يعرض 1 - 8 نتائج من 8 نتيجة بحث عن '"Levine Children's Hospital"', وقت الاستعلام: 0.46s تنقيح النتائج
  1. 1
    Report
  2. 2
    Report

    المصدر: Posterior Fossa Decompression With or Without Duraplasty for Chiari Type I Malformation With Syringomyelia
    Di Lorenzo N, Cacciola F. Adult syringomielia. Classification, pathogenesis and therapeutic approaches. J Neurosurg Sci. 2005 Sep;49(3):65-72.
    Heiss JD, Patronas N, DeVroom HL, Shawker T, Ennis R, Kammerer W, Eidsath A, Talbot T, Morris J, Eskioglu E, Oldfield EH. Elucidating the pathophysiology of syringomyelia. J Neurosurg. 1999 Oct;91(4):553-62. doi: 10.3171/jns.1999.91.4.0553.
    Small JA, Sheridan PH. Research priorities for syringomyelia: a National Institute of Neurological Disorders and Stroke workshop summary. Neurology. 1996 Feb;46(2):577-82. doi: 10.1212/wnl.46.2.577. No abstract available.
    Brickell KL, Anderson NE, Charleston AJ, Hope JK, Bok AP, Barber PA. Ethnic differences in syringomyelia in New Zealand. J Neurol Neurosurg Psychiatry. 2006 Aug;77(8):989-91. doi: 10.1136/jnnp.2005.081240. Epub 2006 Mar 20.
    Arnautovic A, Splavski B, Boop FA, Arnautovic KI. Pediatric and adult Chiari malformation Type I surgical series 1965-2013: a review of demographics, operative treatment, and outcomes. J Neurosurg Pediatr. 2015 Feb;15(2):161-77. doi: 10.3171/2014.10.PEDS14295. Epub 2014 Dec 5.
    Fernandez AA, Guerrero AI, Martinez MI, Vazquez ME, Fernandez JB, Chesa i Octavio E, Labrado Jde L, Silva ME, de Araoz MF, Garcia-Ramos R, Ribes MG, Gomez C, Valdivia JI, Valbuena RN, Ramon JR. Malformations of the craniocervical junction (Chiari type I and syringomyelia: classification, diagnosis and treatment). BMC Musculoskelet Disord. 2009 Dec 17;10 Suppl 1(Suppl 1):S1. doi: 10.1186/1471-2474-10-S1-S1.
    Hida K, Iwasaki Y, Koyanagi I, Abe H. Pediatric syringomyelia with chiari malformation: its clinical characteristics and surgical outcomes. Surg Neurol. 1999 Apr;51(4):383-90; discussion 390-1. doi: 10.1016/s0090-3019(98)00088-3.
    Mueller D, Oro' JJ. Prospective analysis of self-perceived quality of life before and after posterior fossa decompression in 112 patients with Chiari malformation with or without syringomyelia. Neurosurg Focus. 2005 Feb 15;18(2):ECP2. doi: 10.3171/foc.2005.18.2.11.
    Tisell M, Wallskog J, Linde M. Long-term outcome after surgery for Chiari I malformation. Acta Neurol Scand. 2009 Nov;120(5):295-9. doi: 10.1111/j.1600-0404.2009.01183.x. Epub 2009 Jun 11.
    Greenberg JK, Yarbrough CK, Radmanesh A, Godzik J, Yu M, Jeffe DB, Smyth MD, Park TS, Piccirillo JF, Limbrick DD. The Chiari Severity Index: a preoperative grading system for Chiari malformation type 1. Neurosurgery. 2015 Mar;76(3):279-85; discussion 285. doi: 10.1227/NEU.0000000000000608.
