يعرض 1 - 20 نتائج من 253 نتيجة بحث عن '"Ledesma, Liliana A."', وقت الاستعلام: 0.54s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: Degola, Francesca, Ministerio de Ciencia, Tecnología e Innovación, Universidad de Antioquia

    المصدر: International Journal of Agronomy ; volume 2024, issue 1 ; ISSN 1687-8159 1687-8167

  2. 2
    Academic Journal
  3. 3
    Academic Journal

    وصف الملف: application/pdf; application/epub+zip; audio/mpeg

    Relation: Klurfeld DM. Research gaps in evaluating the relationship of meat and health. Meat Sci. 2015; 109:86–95. http://dx.doi.org/10.1016/j.meatsci.2015.05.022; Kamruzzaman M, Makino Y, Oshita S. Non-invasive analytical technology for the detection of contamination, adulteration, and authenticity of meat, poultry, and fish: A review. Anal Chim Acta. 2015; 853(1):19–29. http://dx.doi.org/10.1016/j.aca.2014.08.043; García G, Zambrano W, Martínez G, Zambrano J. Alteraciones del pH y temperatura en la canal a causa de factores relacionados al transporte bovino previo al sacrificio. Rev Las Agrociencias. 2021; 26(Ed Esp)95–109. https://doi.org/10.33936/la_tecnica.v0i0.2524; Ponnampalam EN, Hopkins DL, Bruce H, Li D, Baldi G, Bekhit AE din. Causes and Contributing Factors to “Dark Cutting” Meat: Current Trends and Future Directions: A Review. Compr Rev Food Sci Food Saf. 2017; 16(3):400–430. https://doi.org/10.1111/1541-4337.12258; de Sousa Ribeiro CC, Contreras-Castillo CJ, Santos-Donado PR Dos, Venturini AC. New alternatives for improving and assessing the color of dark–cutting beef – a review. Sci Agric. 2022; 79(1):1–16. https://doi.org/10.1590/1678-992X-2020-0079; Prieto N, López-Campos O, Zijlstra RT, Uttaro B, Aalhus JL. Discrimination of beef dark cutters using visible and near infrared reflectance spectroscopy. Can J Anim Sci. 2014; 94(3):445–454. https://doi.org/10.4141/cjas-2014-024; Roberts JJ, Cozzolino D. An Overview on the Application of Chemometrics in Food Science and Technology—An Approach to Quantitative Data Analysis. Food Anal Methods. 2016; 9(12):3258–3267. http://dx.doi.org/10.1007/s12161-016-0574-7; Paredi G, Raboni S, Bendixen E, de Almeida AM, Mozzarelli A. “Muscle to meat” molecular events and technological transformations: The proteomics insight. J Proteomics. 2012; 75(14):4275–4289. http://dx.doi.org/10.1016/j.jprot.2012.04.011; Barragán-Hernández WA, Mahecha-Ledesma L, Olivera-Angel M, Angulo-Arizala J. Compositional and sensory quality of beef and its determination by near infrared. Agron Mesoamerican. 2021; 32(3):1000–1018. https://doi.org/10.15517/am.v32i3.40607; Aboah J, Lees N. Consumers use of quality cues for meat purchase: Research trends and future pathways. Meat Sci. 2020; 166:108142. https://doi.org/10.1016/j.meatsci.2020.108142; Purslow PP, Warner RD, Clarke FM, Hughes JM. Variations in meat colour due to factors other than myoglobin chemistry; a synthesis of recent findings (invited review). Meat Sci 2020; 159:107941. https://doi.org/10.1016/j.meatsci.2019.107941; Prill LL, Drey LN, Olson BA, Rice EA, Gonzalez JM, Vipham JL, et al. Visual Degree of Doneness Impacts Beef Palatability for Consumers with Different Degree of Doneness Preferences. Meat Muscle Biol. 2019; 3(1):411-423. https://doi.org/10.22175/mmb2019.07.0024; Gunders D. Wasted: How America is losing up to 40 percent of its food from farm to fork to landfill. NRDC Issue Pap; 2012. https://www.nrdc.org/sites/default/files/wasted-food-IP.pdf; Franco D, Mato A, Salgado FJ, López-Pedrouso M, Carrera M, Bravo S, et al. Tackling proteome changes in the longissimus thoracis bovine muscle in response to pre-slaughter stress. J Proteomics. 2015; 122:73–85. http://dx.doi.org/10.1016/j.jprot.2015.03.029; Beef Cattle Research Council. The 2010/11 National Beef Quality Audit: Canadá; 2010. https://www.beefresearch.ca/files/pdf/fact-sheets/nbqa_full_brochure_feb_2013.pdf; Beef Cattle Research Council. National Beef Quality Audit, 2010/11 Beef Carcass Audit Fact Sheet: Canadá; 2011. https://www.beefresearch.ca/files/pdf/fact-sheets/1181_CCA_NBQA_Factsheet_June_15_F.pdf; Mcgilchrist P, Perovic JL, Gardner GE, Pethick DW, Jose CG. The incidence of dark cutting in southern Australian beef production systems fluctuates between months. Anim Prod Sci. 2014; 54(10):1765–1769. https://doi.org/10.1071/AN14356; Riggs PK, Therrien DA, Vaughn RN, Rotenberry ML, Davis BW, Herring AD, et al. Differential Expression of MicroRNAs in Dark-Cutting Meat from Beef Carcasses. Appl. Sci. 2022; 12(7):3555. https://doi.org/10.3390/app12073555; Fuente-Garcia C, Aldai