Марфунин А.С., Михайличенко О.А. Включения в алмазе и алмазоносные породы. М.: Изд-во МГУ, 1991. 240 с.; Gasparik T., 2002. Experimental Investigation of the Origin of Majoritic Garnet Inclusions in Diamonds. Physics and Chemistry of Minerals 29, 170–180. https://doi.org/10.1007/s00269-001-0223-5.; Граханов С.А., Голобурдина М.Н., Иванов А.С., Ащепков И.В. Минералого-петрографическая характеристика алмазоносных образований Булкурской антиклинали, Республика Саха (Якутия) // Региональная геология и металлогения. 2024. № 98. С. 41–63.; Граханов С.А., Зарукин Р.А., Богуш И.Н., Ядренкин А.В. Открытие верхнетриасовых россыпей алмазов в акватории Оленёкского залива моря Лаптевых // Отечественная геология. 2009. №. 1. С. 53–61.; Grakhanov S.A., Zinchuk N.N., Sobolev N.V., 2015. The Age of Predictable Primary Diamond Sources in the Northeastern Siberian Platform. Doklady Earth Sciences 465, 1297– 1301. https://doi.org/10.1134/S1028334X15120193.; Griffin W.L., Fisher N.I., Friedman J., Ryan C.G., O’Reilly S.Y., 1999a. Cr-Pyrope Garnets in the Lithospheric Mantle. I. Compositional Systematics and Relations to Tectonic Setting. Journal of Petrology 40 (5), 679–704. https://doi.org/10.1093/petroj/40.5.679.; Griffin W.L., O’Reilly S.Y., 2007. Cratonic Lithospheric Mantle: Is Anything Subducted? Episodes 30 (1), 43–53. https://doi.org/10.18814/epiiugs/2007/v30i1/006.; Griffin W.L., Ryan C.G., Kaminsky F.V., O’Reilly S.Y., Natapov L.M., Win T.T., Kinny P.D., Ilupin I.P., 1999b. The Siberian Lithosphere Traverse: Mantle Terranes and the Assembly of the Siberian Craton. Tectonophysics 310 (1–4), 1–35. https://doi.org/10.1016/S0040-1951(99)00156-0.; Gu T., Pamato M.G., Novella D., Alvaro M., Fournelle J., Brenker F.E., Wang W., Nestola F., 2022. Hydrous Peridotitic Fragments of Earth's Mantle 660 km Discontinuity Sampled by a Diamond. Nature Geoscience 15, 950–954. https://doi.org/10.1038/s41561-022-01024-y.; Gudmundsson G., Wood B.J., 1995. Experimental Tests of Garnet Peridotite Oxygen Barometry. Contributions to Mineralogy and Petrology 119, 56–67. https://doi.org/10.1007/BF00310717.; Gurney J., Moore R., 1991. Geochemical Correlations between Kimberlitic Indicator Minerals and Diamonds as Applied to Exploration. In: Extended Abstracts of the Fifth International Kimberlite Conference (June, 1991, Araxá, Brazil). Vol. 5. CPRM, p. 125–126. https://doi.org/10.29173/ikc2486.; Иванов А.С. Метод расчета минеральных парагенезисов в кимберлитах // Математические исследования в естественных науках: Материалы XIII Всероссийской (с международным участием) научной школы (17–18 октября, 2016 г.). Апатиты, 2016. С. 173–182.; Иванов А.С. Пузырьковые диаграммы состава пиропов // Геология и минеральносырьевые ресурсы северо-востока России: Материалы X Всероссийской научно-практической конференции с международным участием (08–10 апреля 2020 г.). Якутск: Изд-во СВФУ, 2020. C. 343–346.; Калашникова Т.В., Соловьева Л.В., Костровицкий С.И. Геохимические характеристики эклогитов и клинопироксенитов из кимберлитовых трубок Сибирского кратона // Петрология и геодинамика геологических процессов: Материалы XIII Всероссийского петрографического совещания (с участием зарубежных ученых) (06‒13 сентября 2021 г.). Иркутск: Изд-во Института географии им. В.