-
1
المؤلفون: A B Luiz, San Martin
المصدر: Lie Groups ISBN: 9783030618230
مصطلحات موضوعية: Pure mathematics, Lie bracket of vector fields, Lie algebra, Lie group, Vector field, Invariant (mathematics), Space (mathematics), Link (knot theory), Exponential map (Lie theory), Mathematics
-
2
المؤلفون: Peter Schupp, Eugenia Boffo
المصدر: Scopus-Elsevier
مصطلحات موضوعية: Physics, High Energy Physics - Theory, Pure mathematics, FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Curvature, Courant algebroid, General Relativity and Quantum Cosmology, symbols.namesake, High Energy Physics - Theory (hep-th), Bundle, Lie bracket of vector fields, symbols, Vector field, Hamiltonian (quantum mechanics), Mathematics::Symplectic Geometry, Poisson algebra, Symplectic geometry
-
3
المؤلفون: Kenta Yamamoto, Toshihiro Yamada
المصدر: Monte Carlo Methods and Applications. 24:289-308
مصطلحات موضوعية: Statistics and Probability, Markov chain, Applied Mathematics, 010102 general mathematics, Order (ring theory), Probability and statistics, 01 natural sciences, Term (time), 010104 statistics & probability, Stochastic differential equation, Lie bracket of vector fields, Applied mathematics, 0101 mathematics, Random variable, Brownian motion, Mathematics
-
4
المؤلفون: Dong Ho Lim, Sung A. Jun
المصدر: Far East Journal of Mathematical Sciences (FJMS). 102:151-159
مصطلحات موضوعية: Adjoint representation of a Lie algebra, Complex space, Laplace–Beltrami operator, General Mathematics, Generalizations of the derivative, Lie bracket of vector fields, Mathematical analysis, Real form, Lie derivative, Linear complex structure, Mathematics
-
5
المؤلفون: Xiaoyu Li, A. S. Mishchenko
المصدر: Journal of Mathematical Sciences. 223:739-755
مصطلحات موضوعية: Statistics and Probability, Discrete mathematics, Transitive relation, Pure mathematics, Applied Mathematics, General Mathematics, Simple Lie group, 010102 general mathematics, Adjoint representation, Mathematics::Algebraic Topology, 01 natural sciences, Cohomology, 010305 fluids & plasmas, Adjoint representation of a Lie algebra, Representation of a Lie group, Mathematics::K-Theory and Homology, Mathematics::Category Theory, 0103 physical sciences, Lie bracket of vector fields, Lie algebra, 0101 mathematics, Mathematics::Symplectic Geometry, Mathematics
-
6
المؤلفون: R. Sahadevan, Periasamy Prakash
المصدر: Nonlinear Dynamics. 89:305-319
مصطلحات موضوعية: Applied Mathematics, Mechanical Engineering, Mathematical analysis, Aerospace Engineering, Exact differential equation, Ocean Engineering, 01 natural sciences, Fractional calculus, Exact solutions in general relativity, Linear differential equation, Control and Systems Engineering, Ordinary differential equation, 0103 physical sciences, Lie bracket of vector fields, Riccati equation, Electrical and Electronic Engineering, 010306 general physics, 010301 acoustics, Differential algebraic equation, Mathematics
-
7
المؤلفون: S.-L. Tracy Huang, Ian G. Lisle
المصدر: Journal of Symbolic Computation. 79:482-498
مصطلحات موضوعية: Algebra and Number Theory, Structure constants, 010102 general mathematics, Adjoint representation, Lie group, Universal enveloping algebra, 0102 computer and information sciences, 01 natural sciences, Lie conformal algebra, Graded Lie algebra, Algebra, Computational Mathematics, 010201 computation theory & mathematics, Lie algebra, Lie bracket of vector fields, Calculus, 0101 mathematics, Mathematics
-
8
المؤلفون: Martin Meyer, Jean-Marie Vigoureux, Michel Langlois
المصدر: Journal of Modern Physics. :1190-1212
مصطلحات موضوعية: Lorentz group, Physics, Theoretical physics, Adjoint representation of a Lie algebra, Representation of a Lie group, Classical mechanics, Poincaré group, Lie bracket of vector fields, Adjoint representation, Lie group, Lie conformal algebra
-
9
المؤلفون: S. Sahoo, Soumya Ray
المصدر: Computers & Mathematics with Applications. 73:253-260
مصطلحات موضوعية: Partial differential equation, Spacetime symmetries, Mathematical analysis, 01 natural sciences, Symmetry (physics), Computational Mathematics, Computational Theory and Mathematics, Modeling and Simulation, Infinitesimal transformation, 0103 physical sciences, Lie algebra, Lie bracket of vector fields, Infinitesimal generator, Lie theory, 010306 general physics, 010301 acoustics, Mathematics
-
10
المؤلفون: Dong Ho Lim
المصدر: Far East Journal of Mathematical Sciences (FJMS). 100:1253-1263
مصطلحات موضوعية: Adjoint representation of a Lie algebra, Laplace–Beltrami operator, Complex space, General Mathematics, Generalizations of the derivative, Mathematical analysis, Lie bracket of vector fields, Real form, Lie derivative, Linear complex structure, Mathematics
-
11
المؤلفون: Elizaveta Vishnyakova
المصدر: Journal of Algebra. 459:1-28
مصطلحات موضوعية: Pure mathematics, Algebra and Number Theory, Mathematics::Complex Variables, Flag (linear algebra), 010102 general mathematics, Holomorphic function, Adjoint representation, Lie superalgebra, 01 natural sciences, Algebra, Mathematics::Quantum Algebra, 0103 physical sciences, Lie bracket of vector fields, Supermanifold, Fundamental vector field, Vector field, 010307 mathematical physics, 0101 mathematics, Mathematics::Representation Theory, Mathematics::Symplectic Geometry, Mathematics