N, Sentandreu E, Oliván M, Franco D, García-Torres S, Sentandreu M. Assessment of caspase activity in post mortem muscle as a way to explain characteristics of DFD beef. J. Food Compos. Anal. 2022; 111:104599. https://doi.org/10.1016/j.jfca.2022.104599; Holdstock J, Aalhus JL, Uttaro BA, López-Campos Ó, Larsen IL, Bruce HL. The impact of ultimate pH on muscle characteristics and sensory attributes of the longissimus thoracis within the dark cutting (Canada B4) beef carcass grade. Meat Sci. 2014; 98(4):842–849. https://doi.org/10.1016/j.meatsci.2014.07.029; Leyva-García IA, Figueroa-Saavedra F, Sánchez-López E, Pérez-Linares C, Barreras-Serrano A. Impacto económico de la presencia de carne DFD en una planta de sacrificio Tipo Inspección Federal ( TIF ). Arch Med Vet. 2012; 44(1):39–42.; Loudon KMW, Lean IJ, Pethick DW, Gardner GE, Grubb LJ, Evans AC, et al. On farm factors increasing dark cutting in pasture fi nished beef cattle. Meat Sci. 2018; 144:110–117. https://doi.org/10.1016/j.meatsci.2018.06.011; Rosa A, Fonseca R, Balieiro JC, Poleti MD, Domenech-Pérez K, Farnetani B, et al. Incidence of DFD meat on Brazilian beef cuts. Meat Sci. 2016; 112:132–133. https://doi.org/10.1016/j.meatsci.2015.08.074; Patiño RM, Botero LM, Bohóquez W, Therán TM. Bienestar de Bovinos durante la fase de faenado en una planta de benefi cio de la región Caribe de Colombia. ACCB. 2019; 1(31):24–35. https://revistaaccb.org/r/index.php/accb/article/view/178; Ramanathan R, Lambert LH, Nair MN, Morgan B, Feuz R, Mafi G. Economic Loss, Amount of Beef Discarded, Natural Resources Wastage, and Environmental Impact Due to Beef Discoloration. Meat Muscle Biol. 2022; 6(1):13218. https://doi.org/10.22175/mmb.13218; Ramanathan R, Hunt MC, Mancini RA, Nair MN, Denzer ML, Suman SP, et al. Recent Updates in Meat Color Research: Integrating Traditional and High-Throughput Approaches. Meat Muscle Biol. 2020; 4(2):1-24. https://doi.org/10.22175/mmb.9598; Claudia Terlouw EM, Picard B, Deiss V, Berri C, Hocquette JF, Lebret B, et al. Understanding the determination of meat quality using biochemical characteristics of the muscle: Stress at slaughter and other missing keys. Foods. 2021; 10(1):1-24. https://doi.org/10.3390/foods10010084; Fraeye I, Kratka M, Vandenburgh H, Thorrez L. Sensorial and Nutritional Aspects of Cultured Meat in Comparison to Traditional Meat: Much to Be Inferred. Front Nutr. 2020; 7(35):1-7. https://doi.org/10.3389/fnut.2020.00035; Sierra V, Olivan M. Role of Mitochondria on Muscle Cell Death and Meat Tenderization. Recent Pat Endocr Metab Immune Drug Discov. 2013; 7(2):120–129. https://dx.doi.org/10.2174/1872214811307020005; Lana A, Zolla L. Proteolysis in meat tenderization from the point of view of each single protein: A proteomic perspective. J Proteomics. 2016; 147:85–97. http://dx.doi.org/10.1016/j.jprot.2016.02.011; England EM, Matarneh SK, Oliver EM, Apaoblaza A, Scheffler TL, Shi H, et al. Excess glycogen does not resolve high ultimate pH of oxidative muscle. Meat Sci. 2016; 114:95–102. https://doi.org/10.1016/j.meatsci.2015.10.010; McKeith RO, King DA, Grayson AL, Shackelford SD, Gehring KB, Savell JW, et al. Mitochondrial abundance and efficiency contribute to lean color of dark cutting beef. Meat Sci. 2016; 116:165–173. https://doi.org/10.1016/j.meatsci.2016.01.016; England EM, Matarneh SK, Scheffler TL, Wachet C, Gerrard DE. pH inactivation of phosphofructokinase arrests postmortem glycolysis. Meat Sci. 2014; 98(4):850–857. https://doi.org/10.1016/j.meatsci.2014.07.019; Zhang M, Dunshea FR, Warner RD, Digiacomo K, Chauhan SS, Warner RD. Impacts of heat stress on meat quality and strategies for amelioration : a review. Int J Biometeorol. 2020; 64:1613–1628. https://doi.org/10.1007/s00484-020-01929-6; AMSA. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat. American Meat Science Association Educational Foundation. 2015. https://meatscience.org/docs/default-source/publications-resources/amsa-sensory-and-tenderness-evaluation-guidelines/research-guide/2015-amsa-sensory-guidelines-1-0.pdf?sfvrsn=6; Ramanathan R, Suman SP, Faustman C. Biomolecular Interactions in Postmortem Skeletal Muscles Governing Fresh Meat Color : A Review. J. Agric. Food Chem. 2020; 68(46):12779-12787. https://doi.org/10.1021/acs.jafc.9b08098; Contreras-Castillo CJ, Lomiwes D, Wu G, Frost D, Farouk MM. The effect of electrical stimulation on post mortem myofibrillar protein degradation and small heat shock protein kinetics in bull beef. Meat Sci. 2016; 113:65–72. https://doi.org/10.1016/j.meatsci.2015.11.012; Wang LL, Yu QL, Han L, Ma XL, Song R De, Zhao SN, et al. Study on the effect of reactive oxygen species-mediated oxidative stress on the activation of mitochondrial apoptosis and the tenderness of yak meat. Food Chem. 2018; 244:394–402. http://dx.doi.org/10.1016/j.foodchem.2017.10.034; Joo ST, Kim GD, Hwang YH, Ryu YC. Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Sci. 2013; 95(4):828–836. https://doi.org/10.1016/j.meatsci.2013.04.044; Mouzo D, Rodríguez-vázquez R, Lorenzo JM, Franco D, Zapata C, López-pedrouso M. Proteomic application in predicting food quality relating to animal welfare . A review. Trends Food Sci Technol. 2020; 99:520–530. https://doi.org/10.1016/j.tifs.2020.03.029; Loredo-Osti J, Sánchez-López E, Barreras-Serrano A, Figueroa-Saavedra F, Pérez-Linares C, Ruiz-Albarrán M, et al. An evaluation of environmental, intrinsic and pre- and post-slaughter risk factors associated to dark-cutting beef in a Federal Inspected Type slaughter plant. Meat Sci. 2019; 150:85–92. https://doi.org/10.1016/j.meatsci.2018.12.007; Silva LHP, Assis DEF, Estrada MM, Assis GJF, Zamudio GDR, Carneiro GB, et al. Carcass and meat quality traits of Nellore young bulls and steers throughout fattening. Livest Sci. 2019; 229:28–36. https://doi.org/10.1016/j.livsci.2019.09.012; Mahmood S, Basarab JA, Dixon WT, Bruce HL. Relationship between phenotype, carcass characteristics and the incidence of dark cutting in heifers. Meat Sci. 2016; 121:261–271. https://doi.org/10.1016/j.meatsci.2016.06.020; King DA, Shackelford SD, Kuehn LA, Kemp CM, Rodriguez AB, Thallman RM, et al. Contribution of genetic influences to animal-to-animal variation in myoglobin content and beef lean color stability. J Anim Sci. 2010; 88(3):1160–1167. https://doi.org/10.2527/jas.2009-2544.; Kawecki K, Stangierski J, Niedźwiedź J, Grześ B. The impact of environmental factors on the occurrence of DFD-type of beef in commercial abattoirs. Emirates J Food Agric. 2020; 32(7):533–542. https://doi.org/10.9755/ejfa.2020.v32.i7.2125; Marenčić D, Ivanković A, Kozačinski L, Popović M. The effect of sex and age at slaughter on the physicochemical properties of baby-beef meat. Vet Arh. 2018; 88(1):101–110. https://doi.org/10.24099/vet.arhiv.160720; Jacinto-valderrama RA, Sicca G, Sampaio L, Lucia M, Lima P, Noely J. Immunocastration on performance and meat quality of Bos indicus (Nellore) cattle under different nutritional systems. Sci. agric. 2021; 78(2):e20190136. http://dx.doi.org/10.1590/1678-992X-2019-0136; Gardner GE, Hopkins DL, Greenwood PL, Cake MA, Boyce MD, Pethick DW. Sheep genotype, age and muscle type affect the expression of metabolic enzyme markers. Aust J Exp Agric. 2007; 47(10):1180–1189. https://doi.org/10.1071/EA07093; Greenwood PL, Harden S, Hopkins DL. Myofibre characteristics of ovine longissimus and semitendinosus muscles are influenced by sire breed, gender, rearing type, age and carcass weight. Aust J Exp Agric. 2007; 47(10):1137–1146. https://doi.org/10.1071/EA06324; Pérez Linares, Serrano, F. Figueroa Saavedra AB. Management Factores de manejo asociados a carne DFD en bovinos en climadesertico. Arch Zootec 2008; 57(220):545–547.; Steel C, Lees AM, Tarr G, Warner R, Dunshea F, Cowley F, et al. The impact of weather on the incidence of dark cutting in Australian feedlot cattle. Int J Biometeorol. 2022; 66(2):263–274. https://doi.org/10.1007/s00484-021-02180-3; Munilla ME, Vittone JS, Lado M, Romera SA, Teira GA. Efecto de las prácticas durante el manejo pre-faena sobre el rendimiento de la carne de bovinos. Rev Vet. 2021; 32(1):48. http://dx.doi.org/10.30972/vet.3215633; Diro M, Mekete B, Gebremedhin EZ. Effect of pre-slaughter beef cattle handling on welfare and beef quality in Ambo and Guder markets and abattoirs, Oromia Regional State, Ethiopia. Ethiop J Sci Technol. 2021; 14(2):89–104. https://doi.org/10.4314/ejst.v14i2.1; Osti JL, Serrano AB, Saavedra FF, Linares CP, Ruiz-Albarrán M. Evaluación de los componentes del manejo antes, durante y después de la matanza y su asociación con la presencia de carne DFD en bovinos del noreste de México. Rev. Mex. Cienc. Pecu. 2021; 12(3):773-788. https://doi.org/10.22319/rmcp.v12i3.4866; Herrán L, Romero M, Herrán L. Interacción humano-animal y prácticas de manejo bovino en subastas colombianas. Rev Investig Vet del Peru. 2017; 28(3):571–585. https://doi.org/10.15381/rivep.v28i3.13360; Lawrie RA, Ledward DA. Lawrie’s meat science. 7th ed. Cambridge: CRC Press; 2006; Cordoba, C. Correa, G. Barahona, R. Tarazona A. Comportamiento de machos cebú en corrales presacrificio y su relación con el pH de la carne. Arch. Zootec. 