Б. Сочавы СО РАН, 2021. Т. 2. С. 10–12.; Kalra H., Dongre A., Vyas S., 2024. On the Possible Primary Sources of Koh-i-Noor and Other Golkonda Diamonds. Journal of Earth System Science 133, 51. https://doi.org/10.1007/s12040-024-02260-z.; Kaminsky F., 2012. Mineralogy of the Lower Mantle: A Review of "Super-Deep" Mineral Inclusions in Diamond. Earth-Science Reviews 110 (1–4), 127–147. https://doi.org/10.1016/j.earscirev.2011.10.005.; Kaminsky F.V., Belousova E.A., 2009. Manganoan Ilmenite as Kimberlite/Diamond Indicator Mineral. Russian Geology and Geophysics 50 (12), 1212–1220. https://doi.org/10.1016/j.rgg.2009.11.019.; Kargin A.V., 2021. Multistage Mantle Metasomatism During the Generation of Kimberlite Melts: Evidence from Mantle Xenoliths and Megacrysts of the Grib Kimberlite, Arkhangelsk, Russia. Petrology 29, 221–245. https://doi.org/10.1134/S0869591121030024.; Kargin A.V., Golubeva Y.Y., 2017. Geochemical Typification of Kimberlite and Related Rocks of the North Anabar Region, Yakutia. Doklady Earth Sciences 477, 1291–1294. https://doi.org/10.1134/S1028334X17110022.; Kennedy C.S., Kennedy G.C., 1976. The Equilibrium Boundary between Graphite and Diamond. Journal of Geophysical Research 8 (14), 2467–2470. https://doi.org/10.1029/JB081I014P02467.; Корнилова В.П., Специус З.В., Помазанский В.С. Петрографо-минералогические особенности и целесообразность переоценки алмазоносности кимберлитовых трубок Лорик и Светлана(Западно-Укукитское поле, Якутия) // Региональная геология и металлогения. 2016. № 68. С. 92–99.; Korolev N., Kopylova M., Gurney J.J., Moore A.E., Davidson J., 2018. The Origin of Type II Diamonds as Inferred from Cullinan Mineral Inclusions. Mineralogy and Petrology 112, 275–289. https://doi.org/10.1007/s00710-018-0601-z.; Костровицкий С.И., Калашникова Т.В., Ащепков И.В. Состав минералов и Р-Т-параметры кристаллизации мантийных пород под кимберлитовыми полями Прианабарья // Геодинамика и тектонофизика. 2022. Т. 13. № 4. 0665. https://doi.org/10.5800/GT-2022-13-4-0665.; Lavrent’ev Yu.G., Korolyuk V.N., Usova L.V., Nigmatulina E.N., 2015. Electron Probe Microanalysis of Rock-Forming Minerals with a JXA-8100 Electron Probe Microanalyzer. Russian Geology and Geophysics 56 (10), 1428–1436. https://doi.org/10.1016/j.rgg.2015.09.005.; Лаврентьев Ю.Г., Усова Л.В. Новая версия программы «Карат» для количественного рентгеноспектрального микроанализа // Журнал аналитической химии. 1994. Т. 49. № 5. С. 462–468.; Lock N.P., Dawson J.B., 2013. Contrasting Garnet Lherzolite Xenolith Suites from the Letšeng Kimberlite Pipes: Inferences for the Northern Lesotho Geotherm. In: D.G. Pearson, H.S. Grütter, J.W. Harris, B.A. Kjarsgaard, H. O’Brien, N.V. Chalapathi Rao, S. Sparks (Eds), Proceedings of 10th International Kimberlite Conference (February 6–11, 2012, Bangalore, India). Vol. 1. Springer, New Delhi, p. 29–44. https://doi.org/10.1007/978-81-322-1170-9_3.; Матерон Ж. Основы прикладной геостатистики. М.: Мир, 1968. 