    Vakharia VN, Guilfoyle MR, Laing RJ. Prospective study of outcome of foramen magnum decompressions in patients with syrinx and non-syrinx associated Chiari malformations. Br J Neurosurg. 2012 Feb;26(1):7-11. doi: 10.3109/02688697.2011.578771. Epub 2011 May 18.
    Munshi I, Frim D, Stine-Reyes R, Weir BK, Hekmatpanah J, Brown F. Effects of posterior fossa decompression with and without duraplasty on Chiari malformation-associated hydromyelia. Neurosurgery. 2000 Jun;46(6):1384-9; discussion 1389-90. doi: 10.1097/00006123-200006000-00018.
    Ventureyra EC, Aziz HA, Vassilyadi M. The role of cine flow MRI in children with Chiari I malformation. Childs Nerv Syst. 2003 Feb;19(2):109-13. doi: 10.1007/s00381-002-0701-1. Epub 2003 Jan 30.
    Navarro R, Olavarria G, Seshadri R, Gonzales-Portillo G, McLone DG, Tomita T. Surgical results of posterior fossa decompression for patients with Chiari I malformation. Childs Nerv Syst. 2004 May;20(5):349-56. doi: 10.1007/s00381-003-0883-1. Epub 2004 Mar 12.
    Limonadi FM, Selden NR. Dura-splitting decompression of the craniocervical junction: reduced operative time, hospital stay, and cost with equivalent early outcome. J Neurosurg. 2004 Nov;101(2 Suppl):184-8. doi: 10.3171/ped.2004.101.2.0184.
    Yeh DD, Koch B, Crone KR. Intraoperative ultrasonography used to determine the extent of surgery necessary during posterior fossa decompression in children with Chiari malformation type I. J Neurosurg. 2006 Jul;105(1 Suppl):26-32. doi: 10.3171/ped.2006.105.1.26.
    Galarza M, Sood S, Ham S. Relevance of surgical strategies for the management of pediatric Chiari type I malformation. Childs Nerv Syst. 2007 Jun;23(6):691-6. doi: 10.1007/s00381-007-0297-6. Epub 2007 Jan 25.
    Mutchnick IS, Janjua RM, Moeller K, Moriarty TM. Decompression of Chiari malformation with and without duraplasty: morbidity versus recurrence. J Neurosurg Pediatr. 2010 May;5(5):474-8. doi: 10.3171/2010.1.PEDS09218.
    Litvack ZN, Lindsay RA, Selden NR. Dura splitting decompression for Chiari I malformation in pediatric patients: clinical outcomes, healthcare costs, and resource utilization. Neurosurgery. 2013 Jun;72(6):922-8; discussion 928-9. doi: 10.1227/NEU.0b013e31828ca1ed.
    Lee A, Yarbrough CK, Greenberg JK, Barber J, Limbrick DD, Smyth MD. Comparison of posterior fossa decompression with or without duraplasty in children with Type I Chiari malformation. Childs Nerv Syst. 2014 Aug;30(8):1419-24. doi: 10.1007/s00381-014-2424-5. Epub 2014 Apr 29.
    Rocque BG, George TM, Kestle J, Iskandar BJ. Treatment practices for Chiari malformation type I with syringomyelia: results of a survey of the American Society of Pediatric Neurosurgeons. J Neurosurg Pediatr. 2011 Nov;8(5):430-7. doi: 10.3171/2011.8.PEDS10427.