66(256):579-586.; Pérez-linares C, Barrera A, Sánchez E, Bárbara S, Figueroa-Saavedra F. Efecto del cambio en el manejo antemortem sobre la presencia de carne DFD en ganado bovino. Rev MVZ Cordoba. 2015; 20(3):4688-4697. https://doi.org/10.21897/rmvz.39; Arik E, Karaca S. The effect of some pre-slaughter factors on meat quality of bulls slaughtered in a commercial abattoir in Turkey. Indian J Anim Res. 2017; 51(3):557–63.; Cobo GC, Romero HM. Importancia de la interacción hombre-animal durante el presacrificio bovino: Revisión. Biosalud. 2012; 11(2):79–91.; Carrasco-García AA, Pardío-Sedas VT, León-Banda GG, Ahuja-Aguirre C, Paredes-Ramos P, Hernández-Cruz BC, et al. Effect of stress during slaughter on carcass characteristics and meat quality in tropical beef cattle. Asian-Australasian J Anim Sci. 2020; 33(10):1656–1665. https://doi.org/10.5713/ajas.19.0804; Clinquart A, Ellies-Oury MP, Hocquette JF, Guillier L, Santé-Lhoutellier V, Prache S. Review: On-farm and processing factors affecting bovine carcass and meat quality. Animal. 2022; 16:100426. https://doi.org/10.1016/j.animal.2021.100426; Kim YHB, Ma D, Setyabrata D, Farouk MM, Lonergan SM, Huff-Lonergan E, et al. Understanding postmortem biochemical processes and post-harvest aging factors to develop novel smart-aging strategies. Meat Sci. 2018; 144:74–90. https://doi.org/10.1016/j.meatsci.2018.04.031; McGilchrist P, Alston CL, Gardner GE, Thomson KL, Pethick DW. Beef carcasses with larger eye muscle areas, lower ossification scores and improved nutrition have a lower incidence of dark cutting. Meat Sci. 2012; 92(4):474–480. https://doi.org/10.1016/j.meatsci.2012.05.014; Young OA, West J, Hart AL, Van Otterdijk FFH. A method for early determination of meat ultimate pH. Meat Sci. 2004; 66(2):493–498. https://doi.org/10.1016/S0309-1740(03)00140-2; Kademi HI, Ulusoy BH, Hecer C. Applications of miniaturized and portable near infrared spectroscopy (NIRS) for inspection and control of meat and meat products. Food Rev Int. 2019; 35(3):201–220. https://doi.org/10.1080/87559129.2018.1514624; Mancini RA, Hunt MC. Current research in meat color. Meat Sci. 2005; 71(1):100-121. https://doi.org/10.1016/j.meatsci.2005.03.003; Li S, Zamaratskaia G, Roos S, Båth K, Meijer J, Borch E, et al. Inter-relationships between the metrics of instrumental meat color and microbial growth during aerobic storage of beef at 4°C. Acta Agric Scand A Anim Sci. 2015; 65(2):97–106.; Hodgen J. Comparison of nix color sensor and nix color sensor pro to standard meat science research colorimeters. Meat Sci. 2016; 112:159. https://doi.org/10.1016/j.meatsci.2015.08.129; Holman BWB, Collins D, Kilgannon AK, Hopkins DL. The e ff ect of technical replicate (repeats) on Nix Pro Color Sensor TM measurement precision for meat : A case-study on aged beef colour stability. Meat Sci. 2018; 135:42–45. https://doi.org/10.1016/j.meatsci.2017.09.001; Holman BWB, Hopkins DL. A comparison of the Nix Colour Sensor ProTM and HunterLab MiniScanTM colorimetric instruments when assessing aged beef colour stability over 72 h display. Meat Sci. 2019; 147:162–165. https://doi.org/10.1016/j.meatsci.2018.09.009; Prieto N, Pawluczyk O, Dugan MER, Aalhus JL. A Review of the Principles and Applications of Near-Infrared Spectroscopy to Characterize Meat, Fat, and Meat Products. Appl Spectrosc. 2017; 71(7):1403–1426. https://doi.org/10.1177/0003702817709299; Farmer LJ, Farrell DT. Review: Beef-eating quality: A European journey. Animal. 2018; 12(11):2424–2433. https://doi.org/10.1017/S1751731118001672; Ma J, Sun D, Pu H, Cheng J, Wei Q. Advanced Techniques for Hyperspectral Imaging in the Food Industry: Principles and Recent Applications. Annu Rev Food Sci Technol. 2019; 10:197–220. https://doi.org/10.1146/annurev-food-032818-121155; Tomasevic I, Tomovic V, Milovanovic B, Lorenzo J, Đorđević V, Karabasil N, et al. Comparison of a computer vision system vs. traditional colorimeter for color evaluation of meat products with various physical properties. Meat Sci. 2019; 148:5–12. https://doi.org/10.1016/j.meatsci.2018.09.015; https://revistas.unisucre.edu.co/index.php/recia/article/download/938/1070; https://revistas.unisucre.edu.co/index.php/recia/article/download/938/1071; https://revistas.unisucre.edu.co/index.php/recia/article/download/938/1072; Núm. 1 , Año 2023 : RECIA 15(1):ENERO-JUNIO 2023; e938; 15; Revista Colombiana de Ciencia Animal - RECIA; https://repositorio.unisucre.edu.co/handle/001/1722; https://doi.org/10.24188/recia.v15.n1.2023.938