408 с.; McGregor I.D., 1974. The System MgO-SiO2-Al2O3: Solubility of Al2O3 in Enstatite for Spinel and Garnet Peridotite Compositions. American Mineralogist 59 (1–2), 110–119.; Mitchell R.H., 1986. Kimberlites: Mineralogy, Geochemistry, and Petrology. Plenum Press, New York, 442 p. https://doi.org/10.1007/978-1-4899-0568-0.; Moore A.E., 2009. Type II Diamonds: Flamboyant Megacrysts. South African Journal of Geology 112 (1), 23–38. https://doi.org/10.2113/gssajg.112.1.23.; Moore A.E., 2014. The Origin of Large Irregular Gem-Quality Type II Diamonds and the Rarity of Blue Type IIb Varieties. South African Journal of Geology 117 (2), 219– 236. https://doi.org/10.2113/gssajg.117.2.219.; Moore A.E., Helmstaedt H., 2019. Evidence for Two Blue (Type IIb) Diamond Populations. Nature 570, E26–E27. https://doi.org/10.1038/s41586-019-1245-9.; Moore A.E., Helmstaedt H., 2023. Origin of Framesite Revisited: Possible Implications for the Formation of CLIPPIR Diamonds. Earth-Science Reviews 241, 104434. https://doi.org/10.1016/j.earscirev.2023.104434.; Motsamai T., Harris J.W., Stachel T., Pearson D.G., Armstrong J., 2018. Mineral Inclusions in Diamonds from Karowe Mine, Botswana: Super-Deep Sources for Super-Sized Diamonds? Mineralogy and Petrology 112 (Suppl 1), 169– 180. https://doi.org/10.1007/s00710-018-0604-9.; Nimis P., Taylor W.R., 2000. Single Clinopyroxene Thermobarometry for Garnet Peridotites. Part I. Calibration and Testing of a Cr-in-Cpx Barometer and an Enstatite-in-Cpx Thermometer. Contributions to Mineralogy and Petrology 139, 541–554. https://doi.org/10.1007/s004100000156.; O’Neill H.St.C., Wall V.J., 1987. The Olivine-Orthopyroxene-Spinel Oxygen Geobarometer, the Nickel Precipitation Curve, and the Oxygen Fugacity of the Earth’s Upper Mantle. Journal of Petrology 28 (6), 1169–1191. https://doi.org/10.1093/PETROLOGY%2F28.6.1169.; O’Neill H.St.C., Wood B.J., 1979. An Experimental Study of Fe-Mg Partitioning between Garnet and Olivine and Its Calibration as a Geothermometer. Contributions to Mineralogy and Petrology 70, 59–70. https://doi.org/10.1007/BF00371872.; O’Relly S.Y., Griffin W.L., 1985. A Xenoliths-Derived Geotherm for Southeastern Australia and Its Geophysical Implications. Tectonophysics 111 (1–2), 41–63. https://doi.org/10.1016/0040-1951(85)90065-4.; Peslier A.H., Woodland A.B., Bell D.R., Lazarov M., 2010. Olivine Water Contents in the Continental Lithosphere and the Longevity of Cratons. Nature 467, 78–81. https://doi.org/10.1038/nature09317.; Peslier A.H., Woodland A.B., Bell D.R., Lazarov M., Lapen T.J., 2012. Metasomatic Control of Water Contents in the Kaapvaal Cratonic Mantle. Geochimica et Cosmochimica Acta 97, 213–246. https://doi.org/10.1016/j.gca.2012.08.028.; Pokhilenko N.P., Sobolev N.V., Kuligin S.S., Shimizu N., 1998. Peculiarities of Distribution of Pyroxenite Paragenesis Garnets in Yakutian Kimberlites and Some Aspects of the Evolution of the Siberian Craton Lithospheric Mantle. In: Extended Abstracts of the Seventh International Kimberlite Conference (April 11–17, 1998, Cape Town, South Africa). Cape Town, p. 702–704. https://doi.org/10.29173/ikc2852.; Pollack H.N., Chapman D.S., 1977. On the Regional Variation of Heat Flow, Geotherms, and Lithospheric Thickness. Tectonophysics 38 (3–4), 279–296. https://doi.org/10.1016/0040-1951(77)90215-3.; Regier M.E., Pearson D.G., Stachel T., Luth R.W., Stern R.A., Harris J.W., 2020. The