    Batzdorf U. Primary spinal syringomyelia. Invited submission from the joint section meeting on disorders of the spine and peripheral nerves, March 2005. J Neurosurg Spine. 2005 Dec;3(6):429-35. doi: 10.3171/spi.2005.3.6.0429.
    Tubbs RS, Lyerly MJ, Loukas M, Shoja MM, Oakes WJ. The pediatric Chiari I malformation: a review. Childs Nerv Syst. 2007 Nov;23(11):1239-50. doi: 10.1007/s00381-007-0428-0. Epub 2007 Jul 18.
    Wellons JC & Smyth MD (2013) Neurosurgical Face Off: Durotomy and Duraplasty Versus No Durotomy and Duraplasty. Annual Scientific Meeting of the American Association of Neurological Surgeons.
    Greenberg JK, Milner E, Yarbrough CK, Lipsey K, Piccirillo JF, Smyth MD, Park TS, Limbrick DD Jr. Outcome methods used in clinical studies of Chiari malformation Type I: a systematic review. J Neurosurg. 2015 Feb;122(2):262-72. doi: 10.3171/2014.9.JNS14406. Epub 2014 Nov 7.
    Durham SR, Fjeld-Olenec K. Comparison of posterior fossa decompression with and without duraplasty for the surgical treatment of Chiari malformation Type I in pediatric patients: a meta-analysis. J Neurosurg Pediatr. 2008 Jul;2(1):42-9. doi: 10.3171/PED/2008/2/7/042.
    Ladner TR, Westrick AC, Wellons JC 3rd, Shannon CN. Health-related quality of life in pediatric Chiari Type I malformation: the Chiari Health Index for Pediatrics. J Neurosurg Pediatr. 2016 Jan;17(1):76-85. doi: 10.3171/2015.5.PEDS1513. Epub 2015 Oct 2.
    Guyatt GH, Kirshner B, Jaeschke R. Measuring health status: what are the necessary measurement properties? J Clin Epidemiol. 1992 Dec;45(12):1341-5. doi: 10.1016/0895-4356(92)90194-r.
    Kirshner B, Guyatt G. A methodological framework for assessing health indices. J Chronic Dis. 1985;38(1):27-36. doi: 10.1016/0021-9681(85)90005-0.
    Carmines EG & Zeller RA (1979) Reliability and Validity Assessment. Quatitative Applications in the Social Sciences. (Sage Publications, Newbury Park, CA).
    Feudtner C, Hays RM, Haynes G, Geyer JR, Neff JM, Koepsell TD. Deaths attributed to pediatric complex chronic conditions: national trends and implications for supportive care services. Pediatrics. 2001 Jun;107(6):E99. doi: 10.1542/peds.107.6.e99.
    Yarbrough CK, Greenberg JK, Smyth MD, Leonard JR, Park TS, Limbrick DD Jr. External validation of the Chicago Chiari Outcome Scale. J Neurosurg Pediatr. 2014 Jun;13(6):679-84. doi: 10.3171/2014.3.PEDS13503. Epub 2014 Apr 11.
    Weinstein JN, Lurie JD, Tosteson TD, Skinner JS, Hanscom B, Tosteson AN, Herkowitz H, Fischgrund J, Cammisa FP, Albert T, Deyo RA. Surgical vs nonoperative treatment for lumbar disk herniation: the Spine Patient Outcomes Research Trial (SPORT) observational cohort. JAMA. 2006 Nov 22;296(20):2451-9. doi: 10.1001/jama.296.20.2451.