  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المصدر: Agronomía Mesoamericana; 2023: Agronomia Mesoamericana: Vol. 34, Issue 3 (September-December) ; 53662 ; Agronomía Mesoamericana; 2023: Agronomía Mesoamericana: Vol. 34, Nº 3 (septiembre-diciembre) ; 2215-3608 ; 1021-7444

    وصف الملف: text/xml; application/pdf; application/epub+zip; text/html; audio/mpeg

  6. 6
    Academic Journal

    المصدر: Agronomía Mesoamericana; 2023: Agronomia Mesoamericana: Vol. 34, Issue 3 (September-December) ; 52442 ; Agronomía Mesoamericana; 2023: Agronomía Mesoamericana: Vol. 34, Nº 3 (septiembre-diciembre) ; 2215-3608 ; 1021-7444

    وصف الملف: text/xml; application/pdf; application/epub+zip; text/html; audio/mpeg

  7. 7
    Academic Journal

    المصدر: Agronomía Mesoamericana; 2023: Agronomia Mesoamericana: Vol. 34, Issue 3 (September-December) ; 52873 ; Agronomía Mesoamericana; 2023: Agronomía Mesoamericana: Vol. 34, Nº 3 (septiembre-diciembre) ; 2215-3608 ; 1021-7444

    مصطلحات موضوعية: Food, sugars, crop, forages, inulin, Alimento, azúcares, cultivo, forrajes, inulina

    وصف الملف: text/xml; application/pdf; application/epub+zip; text/html; audio/mpeg

  8. 8
    Academic Journal

    المصدر: Animal Science Colombian Journal - RECIA; Vol. 15 No. 1 (2023): RECIA 15(1):ENERO-JUNIO 2023; e938 ; Revista Colombiana de Ciencia Animal - RECIA; Vol. 15 Núm. 1 (2023): RECIA 15(1):ENERO-JUNIO 2023; e938 ; Colombian Journal of Animal Science; Vol. 15 N.º 1 (2023): RECIA 15(1):ENERO-JUNIO 2023; e938 ; 2027-4297