Lithospheric-to-Lower-Mantle Carbon Cycle Recorded in Superdeep Diamonds. Nature 585, 234–238. https://doi.org/10.1038/s41586-020-2676-z.; Shatsky V.S., Zedgenizov D.A., Ragozin A.L., Kalinina V.V., 2015. Diamondiferous Subcontinental Lithospheric Mantle of the Northeastern Siberian Craton: Evidence from Mineral Inclusions in Alluvial Diamonds. Gondwana Research 28 (1), 106–120. https://doi.org/10.1016/j.gr.2014.03.018.; Shchukina E.V., Agashev A.M., Kostrovitsky S.I., Pokhilenko N.P., 2015. Metasomatic Processes in the Lithospheric Mantle beneath the V. Grib Kimberlite Pipe (Arkhangelsk Diamondiferous Province, Russia). Russian Geology and Geophysics 56 (12), 1701–1716. https://doi.org/10.1016/j.rgg.2015.11.004.; Shchukina E.V., Agashev A.M., Soloshenko N.G., Streletskaya M.V., Zedgenizov D.A., 2019. Origin of V. Grib Pipe Eclogites (Arkhangelsk Region, NW Russia): Geochemistry, Sm-Nd and Rb-Sr Isotopes and Relation to Regional Precambrian Tectonics. Mineralogy and Petrology 113, 593– 612. https://doi.org/10.1007/s00710-019-00679-7.; Smelov A.P., Timofeev V.F., 2007. The Age of the North Asian Cratonic Basement: An Overview. Gondwana Research 12 (3), 279–288. https://doi.org/10.1016/j.gr.2006.10.017.; Smith E.M., Shirey S.B., Nestola F., Bullock E.S., Wang J., Richardson S.H., Wang W., 2016. Large Gem Diamonds from Metallic Liquid in Earth’s Deep Mantle. Science 354 (6318), 1403–1405. https://doi.org/10.1126/science.aal1303.; Smith E.M., Shirey S.B., Wang W., 2017. The Very Deep Origin of the World’s Biggest Diamonds. Gems & Gemology 53 (4), 388–403. https://doi.org/10.5741/GEMS.53.4.388.; Соболев Н.В. О минералогических критериях алмазоносности кимберлитов // Геология и геофизика. 1971. Т. 12. № 3. С. 70–80.; Sobolev N.V., 1977. Deep-Seated Inclusions in Kimberlites and the Problem of the Composition of the Upper Mantle. American Geophysical Union, Washington, 279 p. DOI:10.1029/SP011.; Sobolev N.V., Lavrent’ev Y.G., Pokhilenko N., Usova L., 1973. Chrome-Rich Garnets from the Kimberlites of Yakutia and Their Parageneses. Contributions to Mineralogy and Petrology 40, 39–52. https://doi.org/10.1007/BF00371762.; Sobolev N.V., Sobolev A.V., Tomilenko A.A., Batanova V.G., Tolstov A.V., Logvinova A.M., Kuz’min D.V., 2015. Unique Compositional Peculiarities of Olivine Phenocrysts from the Post Flood Basalt Diamondiferous Malokuonapskaya Kimberlite Pipe, Yakutia. Doklady Earth Sciences 463, 828– 832 https://doi.org/10.1134/S1028334X15080164.; Spetsius Z.V., Bogush I.N., 2018. Peculiarities of Diamonds in Eclogitic Xenoliths from the Komsomolskaya Kimberlite Pipe, Yakutia. Doklady Earth Sciences 480, 666–670. https://doi.org/10.1134/S1028334X18050306.; Spetsius Z.V., Bogush I.N., Kovalchuk O.E., 2015. FTIR Mapping of Diamond Plates of Eclogitic and Peridotitic Xenoliths from the Nyurbinskaya Pipe, Yakutia: Genetic Implications. Russian Geology and Geophysics 56 (1–2), 344– 353. https://doi.org/10.1016/j.rgg.2015.01.025.; Stagno V., Ojwang D.O., McCammon C.A., Frost D.J., 2013. The Oxidation State of the Mantle and the Extraction of Carbon from Earth’s Interior. Nature 493, 84–88. https://doi.org/10.1038/nature11679.; Stephens W.E., Dawson J.B., 1977. Statistical Comparison between Pyroxenes from Kimberlites and Their Associated Xenoliths. The Journal of Geology 85 (4), 433–449. https://doi.org/10.1086/628317.; Sun J., Tappe S., Kostrovitsky S.I., Liu C.