    Drake JM, Singhal A, Kulkarni AV, DeVeber G, Cochrane DD; Canadian Pediatric Neurosurgery Study Group. Consensus definitions of complications for accurate recording and comparisons of surgical outcomes in pediatric neurosurgery. J Neurosurg Pediatr. 2012 Aug;10(2):89-95. doi: 10.3171/2012.3.PEDS11233. Epub 2012 Jun 22.
    Donner A & Klar N (2000) Design and Analysis of Cluster Randomization Trials in Health Research (Arnold; Oxford University Press, New York).
    Little RJA & Rubin DB (2002) Statistical Analysis With Missing Data (Wiley, Hoboken, N.J.) Second Edition Ed.
    Buck SF (1960) A method of estimation of missing values in multivariate data suitable for use with an electronic computer. J Roy Statist Soc 22:302-306.
    Godzik J, Kelly MP, Radmanesh A, Kim D, Holekamp TF, Smyth MD, Lenke LG, Shimony JS, Park TS, Leonard J, Limbrick DD. Relationship of syrinx size and tonsillar descent to spinal deformity in Chiari malformation Type I with associated syringomyelia. J Neurosurg Pediatr. 2014 Apr;13(4):368-74. doi: 10.3171/2014.1.PEDS13105. Epub 2014 Feb 14.
    Greenberg JK, et al. (2014) Population-Based Analysis of Complications Associated with Chiari Malformation Type 1 Surgery in Children. AANS/CNS Joint Section on Pediatric Neurosurgery.
    Gail M, Simon R. Testing for qualitative interactions between treatment effects and patient subsets. Biometrics. 1985 Jun;41(2):361-72.
    Hankinson T, Tubbs RS, Wellons JC. Duraplasty or not? An evidence-based review of the pediatric Chiari I malformation. Childs Nerv Syst. 2011 Jan;27(1):35-40. doi: 10.1007/s00381-010-1295-7. Epub 2010 Oct 2.
    Marcus DS, Archie KA, Olsen TR, Ramaratnam M. The open-source neuroimaging research enterprise. J Digit Imaging. 2007 Nov;20 Suppl 1(Suppl 1):130-8. doi: 10.1007/s10278-007-9066-z. Epub 2007 Aug 21.
    Marcus DS, Olsen TR, Ramaratnam M, Buckner RL. The Extensible Neuroimaging Archive Toolkit: an informatics platform for managing, exploring, and sharing neuroimaging data. Neuroinformatics. 2007 Spring;5(1):11-34. doi: 10.1385/ni:5:1:11.
    Hale AT, Adelson PD, Albert GW, Aldana PR, Alden TD, Anderson RCE, Bauer DF, Bonfield CM, Brockmeyer DL, Chern JJ, Couture DE, Daniels DJ, Durham SR, Ellenbogen RG, Eskandari R, George TM, Grant GA, Graupman PC, Greene S, Greenfield JP, Gross NL, Guillaume DJ, Heuer GG, Iantosca M, Iskandar BJ, Jackson EM, Johnston JM, Keating RF, Leonard JR, Maher CO, Mangano FT, McComb JG, Meehan T, Menezes AH, O'Neill B, Olavarria G, Park TS, Ragheb J, Selden NR, Shah MN, Smyth MD, Stone SSD, Strahle JM, Wait SD, Wellons JC, Whitehead WE, Shannon CN, Limbrick DD; Park-Reeves Syringomyelia Research Consortium Investigators. Factors associated with syrinx size in pediatric patients treated for Chiari malformation type I and syringomyelia: a study from the Park-Reeves Syringomyelia Research Consortium. J Neurosurg Pediatr. 2020 Mar 6;25(6):629-639. doi: 10.3171/2020.1.PEDS19493. Print 2020 Jun 1.