-
12
المؤلفون: Lili Ma, Liangyun Chen
المصدر: Linear and Multilinear Algebra. 65:731-751
مصطلحات موضوعية: Algebra and Number Theory, Triple system, Simple Lie group, Mathematics::Rings and Algebras, 010102 general mathematics, Adjoint representation, 010103 numerical & computational mathematics, 01 natural sciences, Cohomology, Graded Lie algebra, Algebra, Adjoint representation of a Lie algebra, Representation of a Lie group, Lie bracket of vector fields, 0101 mathematics, Mathematics
-
13
المؤلفون: Martin Oberlack, Andreas Rosteck
المصدر: Journal of Nonlinear Mathematical Physics. 18:251
مصطلحات موضوعية: Algebra, Lie bracket of vector fields, Spacetime symmetries, Lie algebra, Adjoint representation, Lie group, Statistical and Nonlinear Physics, Lie theory, Mathematical Physics, Mathematics, Lie conformal algebra, Mathematical physics, Graded Lie algebra
-
14
المؤلفون: Andrea Mantovi
المصدر: Journal of Economics. 119:147-169
مصطلحات موضوعية: Curl (mathematics), Economics and Econometrics, Pure mathematics, Solenoidal vector field, Vector operator, 05 social sciences, Direction vector, General Business, Management and Accounting, Vector calculus identities, 0502 economics and business, Lie bracket of vector fields, Fundamental vector field, 050207 economics, 050205 econometrics, Mathematics, Vector potential
-
15
المؤلفون: Dominique Manchon, Charles Curry, Geir Bogfjellmo
المساهمون: Norwegian University of Science and Technology [Trondheim] (NTNU), Norwegian University of Science and Technology (NTNU), Norwegian University of Science and Technology [Gjøvik] (NTNU), Laboratoire de Mathématiques Blaise Pascal (LMBP), Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Campus France PHC Aurora, ANR-12-BS01-0017,CARMA,Combinatoire Algébrique, Résurgence, Moules et Applications(2012), ANR-12-BS01-0017, CARMA, Combinatoire Algébrique, Résurgence, Moules et Applications,ANR-12-BS01-0017, CARMA, Combinatoire Algébrique, Résurgence, Moules et Applications, Manchon, Dominique, Combinatoire Algébrique, Résurgence, Moules et Applications - - CARMA2012 - ANR-12-BS01-0017 - BLANC - VALID
المصدر: Numerische Mathematik
Numerische Mathematik, 2017
Numerische Mathematik, Springer Verlag, 2017مصطلحات موضوعية: Discrete mathematics, Pure mathematics, Hamiltonian vector field, Applied Mathematics, Simple Lie group, Adjoint representation, [MATH] Mathematics [math], 010103 numerical & computational mathematics, [MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA], 01 natural sciences, 010101 applied mathematics, Computational Mathematics, Adjoint representation of a Lie algebra, Poisson bracket, Lie bracket of vector fields, Lie algebra, Fundamental vector field, [MATH]Mathematics [math], 0101 mathematics, Mathematics::Symplectic Geometry, [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA], Mathematics
-
16
المؤلفون: C. Sardón, P.G. Estévez, F. J. Herranz, J. de Lucas
المصدر: Applied Mathematics and Computation. 273:435-452
مصطلحات موضوعية: Applied Mathematics, Simple Lie group, 010102 general mathematics, Adjoint representation, FOS: Physical sciences, Mathematical Physics (math-ph), 01 natural sciences, Lie conformal algebra, Graded Lie algebra, 010101 applied mathematics, Algebra, Computational Mathematics, Adjoint representation of a Lie algebra, Lie bracket of vector fields, Fundamental representation, Lie theory, 0101 mathematics, Mathematical Physics, Mathematics
-
17
المؤلفون: Dong Ho Lim
المصدر: Applied Mathematical Sciences. 10:2843-2850
مصطلحات موضوعية: Pure mathematics, Applied Mathematics, Operator (physics), 010102 general mathematics, Mathematical analysis, Structure (category theory), Real form, 01 natural sciences, 010101 applied mathematics, Hypersurface, Complex space, Multiplication operator, Lie bracket of vector fields, Linear complex structure, 0101 mathematics, Mathematics
-
18
المصدر: IEEE Transactions on Automatic Control. 60:3287-3292
مصطلحات موضوعية: Singular perturbation, Exponential stability, Dynamical systems theory, Control and Systems Engineering, Lie bracket of vector fields, Mathematical analysis, Lie algebra, Trajectory, Vector field, Electrical and Electronic Engineering, Stability (probability), Computer Science Applications, Mathematics
-
19
المؤلفون: Woon Ha Sohn, Dong Ho Lim
المصدر: Far East Journal of Mathematical Sciences (FJMS). 98:883-895
مصطلحات موضوعية: Adjoint representation of a Lie algebra, Pure mathematics, Laplace–Beltrami operator, Multiplication operator, General Mathematics, Generalizations of the derivative, Lie bracket of vector fields, Mathematical analysis, Real form, Lie derivative, Linear complex structure, Mathematics
-
20
المؤلفون: Juan de Dios Pérez, Konstantina Panagiotidou
المصدر: Bulletin of the Korean Mathematical Society. 52:1621-1630
مصطلحات موضوعية: Pure mathematics, Mathematics::Complex Variables, General Mathematics, Hyperbolic space, Complex projective space, Mathematical analysis, Covariant derivative, Complex space, Generalizations of the derivative, Lie bracket of vector fields, Simply connected space, Lie derivative, Mathematics::Differential Geometry, Mathematics