    وصف الملف: application/pdf; application/epub+zip; audio/mpeg

    Relation: https://revistas.unisucre.edu.co/index.php/recia/article/view/938/1070; https://revistas.unisucre.edu.co/index.php/recia/article/view/938/1071; https://revistas.unisucre.edu.co/index.php/recia/article/view/938/1072; Klurfeld DM. Research gaps in evaluating the relationship of meat and health. Meat Sci. 2015; 109:86–95. http://dx.doi.org/10.1016/j.meatsci.2015.05.022; Kamruzzaman M, Makino Y, Oshita S. Non-invasive analytical technology for the detection of contamination, adulteration, and authenticity of meat, poultry, and fish: A review. Anal Chim Acta. 2015; 853(1):19–29. http://dx.doi.org/10.1016/j.aca.2014.08.043; García G, Zambrano W, Martínez G, Zambrano J. Alteraciones del pH y temperatura en la canal a causa de factores relacionados al transporte bovino previo al sacrificio. Rev Las Agrociencias. 2021; 26(Ed Esp)95–109. https://doi.org/10.33936/la_tecnica.v0i0.2524; Ponnampalam EN, Hopkins DL, Bruce H, Li D, Baldi G, Bekhit AE din. Causes and Contributing Factors to “Dark Cutting” Meat: Current Trends and Future Directions: A Review. Compr Rev Food Sci Food Saf. 2017; 16(3):400–430. https://doi.org/10.1111/1541-4337.12258; de Sousa Ribeiro CC, Contreras-Castillo CJ, Santos-Donado PR Dos, Venturini AC. New alternatives for improving and assessing the color of dark–cutting beef – a review. Sci Agric. 2022; 79(1):1–16. https://doi.org/10.1590/1678-992X-2020-0079; Prieto N, López-Campos O, Zijlstra RT, Uttaro B, Aalhus JL. Discrimination of beef dark cutters using visible and near infrared reflectance spectroscopy. Can J Anim Sci. 2014; 94(3):445–454. https://doi.org/10.4141/cjas-2014-024; Roberts JJ, Cozzolino D. An Overview on the Application of Chemometrics in Food Science and Technology—An Approach to Quantitative Data Analysis. Food Anal Methods. 2016; 9(12):3258–3267. http://dx.doi.org/10.1007/s12161-016-0574-7; Paredi G, Raboni S, Bendixen E, de Almeida AM, Mozzarelli A. “Muscle to meat” molecular events and technological transformations: The proteomics insight. J Proteomics. 2012; 75(14):4275–4289. http://dx.doi.org/10.1016/j.jprot.2012.04.011; Barragán-Hernández WA, Mahecha-Ledesma L, Olivera-Angel M, Angulo-Arizala J. Compositional and sensory quality of beef and its determination by near infrared. Agron Mesoamerican. 2021; 32(3):1000–1018. https://doi.org/10.15517/am.v32i3.40607; Aboah J, Lees N. Consumers use of quality cues for meat purchase: Research trends and future pathways. Meat Sci. 2020; 166:108142. https://doi.org/10.1016/j.meatsci.2020.108142; Purslow PP, Warner RD, Clarke FM, Hughes JM. Variations in meat colour due to factors other than myoglobin chemistry; a synthesis of recent findings (invited review). Meat Sci 2020; 159:107941. https://doi.org/10.1016/j.meatsci.2019.107941; Prill LL, Drey LN, Olson BA, Rice EA, Gonzalez JM, Vipham JL, et al. Visual Degree of Doneness Impacts Beef Palatability for Consumers with Different Degree of Doneness Preferences. Meat Muscle Biol. 2019; 3(1):411-423. https://doi.org/10.22175/mmb2019.07.0024; Gunders D. Wasted: How America is losing up to 40 percent of its food from farm to fork to landfill. NRDC Issue Pap; 2012. https://www.nrdc.org/sites/default/files/wasted-food-IP.pdf; Franco D, Mato A, Salgado FJ, López-Pedrouso M, Carrera M, Bravo S, et al. Tackling proteome changes in the longissimus thoracis bovine muscle in response to pre-slaughter stress. J Proteomics. 2015; 122:73–85. http://dx.doi.org/10.1016/j.jprot.2015.03.029; Beef Cattle Research Council. The 2010/11 National Beef Quality Audit: Canadá; 2010. https://www.beefresearch.ca/files/pdf/fact-sheets/nbqa_full_brochure_feb_2013.pdf; Beef Cattle Research Council. National Beef Quality Audit, 2010/11 Beef Carcass Audit Fact Sheet: Canadá; 2011. https://www.beefresearch.ca/files/pdf/fact-sheets/1181_CCA_NBQA_Factsheet_June_15_F.pdf; Mcgilchrist P, Perovic JL, Gardner GE, Pethick DW, Jose CG. The incidence of dark cutting in southern Australian beef production systems fluctuates between months. Anim Prod Sci. 2014; 54(10):1765–1769. https://doi.org/10.1071/AN14356; Riggs PK, Therrien DA, Vaughn RN, Rotenberry ML, Davis BW, Herring AD, et al. Differential Expression of MicroRNAs in Dark-Cutting Meat from Beef Carcasses. Appl. Sci. 2022; 12(7):3555. https://doi.org/10.3390/app12073555; Fuente-Garcia C, Aldai N, Sentandreu E, Oliván M, Franco D, García-Torres S, Sentandreu M. Assessment of caspase activity in post mortem muscle as a way to explain characteristics of DFD beef. J. Food Compos. Anal. 2022; 111:104599. https://doi.org/10.1016/j.jfca.2022.104599; Holdstock J, Aalhus JL, Uttaro BA, López-Campos Ó, Larsen IL, Bruce HL. The impact of ultimate pH on muscle characteristics and sensory attributes of the longissimus thoracis within the dark cutting (Canada B4) beef carcass grade. Meat Sci. 2014; 98(4):842–849. https://doi.org/10.1016/j.meatsci.2014.07.029; Leyva-García IA, Figueroa-Saavedra F, Sánchez-López E, Pérez-Linares C, Barreras-Serrano A. Impacto económico de la