  3. 3
    Report
  4. 4
  5. 5
    Academic Journal

    المساهمون: University of Michigan, Ann Arbor, Michigan, Levine Children's Hospital, Charlotte, North Carolina, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, Children's Hospital of Alabama, Birmingham, Alabama, Children's Hospitals and Clinics of Minnesota, Minneapolis/St. Paul, Minnesota, Nemour's Children's Clinic, Jacksonville, Florida, University of Texas MD Anderson Cancer Center, Houston, Texas, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania, CancerCare Manitoba, Winnipeg, Manitoba, Canada, Children's Healthcare of Atlanta/Emory University, Atlanta, Georgia, Children's Mercy Hospital, Kansas City, Missouri, Rady Children's Hospital, San Diego, California, Levine Children's Hospital, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203.

    وصف الملف: application/pdf

    Relation: Gilman, Andrew L.; Jacobsen, Chad; Bunin, Nancy; Levine, John; Goldman, Fred; Bendel, Anne; Joyce, Michael; Anderson, Peter; Rozans, Marta; Wall, Donna A.; MacDonald, Tobey J.; Simon, Steve; Kadota, Richard P. (2011). "Phase I study of tandem high‐dose chemotherapy with autologous peripheral blood stem cell rescue for children with recurrent brain tumors: A pediatric blood and marrow transplant consortium study ." Pediatric Blood & Cancer 57(3): 506-513.; https://hdl.handle.net/2027.42/86845; Pediatric Blood & Cancer; Gillheeny SW, Khakoo Y, Souweidane M, et al. Thiotepa/topotecan/carboplatin with autoplogous stem cell rescue in recurrent/refractory/poor prognosis pediatric malignancies of the central nervous system. Pediatr Blood Cancer 2010; 54: 591 – 595.; Dunkel IJ, Finlay JL. High‐dose chemotherapy with autologous stem cell rescue for brain tumors. Crit Rev Oncol Hematol 2002; 41: 197 – 204.; Gururangan S, Dunkel IJ, Goldman S, et al. Myeloablative chemotherapy with autologous bone marrow rescue in young children with recurrent brain tumors. J Clin Oncol 1998; 16: 2486 – 2493.; Grodman H, Wolfe L, Kretschmar C. Outcome of patients with recurrent medulloblastoma or central nervous system germinoma treated with low dose continuous intravenous etoposide along with dose‐intensive chemotherapy followed by autologous hematopoietic stem cell rescue. Pediatr Blood Cancer 2009; 53: 33 – 36.; Kadota RP, Mahoney DH, Doyle J, et al. Dose intensive melphalan and cyclophosphamide with autologous hematopoietic stem cells for recurrent medulloblastoma or germinoma. Pediatr Blood Cancer 2008; 51: 675 – 678.; Sung KW, Yoo KH, Cho EJ, et al. High‐dose chemotherapy and autologous stem cell rescue in children with newly diagnosed high‐risk or relapsed medulloblastoma or supratentorial primitive neuroectodermal tumor. Pediatr Blood Cancer 2007; 48: 408 – 415.; Finlay JL, Dhall G, Boyett JM, et al. Myeloablative chemotherapy with autologous bone marrow rescue in children and adolescents with recurrent malignant astrocytoma: Outcome compared with conventional chemotherapy: A report from the Children's Oncology Group. Pediatr Blood Cancer 2008; 51: 806 – 811.; Finlay JL, Goldman S, Wong MC, et al. Pilot study of high‐dose thiotepa and etoposide with autologous bone marrow rescue in children and young adults with recurrent CNS tumors. J Clin Oncol 1996; 14: 2495 – 2503.; Dupuis‐Girod S, Hartmann O, Benhamou E, et al. Will high dose chemotherapy followed by autologous bone marrow transplantation supplant cranio‐spinal irradiation in young children treated for medulloblastoma. J Neurooncol 1996; 27: 87 – 98.; Dunkel IJ, Boyett JM, Yates A, et al. High‐dose carboplatin, thiotepa, and etoposide with autologous stem‐cell rescue for patients with recurrent medulloblastoma. J Clin Oncol 1998; 16: 222 – 228.; Graham ML, Herndon JE, Casey JR, et al. High‐dose chemotherapy with autologous stem‐cell rescue in patients with recurrent and high‐risk pediatric brain tumors. J Clin Oncol 1997; 15: 1814 – 1823.; Broniscer A, Nicolaides TP, Dunkel IJ, et al. High‐dose chemotherapy with autologous stem‐cell rescue in the treatment of patients with non‐cerebellar primitive neuroectodermal tumors. Pediatr Blood Cancer 2004; 42: 261 – 267.; Butturini AM, Jacob M, Aguajo J, et al. High‐dose chemotherapy and autologous hematopoietic progenitor cell rescue in children with recurrent medulloblastoma and supratentorial primitive neuroectodermal tumors—The impact