-Z., Skuzovatov S.Yu., Wu F.-Y., 2018. Mantle Sources of Kimberlites Through Time: A U-Pb and Lu-Hf Isotope Study of Zircon Megacrysts from the Siberian Diamond Fields. Chemical Geology 479, 228– 240. https://doi.org/10.1016/j.chemgeo.2018.01.013.; Taylor W.L., Kamperman M., Hamilton R., 1998. New Thermometer and Oxygen Fugacity Sensor Calibrations for Ilmenite- and Chromian Spinel-Bearing Peridotitic Assemblages. In: Extended Abstracts of the Seventh International Kimberlite Conference (April 11–17, 1998, Cape Town, South Africa). Cape Town, p. 891. https://doi.org/10.29173/ikc2920.; Tomilenko A.A., Kuzmin D.V., Bulbak T.A., Timina T.Yu., Sobolev N.V., 2015. Composition of Primary Fluid and Melt Inclusions in Regenerated Olivines from Hypabyssal Kimberlites of the Malokuonapskaya Pipe (Yakutia). Doklady Earth Sciences 465, 1168–1171. https://doi.org/10.1134/S1028334X1511015X.; Wudrick M., Pearson D.G., Stachel T., Armstrong J., Woodland S.J., Motsamai T., 2017. Age of the Lithospheric Mantle beneath the Karowe Diamond Mine. In: Extended Abstracts of the 11th International Kimberlite Conference (September 18–22, 2017, Gaborone, Botswana). IKC-4489. https://doi.org/10.29173/ikc3859.; Wyatt B.A., Baumgartner M., Ancka E., Grutter H., 2004. Compositional Classification of "Kimberlitic" and "Non-Kimberlitic" Ilmenite. Lithos 77 (1–4), 819–840. https://doi.org/10.1016/j.lithos.2004.04.025.; Зайцев А.И., Смелов А.П. Изотопная геохронология пород кимберлитовой формации Якутской провинции. Якутск: Офсет, 2010. 108 с.; Zelenski M., Kamenetsky V.S., Nekrylov V., Chayka I.F., Shcherbakov V.D., Kontonikas-Charos A., Pokrovsky B.G., Korneeva A.A., 2024. Sulfide-Sulfate Metasomatism and Nickel Release in the Suprasubduction Mantle. Earth and Planetary Science Letters 626, 118500. https://doi.org/10.1016/j.epsl.2023.118500.; Zinchenko V.N., Ivanov A.S., 2021. Simulation of Physical-Geochemical Parameters of Crystallization of Large Type IIa Diamonds from Parasteresis of Their Satellite Minerals. Journal of Science. Lyon 17, 9–14.; Зинчук Н.Н., Бадрухинов Л.Д. Алмазы из низкопродуктивных кимберлитов // Руды и металлы. 2022. № 1. С. 77–93. https://doi.org/10.47765/0869-5997-2022-10004.; Зинчук Н.Н., Бадрухинов Л.Д. Алмазы полупромышленных кимберлитов // Вестник Воронежского государственного университета. Серия: Геология. 2022. № 2. С. 32– 45. https://doi.org/10.17308/geology.2022.2/9277.; Зинчук Н.Н., Коптиль В.И. Об особенностяхалмазов перспективных территорий Сибирской платформы // Вестник Пермского университета. Геология. 2015. №. 2 (27). С. 41–54. https://doi.org/10.17072/psu.geol.27.41.; Зинчук Н.Н., Коптиль В.И. Алмазы из современных россыпей Сибирской платформы. Статья 2. Лено-Анабарская субпровинция // Бюллетень МОИП. Отдел геологический. 2017. Т. 92. № 2. С. 65–82.; Зырянов И.В., Иванов А.В., Яковлев В.Н. Извлечение алмазов с аномальной кинетикой люминесценции: результаты экспериментальных исследований // Горная промышленность. 2022. №. 4. С. 88–92. https://doi.org/10.30686/1609-9192-2022-4-88-92.