presencia de carne DFD en una planta de sacrificio Tipo Inspección Federal ( TIF ). Arch Med Vet. 2012; 44(1):39–42.; Loudon KMW, Lean IJ, Pethick DW, Gardner GE, Grubb LJ, Evans AC, et al. On farm factors increasing dark cutting in pasture fi nished beef cattle. Meat Sci. 2018; 144:110–117. https://doi.org/10.1016/j.meatsci.2018.06.011; Rosa A, Fonseca R, Balieiro JC, Poleti MD, Domenech-Pérez K, Farnetani B, et al. Incidence of DFD meat on Brazilian beef cuts. Meat Sci. 2016; 112:132–133. https://doi.org/10.1016/j.meatsci.2015.08.074; Patiño RM, Botero LM, Bohóquez W, Therán TM. Bienestar de Bovinos durante la fase de faenado en una planta de benefi cio de la región Caribe de Colombia. ACCB. 2019; 1(31):24–35. https://revistaaccb.org/r/index.php/accb/article/view/178; Ramanathan R, Lambert LH, Nair MN, Morgan B, Feuz R, Mafi G. Economic Loss, Amount of Beef Discarded, Natural Resources Wastage, and Environmental Impact Due to Beef Discoloration. Meat Muscle Biol. 2022; 6(1):13218. https://doi.org/10.22175/mmb.13218; Ramanathan R, Hunt MC, Mancini RA, Nair MN, Denzer ML, Suman SP, et al. Recent Updates in Meat Color Research: Integrating Traditional and High-Throughput Approaches. Meat Muscle Biol. 2020; 4(2):1-24. https://doi.org/10.22175/mmb.9598; Claudia Terlouw EM, Picard B, Deiss V, Berri C, Hocquette JF, Lebret B, et al. Understanding the determination of meat quality using biochemical characteristics of the muscle: Stress at slaughter and other missing keys. Foods. 2021; 10(1):1-24. https://doi.org/10.3390/foods10010084; Fraeye I, Kratka M, Vandenburgh H, Thorrez L. Sensorial and Nutritional Aspects of Cultured Meat in Comparison to Traditional Meat: Much to Be Inferred. Front Nutr. 2020; 7(35):1-7. https://doi.org/10.3389/fnut.2020.00035; Sierra V, Olivan M. Role of Mitochondria on Muscle Cell Death and Meat Tenderization. Recent Pat Endocr Metab Immune Drug Discov. 2013; 7(2):120–129. https://dx.doi.org/10.2174/1872214811307020005; Lana A, Zolla L. Proteolysis in meat tenderization from the point of view of each single protein: A proteomic perspective. J Proteomics. 2016; 147:85–97. http://dx.doi.org/10.1016/j.jprot.2016.02.011; England EM, Matarneh SK, Oliver EM, Apaoblaza A, Scheffler TL, Shi H, et al. Excess glycogen does not resolve high ultimate pH of oxidative muscle. Meat Sci. 2016; 114:95–102. https://doi.org/10.1016/j.meatsci.2015.10.010; McKeith RO, King DA, Grayson AL, Shackelford SD, Gehring KB, Savell JW, et al. Mitochondrial abundance and efficiency contribute to lean color of dark cutting beef. Meat Sci. 2016; 116:165–173. https://doi.org/10.1016/j.meatsci.2016.01.016; England EM, Matarneh SK, Scheffler TL, Wachet C, Gerrard DE. pH inactivation of phosphofructokinase arrests postmortem glycolysis. Meat Sci. 2014; 98(4):850–857. https://doi.org/10.1016/j.meatsci.2014.07.019; Zhang M, Dunshea FR, Warner RD, Digiacomo K, Chauhan SS, Warner RD. Impacts of heat stress on meat quality and strategies for amelioration : a review. Int J Biometeorol. 2020; 64:1613–1628. https://doi.org/10.1007/s00484-020-01929-6; AMSA. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat. American Meat Science Association Educational Foundation. 2015. https://meatscience.org/docs/default-source/publications-resources/amsa-sensory-and-tenderness-evaluation-guidelines/research-guide/2015-amsa-sensory-guidelines-1-0.pdf?sfvrsn=6; Ramanathan R, Suman SP, Faustman C. Biomolecular Interactions in Postmortem Skeletal Muscles Governing Fresh Meat Color : A Review. J. Agric. Food Chem. 2020; 68(46):12779-12787. https://doi.org/10.1021/acs.jafc.9b08098; Contreras-Castillo CJ, Lomiwes D, Wu G, Frost D, Farouk MM. The effect of electrical stimulation on post mortem myofibrillar protein degradation and small heat shock protein kinetics in bull beef. Meat Sci. 2016; 113:65–72. https://doi.org/10.1016/j.meatsci.2015.11.012; Wang LL, Yu QL, Han L, Ma XL, Song R De, Zhao SN, et al. Study on the effect of reactive oxygen species-mediated oxidative stress on the activation of mitochondrial apoptosis and the tenderness of yak meat. Food Chem. 2018; 244:394–402. http://dx.doi.org/10.1016/j.foodchem.2017.10.034; Joo ST, Kim GD, Hwang YH, Ryu YC. Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Sci. 2013; 95(4):828–836. https://doi.org/10.1016/j.meatsci.2013.04.044; Mouzo D, Rodríguez-vázquez R, Lorenzo JM, Franco D, Zapata C, López-pedrouso M. Proteomic application in predicting food quality relating to animal welfare . A review. Trends Food Sci Technol. 