of prior radiotherapy on outcome. Cancer 2009; 115: 2956 – 2963.; Gajjar A, Pizer B. Role of high‐dose chemotherapy for recurrent medulloblastoma and other CNS primitive neuroectodermal tumors. Pediatr Blood Cancer 2010; 54: 649 – 651.; Dunkel IJ, Gardner SL, Garvin JH, et al. High‐dose carboplatin, thiotepa, and etoposide with autologous stem cell rescue for patients with previously irradiated recurrent medulloblastoma. Neuro‐Oncology 2010; 12: 297 – 303.; Gururangan S, Krauser J, Watral MA, et al. Efficacy of high‐dose chemotherapy or standard salvage therapy in patients with recurrent medulloblastoma. Neuro‐Oncology 2008; 10: 745 – 751.; Valteau‐Couanet D, Fillipini B, Benhamou E, et al. High‐dose busulfan and thiotepa followed by autologous stem cell transplantation (ASCT) in previously‐irradiated medulloblastoma patients: High toxicity and lack of efficacy. Bone Marrow Transplant 2005; 36: 939 – 945.; Strother D, Ashley D, Kellie SJ, et al. Feasibility of four consecutive high‐dose chemotherapy cycles with stem‐cell rescue for patients with newly diagnosed medulloblastoma or supratentorial primitive neuroectodermal tumor after craniospinal radiotherapy: Results of a collaborative study. J Clin Oncol 2001; 19: 2696 – 2704.; Gajjar A, Chintagumpala M, Ashley D, et al. Risk‐adapted craniospinal radiotherapy followed by high‐dose chemotherapy and stem‐cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma‐96): Long term results from a prospective, multicentre trial. Lancet Oncol 2006; 7: 813 – 820.; Thorarinsdottir HK, Rood B, Kamani N, et al. Outcome for children; Foreman NK, Schissel D, Le T, et al. A study of sequential high dose cyclophosphamide and high dose carboplatin with peripheral stem‐cell rescue in resistant or recurrent pediatric brain tumors. J Neurooncol 2005; 71: 181 – 187.; Ozkaynak MF, Sandoval C, Levendoglu‐Tugal O, et al. A pilot trial of tandem autologous peripheral blood progenitor cell transplantation following high‐dose thiotepa and carboplatin in children with poor‐risk central nervous system tumors. Pediatr Hematol Oncol 2002; 21: 635 – 645.; Rosenfeld A, Kletzel M, Duerst R, et al. A phase II prospective study of sequential myeloablative chemotherapy with hematopoietic stem cell rescue for the treatment of selected high risk and recurrent central nervous system tumors. J Neurooncol 2010; 97: 247 – 255.; Grovas AC, Boyett JM, Lindsley K, et al. Regimen‐related toxicity of myeloablative chemotherapy with BCNU, thiotepa, and etoposide followed by autologous stem cell rescue for children with newly‐diagnosed glioblastoma multiforme: Report from the Children's Cancer Group. Med Pediatr Oncol 1999; 33: 83 – 87.; Calvert AH, Newell DR, Gumbrell LA, et al. Carboplatin dosage: Prospective validation of a simple formula based on renal function. J Clin Oncol 1989; 7: 1748 – 1756.; Newell DR, Pearson ADJ, Balmanno K, et al. Carboplatin pharmacokinetics in children: The development of a pediatric dosing formula. J Clin Oncol 1993; 11: 2314 – 2323.; Bearman SI, Appelbaum FR, Buckner CD, et al. Regimen‐related toxicity in patients undergoing bone marrow transplantation. J Clin Oncol 1988; 6: 1562 – 1568.; Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958; 53: 451 – 481.; Ager S, Mahendra P, Richards EM, et al. High‐dose carmustine, etoposide, and melphalan (‘BEM’) with autologous stem cell transplantation: A dose‐toxicity study. Bone Marrow Transplant 1996; 17: 335 – 340.; Kalifa C, Hartmann O, Vassal G, et al. High‐dose busulfan and thiotepa with autologous bone marrow transplantation in childhood malignant brain tumors: A phase II study. Bone Marrow Transplant 1992; 9: 227 – 233.; Mahoney DH, Jr., Strother D, Camitta B, et al. High‐dose melphalan and cyclophosphamide with autologous bone marrow rescue for recurrent/progressive malignant brain tumors in children: A pilot Pediatric Oncology Group study. J Clin Oncol 1996; 14: 382 – 388.; Marachelian A, Butturini A, Finlay J. Myeloablative chemotherapy with autologous hematopoietic progenitor cell rescue for childhood central nervous system tumors. Bone Marrow Transplant 2008; 41: 167 – 172.; Massimino M, Gandola L, Spreafico F, et al. No salvage using high‐dose chemotherapy plus/minus reirradiation for relapsing previously irradiated medulloblastoma. Int J Radiat Oncol Biol Phys 2009; 73: 1358 – 1363.