  12. 12
    Academic Journal
  13. 13
    Academic Journal

    المساهمون: Institute of Geological Sciences Wrocław (UWr), University of Wrocław Poland (UWr), Institut für Geowissenschaften Frankfurt am Main, Goethe-Universität Frankfurt am Main, Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS), Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France

    المصدر: ISSN: 0024-4937 ; Lithos ; https://hal.science/hal-04699072 ; Lithos, 2024, 482-483, pp.107670. ⟨10.1016/j.lithos.2024.107670⟩.

  14. 14
    Academic Journal

    المساهمون: Guarino, V., Bonazzi, M., Nimis, P., Guitarrari Azzone, R., Cariddi, B., Zanetti, A.

    Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:001174614500001; volume:130; firstpage:18; lastpage:35; numberofpages:18; journal:GONDWANA RESEARCH; https://hdl.handle.net/11577/3508524; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85183487541

  15. 15
  16. 16
  17. 17
    Academic Journal
  18. 18
  19. 19
    Academic Journal

    المساهمون: Generalitat de Catalunya, Agencia Estatal de Investigación (España), CSIC - Unidad de Recursos de Información Científica para la Investigación (URICI), Zhang, Wentao, Jimenez-Munt, Ivone, Torné, Montserrat, Verges, Jaume, Bravo-Gutiérrez, Estefanía, García-Castellanos, Daniel

    Relation: #PLACEHOLDER_PARENT_METADATA_VALUE#; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095154-B-I00/ES/GEODINAMICA DE LA OROGENIA ALPINA MEDITERRANEA CENTRAL: CARACTERIZACION DEL MANTO Y MOVIMIENTOS VERTICALES/; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-139943NB-I00/ES/GEODINAMICA DE LA MICROPLACA DE ADRIA, DEL MANTO A LA SUPERFICIE/; Journal of Geophysical Research: Solid Earth; Publisher's version; http://hdl.handle.net/10261/349909; https://doi.org/10.1029/2023JB028435; Sí; Journal of Geophysical Research - Part B - Solid Earth, 129(4): e2023JB028435 (2024); http://hdl.handle.net/10261/356368; http://dx.doi.org/10.13039/501100002809; http://dx.doi.org/10.13039/501100011033; 2-s2.0-85189950906; https://api.elsevier.com/content/abstract/scopus_id/85189950906

  20. 20
    Academic Journal

    المساهمون: This research was funded by the Russian Science Foundation (project 22-77-10073 "Reconstruction of the thermal state and composition of the lithospheric mantle beneath the kimberlite fields of the Siberian craton") (traceelement mineral composition)., Исследование выполнено за счет гранта РНФ (проект № 22-77-10073 «Реконструкция термального режима и состава литосферной мантии Сибирского кратона в районах проявления кимберлитового магматизма») (определены редкоэлементные составы минералов).

    المصدر: Geodynamics & Tectonophysics; Том 15, № 5 (2024); 0779 ; Геодинамика и тектонофизика; Том 15, № 5 (2024); 0779 ; 2078-502X

    وصف الملف: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/1915/843; Agashev A.M., Ionov D.A., Pokhilenko N.P., Golovin A.V., Cherepanova Yu., Sharygin I.S., 2013. Metasomatism in Lithospheric Mantle Roots: Constraints from Whole-Rock and Mineral Chemical Composition of Deformed Peridotite Xenoliths from Kimberlite Pipe Udachnaya. Lithos 160–161, 201– 215. https://doi.org/10.1016/j.lithos.2012.11.014.; Aulbach S., Kuiper K., Tinguely C., Jacob D., Wijbrans J., Le Roex A., 2024. Origins and Timing of Amphibole and Phlogopite Formation in Kimberlite-Borne Eclogite and Pyroxenite Xenoliths. In: Extended Abstracts of the 12th International Kimberlite Conference (July 8–12, 2024, Yellowknife, Canada). https://doi.org/10.29173/ikc4143.; Burgess S.R., Harte B., 2004. Tracing Lithosphere Evolution through the Analysis of Heterogeneous G9-G10 Garnets in Peridotite Xenoliths, II: REE Chemistry. Journal of Petrology 45 (3), 609–634. https://doi.org/10.1093/petrology/egg095.; Coltorti M., Bonadiman C., Hinton R.W., Siena F., Upton B.G.J., 1999. Carbonatite Metasomatism of the Oceanic Upper Mantle: Evidence from Clinopyroxenes and Glasses in Ultramafic Xenoliths of Grande Comore, Indian Ocean. Journal of Petrology 40 (1), 133–165. https://doi.org/10.1093/petrology/40.1.133.; Donskaya T.V., 2020. Assembly of the Siberian Craton: Constraints from Paleoproterozoic Granitoids. Precambrian Research 348, 105869. https://doi.org/10.1016/j.precamres.2020.105869.; Дымшиц А.М., Муравьева Е.А., Тычков Н.С., Костровицкий С.И., Шарыгин И.С., Головин А.В., Олейников О.Б., Термальное состояние краевой части Сибирского кратона в мезозойскую эру кимберлитового магматизма Куойкского поля (Якутская алмазоносная провинция) // Литосфера. 2023. Т. 23. № 4. С. 515–530. https://doi.org/10.24930/1681-9004-2023-23-4-515-530.; Ernst R.E., Hamilton M.A., Söderlund U., Hanes J.A., Gladkochub D.P., Okrugin A.V., Kolotilina T., Mekhonoshin A.S. et al., 2016. Long-Lived Connection between Southern Siberia and Northern Laurentia in the Proterozoic. Nature Geoscience 9, 464–469. https://doi.org/10.1038/ngeo2700.; Гаранин В.К., Кудрявцева Г.П., Харькив А.Д., Чистякова В.Ф. Минералогия ильменитовых гипербазитов из кимберлитовой трубки Обнаженная // Известия АН СССР. Серия геологическая. 1985. Т. 5. С. 85–101.; Grégoire M., Bell D., Le Roex A., 2002. Trace Element Geochemistry of Phlogopite-Rich Mafic Mantle Xenoliths: Their Classification and Their Relationship to PhlogopiteBearing Peridotites and Kimberlites Revisited. Contributions to Mineralogy and Petrology 142, 603–625. https://doi.org/10.1007/s00410-001-0315-8.; Griffin W.L., O’Reilly S.Y., 2007. Cratonic Lithospheric Mantle: Is Anything Subducted? Episodes 30 (1), 43–53. https://doi.org/10.18814/epiiugs/2007/v30i1/006.; Griffin W.L., Ryan C.G., Kaminsky F.V., O’Reilly S.Y., Natapov L.M., Win T.T., Kinny P.D., Ilupin I.P., 1999. The Siberian Lithosphere Traverse: Mantle Terranes and the Assembly of the Siberian Craton. Tectonophysics 310 (1–4), 1–35. https://doi.org/10.1016/S0040-1951(99)00156-0.; Harte B., 1983. Mantle Peridotites and Processes: The Kimberlite Sample. In: C.J. Hawkesworth, M.J. Norry (Eds), Continental Basalts and Their Xenoliths. Shiva Publishing Limited, Nantwich, Cheshire, U.K., p. 46–91.; Iudin D., Ashchepkov I., Babushkina S., Oleinikov O., Medvedev N., 2023. Ancient Mantle Metasomatism in West Ykukite Field Northern Yakutia. In: Abstracts of the General Assembly of the European Geoscience Union (April 24–28, 2023, Vienna, Austria). EGU, EGU23-8651. https://doi.org/10.5194/egusphere-egu23-8651.; Калашникова Т.В. Геохимические характеристики и петрогенезис мантийных ксенолитов из кимберлитовой трубки Обнаженная (Якутская кимберлитовая провинция): Дис. … канд. геол.-мин. наук. Иркутск, 2017. 254 с.; Калашникова Т.В., Соловьева Л.В., Костровицкий С.И. Сравнительная характеристика состава минералов из ксенолитов кимберлитовых трубок «Обнаженная» и «Удачная» // Известия Сибирского отделения Секции наук о Земле Российской академии естественных наук. Геология, поиски и разведка рудных месторождений. 