  6. 6

    المساهمون: Service d'Immunopathologie [Hôpital Saint-Louis, Paris], Université Paris Diderot - Paris 7 (UPD7)-Hopital Saint-Louis [AP-HP] (AP-HP), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm UMR 1163, Institut de minéralogie et de physique des milieux condensés (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Imagine - Institut des maladies génétiques (IMAGINE - U1163), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Pédiatrie et oncologie pédiatrique [Hôpital de la Timone - APHM], Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)- Hôpital de la Timone [CHU - APHM] (TIMONE), Service de Chirurgie, Assistance Publique - Hôpitaux de Marseille (APHM)-Hospices Civiles de Marseille-Hôpital de la Conception [CHU - APHM] (LA CONCEPTION), Service d'Immunologie [AP-HM], Hôpital de la Conception [CHU - APHM] (LA CONCEPTION), Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Department of Pediatric Immunology and Rheumatology, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität (LMU), Munich, CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Institut Necker Enfants-Malades (INEM - UM 111 (UMR 8253 / U1151)), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Levine Children's Hospital, Carolinas Healthcare System, Charlotte, North Carolina, Department of Pediatrics, Division of Rheumatology, Medical College of Wisconsin, Madison, Wisconsin, Hematology section, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, Division of Human Genetics and Division of Immune Deficiency and Bone Marrow Transplant, Cincinnati Children's Hospital, Cincinnati, Ohio, University of South Carolina School of Medicine, Columbia, South Carolina, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, Division of Human Genetics and Division of Immune Deficiency and Bone Marrow Transplant, Cincinnati Children's Hospital, Cincinnati, Developpement Normal et Pathologique du Système Immunitaire, Chaire Médecine expérimentale (A. Fischer), Collège de France (CdF (institution)), Centre d'étude des Déficits Immunitaires, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-CHU Necker - Enfants Malades [AP-HP], University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Assistance Publique - Hôpitaux de Marseille (APHM) Hôpital Timone Enfants, Service d'Immunologie - Marseille Immunopôle, Marseille, Centre d'Immunologie de Marseille - Luminy (CIML), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, APHP, Paris, Centre d'Etude des Déficits Immunitaires, Necker-Enfants Malades Hospital, APHP, Paris, Université Paris Diderot - Paris 7 (UPD7)-CHU Saint Louis [APHP], Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Assistance Publique - Hôpitaux de Marseille (APHM)-Hospices Civiles de Marseille-Hôpital de la Conception [CHU - APHM] (LA CONCEPTION ), Hôpital de la Conception [CHU - APHM] (LA CONCEPTION ), Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-CHU Necker - Enfants Malades [AP-HP], Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Ludwig-Maximilians-Universität München (LMU), School of Medicine [University of South Carolina], University of South Carolina [Columbia], Collège de France - Chaire Médecine expérimentale (A. Fischer)

    المصدر: Journal of Clinical Investigation
    Journal of Clinical Investigation, American Society for Clinical Investigation, 2018, 128 (7), pp.3071-3087. ⟨10.1172/JCI98164⟩
    Journal of Clinical Investigation, 2018, 128 (7), pp.3071-3087. ⟨10.1172/JCI98164⟩

  7. 7
    Academic Journal

    المساهمون: Service d'Immunopathologie Hôpital Saint-Louis, Paris, Université Paris Diderot - Paris 7 (UPD7)-Hopital Saint-Louis AP-HP (AP-HP), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm UMR 1163, Institut de minéralogie et de physique des milieux condensés (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Imagine - Institut des maladies génétiques (IMAGINE - U1163), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Pédiatrie et oncologie pédiatrique Hôpital de la Timone - APHM, Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)-Hôpital de la Timone CHU - APHM (TIMONE), Service de Chirurgie, Assistance Publique - Hôpitaux de Marseille (APHM)-Hospices Civiles de Marseille-Hôpital de la Conception CHU - APHM (LA CONCEPTION), Service d'Immunologie AP-HM, Hôpital de la Conception CHU - APHM (LA CONCEPTION), Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Ludwig Maximilian University Munich = Ludwig Maximilians Universität München (LMU), Hôpital Necker - Enfants Malades AP-HP, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Institut Necker Enfants-Malades (INEM - UM 111 (UMR 8253 / U1151)), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Levine Children's Hospital, Carolinas Healthcare System, Charlotte, North Carolina, Department of Pediatrics, Division of Rheumatology, Medical College of Wisconsin, Madison, Wisconsin, Hematology section, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, Division of Human Genetics and Division of Immune Deficiency and Bone Marrow Transplant, Cincinnati Children's Hospital, Cincinnati, Ohio, School of Medicine University of South Carolina, University of South Carolina Columbia, Duke University Durham, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, Division of Human Genetics and Division of Immune Deficiency and Bone Marrow Transplant, Cincinnati Children's Hospital, Cincinnati, Developpement Normal et Pathologique du Système Immunitaire, Collège de France - Chaire Médecine expérimentale (A. Fischer), Collège de France (CdF (institution)), Centre d'étude des Déficits Immunitaires, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Necker - Enfants Malades AP-HP, ANR-10-IAHU-0001,Imagine,Institut Hospitalo-Universitaire Imagine(2010), ANR-14-CE14-0028,IMMUNEBV,Déficits immunitaires héréditaires associés à une susceptibilité à l'infection par le virus EBV(2014)

    المصدر: ISSN: 0021-9738 ; Journal of Clinical Investigation ; https://hal.science/hal-02391930 ; Journal of Clinical Investigation, 2018, 128 (7), pp.3071-3087. ⟨10.1172/JCI98164⟩.