2015. Т. 53. № 4. С. 7–20.; McDonough W.F., Sun S.-S., 1995. The Composition of the Earth. Chemical Geology 120 (3–4), 223−253. https://doi.org/10.1016/0009-2541(94)00140-4.; Nakamura D., 2009. A New Formulation of Garnet-Clinopyroxene Geothermometer Based on Accumulation and Statistical Analysis of a Large Experimental Data Set. Journal of Metamorphic Geology 27 (7), 495–508. https://doi.org/10.1111/j.1525-1314.2009.00828.x.; O’Reilly S.Y., Griffin W.L., 2013. Mantle Metasomatism. In: D.E. Harlov, H. Austrheim (Eds), Metasomatism and the Chemical Transformation of Rock. The Role of Fluids in Terrestrial and Extraterrestrial Processes. Springer, p. 471–533. https://doi.org/10.1007/978-3-642-28394-9_12.; Pokhilenko L.N., Alifirova T.A., Yudin D.S., 2013. 40Ar/39Ar Dating of Phlogopite from Mantle Xenoliths: Evidence of Ancient Deep Metasomatism of the Lithosphere of the Siberian Craton Lithosphere. Doklady Earth Sciences. 449, 309– 312. https://doi.org/10.1134/S1028334X13030057.; Pokhilenko N.P., Agashev A.M., Litasov K.D., Pokhilenko L.N., 2015. Carbonatite Metasomatism of Peridotite Lithospheric Mantle: Implications for Diamond Formation and Carbonatite-Kimberlite Magmatism. Russian Geology and Geophysics 56 (1–2), 280–295. https://doi.org/10.1016/j.rgg.2015.01.020.; Соловьева Л.В., Калашникова Т.В., Костровицкий С.И., Иванов А.В., Мацюк С.С., Суворова Л.Ф. Метасоматические и магматические процессы в мантийной литосфере Биректинского террейна Сибирского кратона и их влияние на эволюцию литосферы // Геодинамика и тектонофизика. 2015. Т. 6. № 3. С. 311– 344. https://doi.org/10.5800/GT-2015-6-3-0184.; Solov’eva L.V., Kalashnikova T.V., Kostrovitsky S.I., Ivanov A.V., Matsuk S.S., Suvorova L.F., 2017. Phlogopite and Phlogopite–Amphibole Parageneses in the Lithospheric Mantle of the Birekte Terrane (Siberian Craton). Doklady Earth Sciences 475, 822–827. https://doi.org/10.1134/S1028334X17070273.; Соловьева Л.В., Владимиров Б.М., Днепровская Л.В., Масловская М.Н., Брандт С.Б. Кимберлиты и кимберлитоподобные породы. Вещество верхней мантии под древними платформами. Новосибирск: Наука, 1994. 256 с.; Solov’eva L.V., Yasnygina T.A., Egorov K.N., 2012. Metasomatic Parageneses in Deep-Seated Xenoliths from Pipes Udachnaya and Komsomol’skaya-Magnitnaya as Indicators of Fluid Transfer through the Mantle Lithosphere of the Siberian Craton. Russian Geology and Geophysics 53 (12), 1304–1323. https://doi.org/10.1016/j.rgg.2012.10.004.; Travin A.V., Yudin D.S., Vladimirov A.G., Khromykh S.V., Volkova N.I., Mekhonoshin A.S., Kolotilina T.B., 2009. Thermochronology of the Chernorud Granulite Zone, Ol’khon Region, Western Baikal Area. Geochemistry International 47, 1107–1124. https://doi.org/10.1134/S0016702909110068.; Уханов А.В., Рябчиков И.Д., Харькив А.Д. Литосферная мантия Якутской кимберлитовой провинции. М.: Наука, 1988. 286 с.; Van Achterbergh E., Griffin W.L., Ryan C.G., O’Reilly S.Y., Pearson N.J., Kivi K., Doyle B.J., 2004. Melt Inclusions from the Deep Slave Lithosphere: Implication for the Origin and Evolution of Mantle Derived Carbonatite and Kimberlite. Lithos 76 (1–4), 461–474. https://doi.org/10.1016/j.lithos.2004.04.007.; Witt G., Seck H.A., 1989. Origin of Amphibole in Recrystallized and Porphyroclastic Mantle Xenoliths from the Rhenish Massif: Implications for the Nature of Mantle Metasomatism. Earth and Planetary Science Letters 91 (3–4), 327– 340. https://doi.org/10.1016/0012-821X(89)90007-1.