    Relation: info:eu-repo/semantics/altIdentifier/pmid/29889099; hal-02391930; https://hal.science/hal-02391930; PUBMED: 29889099

  8. 8
    Academic Journal

    المساهمون: Department of Otolaryngology–Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, U.S.A., Department of Child Health, University of Arizona, Phoenix Children's Hospital, Phoenix, Arizona, U.S.A., Department of Otolaryngology,, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A., Department of Gastroenterology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A., Division of Pediatric Gastroenterology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A., Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Levine Children's Hospital and Carolinas Medical Center, Charlotte, North Carolina, U.S.A., 9000 West Wisconsin Ave., PO BOX 1997, Suite 550, Children's Hospital Clinics Building, Pediatric Otolaryngology Offices, Milwaukee, WI 53226

    وصف الملف: application/pdf

    Relation: Chun, Robert; Sitton, Mathew; Tipnis, Neelesh A.; Arvedson, Joan C.; Rao, Aparna; Dranove, Jason; Brown, David J. (2013). "Endoscopic cricopharyngeal myotomy for management of cricopharyngeal achalasia (CA) in an 18–month–old child ." The Laryngoscope 123(3): 797-800.; https://hdl.handle.net/2027.42/96764; The Laryngoscope; Barnes MA, Ho AS, Malhotra PS, Koltai P, Messner A. The use of botulinum toxin for pediatric cricopharyngeal achalsia. IJPO 2011; 75: 1210 – 1214.; Sewell RK, Baumen N. Congenital cricopharyngeal achalsia: management with botulinum toxin before myotomy. Arch Oto Head and Neck Surgery 2005; 131: 451 – 453.; Sondheimer JM. Upper esophageal sphincter and pharyngoesophageal motor function in infants with and without gastroesophageal reflux. Gastroenterology 1983; 85: 301 – 305.; Hunt PS, Connell AM, Smiley, TB. The cricopharyngeal sphincter in gastric reflux, Gut 1970; 11: 303 – 306.; Ekberg O, Lindgren S. Gastroesophageal reflux and pharyngeal function. Acta Radiol Diagn 1986; 27: 421 – 423.; Gosh SK, Pandolfino JE, Zhang Q, Jarosz A, Kahrilas PJ. Degluttative upper esophageal sphincter relaxtion: a study of 75 volunteer subjects using solid state high resolution manometry. Am J Physiol Gastrointest Liver Physiol 2006; 291: G525 – 531; Brondbo K. Treatment of cricopharyngeal dysfunction by endoscopic laser myotomy. Acta Otolaryngol 2000; Suppl 543: 222 – 224.; Dauer E, Salassa J, Iuga L, Kasperbauer J. Endoscopic laser vs open approach for cricopharyngeal myotomy. Otolaryngol Head Neck Surg 2006; 134: 830 – 835.; Pittman M, Weissbrod P. Endoscopic CO2 laser cricopharygneal myotomy. Laryngoscope 2009; 119: 45 – 53.; De Caluwe D, Nassogne MC, Reding R, de Ville de Goyet J, Clapuyt P, Otte JB. Cricopharyngeal achalsia: case report and review of the literature eur. J Pediatric 1999; 9: 109 – 112.; Brooks Millar A, Rode H. The surgical management of cricopharyngeal achalasia in children. IJPO 2000; 56 ( 1 ): 1 – 7.; Hartnick CJ, Liu, JH, Cotton RT, Rudolph C. Subglottic stenosis complicated by allergic esophagitis: case report. Ann Otol Rhinol Laryngology 2002; 111 ( 1 ): 57 – 60.; Mathur NB, Banerjee S, Maria A, Bhatnagar V. Congenital cricopharyngeal achalsia. Indian Pediatr 2001; 38: 783 – 788.