2020; 99:520–530. https://doi.org/10.1016/j.tifs.2020.03.029; Loredo-Osti J, Sánchez-López E, Barreras-Serrano A, Figueroa-Saavedra F, Pérez-Linares C, Ruiz-Albarrán M, et al. An evaluation of environmental, intrinsic and pre- and post-slaughter risk factors associated to dark-cutting beef in a Federal Inspected Type slaughter plant. Meat Sci. 2019; 150:85–92. https://doi.org/10.1016/j.meatsci.2018.12.007; Silva LHP, Assis DEF, Estrada MM, Assis GJF, Zamudio GDR, Carneiro GB, et al. Carcass and meat quality traits of Nellore young bulls and steers throughout fattening. Livest Sci. 2019; 229:28–36. https://doi.org/10.1016/j.livsci.2019.09.012; Mahmood S, Basarab JA, Dixon WT, Bruce HL. Relationship between phenotype, carcass characteristics and the incidence of dark cutting in heifers. Meat Sci. 2016; 121:261–271. https://doi.org/10.1016/j.meatsci.2016.06.020; King DA, Shackelford SD, Kuehn LA, Kemp CM, Rodriguez AB, Thallman RM, et al. Contribution of genetic influences to animal-to-animal variation in myoglobin content and beef lean color stability. J Anim Sci. 2010; 88(3):1160–1167. https://doi.org/10.2527/jas.2009-2544.; Kawecki K, Stangierski J, Niedźwiedź J, Grześ B. The impact of environmental factors on the occurrence of DFD-type of beef in commercial abattoirs. Emirates J Food Agric. 2020; 32(7):533–542. https://doi.org/10.9755/ejfa.2020.v32.i7.2125; Marenčić D, Ivanković A, Kozačinski L, Popović M. The effect of sex and age at slaughter on the physicochemical properties of baby-beef meat. Vet Arh. 2018; 88(1):101–110. https://doi.org/10.24099/vet.arhiv.160720; Jacinto-valderrama RA, Sicca G, Sampaio L, Lucia M, Lima P, Noely J. Immunocastration on performance and meat quality of Bos indicus (Nellore) cattle under different nutritional systems. Sci. agric. 2021; 78(2):e20190136. http://dx.doi.org/10.1590/1678-992X-2019-0136; Gardner GE, Hopkins DL, Greenwood PL, Cake MA, Boyce MD, Pethick DW. Sheep genotype, age and muscle type affect the expression of metabolic enzyme markers. Aust J Exp Agric. 2007; 47(10):1180–1189. https://doi.org/10.1071/EA07093; Greenwood PL, Harden S, Hopkins DL. Myofibre characteristics of ovine longissimus and semitendinosus muscles are influenced by sire breed, gender, rearing type, age and carcass weight. Aust J Exp Agric. 2007; 47(10):1137–1146. https://doi.org/10.1071/EA06324; Pérez Linares, Serrano, F. Figueroa Saavedra AB. Management Factores de manejo asociados a carne DFD en bovinos en climadesertico. Arch Zootec 2008; 57(220):545–547.; Steel C, Lees AM, Tarr G, Warner R, Dunshea F, Cowley F, et al. The impact of weather on the incidence of dark cutting in Australian feedlot cattle. Int J Biometeorol. 2022; 66(2):263–274. https://doi.org/10.1007/s00484-021-02180-3; Munilla ME, Vittone JS, Lado M, Romera SA, Teira GA. Efecto de las prácticas durante el manejo pre-faena sobre el rendimiento de la carne de bovinos. Rev Vet. 2021; 32(1):48. http://dx.doi.org/10.30972/vet.3215633; Diro M, Mekete B, Gebremedhin EZ. Effect of pre-slaughter beef cattle handling on welfare and beef quality in Ambo and Guder markets and abattoirs, Oromia Regional State, Ethiopia. Ethiop J Sci Technol. 2021; 14(2):89–104. https://doi.org/10.4314/ejst.v14i2.1; Osti JL, Serrano AB, Saavedra FF, Linares CP, Ruiz-Albarrán M. Evaluación de los componentes del manejo antes, durante y después de la matanza y su asociación con la presencia de carne DFD en bovinos del noreste de México. Rev. Mex. Cienc. Pecu. 2021; 12(3):773-788. https://doi.org/10.22319/rmcp.v12i3.4866; Herrán L, Romero M, Herrán L. Interacción humano-animal y prácticas de manejo bovino en subastas colombianas. Rev Investig Vet del Peru. 2017; 28(3):571–585. https://doi.org/10.15381/rivep.v28i3.13360; Lawrie RA, Ledward DA. Lawrie’s meat science. 7th ed. Cambridge: CRC Press; 2006; Cordoba, C. Correa, G. Barahona, R. Tarazona A. Comportamiento de machos cebú en corrales presacrificio y su relación con el pH de la carne. Arch. Zootec. 66(256):579-586.; Pérez-linares C, Barrera A, Sánchez E, Bárbara S, Figueroa-Saavedra F. Efecto del cambio en el manejo antemortem sobre la presencia de carne DFD en ganado bovino. Rev MVZ Cordoba. 2015; 20(3):4688-4697. https://doi.org/10.21897/rmvz.39; Arik E, Karaca S. The effect of some pre-slaughter factors on meat quality of bulls slaughtered in a commercial abattoir in Turkey. Indian J Anim Res. 2017; 51(3):557–63.; Cobo GC, Romero HM. Importancia de la interacción hombre-animal durante el presacrificio bovino: Revisión. Biosalud. 2012; 11(2):79–91.; Carrasco-García AA, Pardío-Sedas VT, León-Banda GG, Ahuja-Aguirre C, Paredes-Ramos P, Hernández-Cruz BC, et al. Effect of stress during slaughter on carcass characteristics and meat quality in tropical beef cattle. Asian-Australasian J Anim Sci. 2020; 33(10):1656–1665. https://doi.org/10.5713/ajas.19.0804; Clinquart A, Ellies-Oury MP, Hocquette JF, Guillier L, Santé-Lhoutellier V, Prache S. Review: On-farm and processing factors affecting bovine carcass and meat quality. Animal. 2022; 16:100426. https://doi.org/10.1016/j.animal.2021.100426; Kim YHB, Ma D, Setyabrata D, Farouk MM, Lonergan SM, Huff-Lonergan E, et al. Understanding postmortem biochemical processes and post-harvest aging factors to develop novel smart-aging strategies. Meat Sci. 2018; 144:74–90. https://doi.org/10.1016/j.meatsci.2018.04.031; McGilchrist P, Alston CL, Gardner GE, Thomson KL, Pethick DW. Beef carcasses with larger eye muscle areas, lower ossification scores and improved nutrition have a lower incidence of dark cutting. Meat Sci. 2012; 92(4):474–480. https://doi.org/10.1016/j.meatsci.2012.05.014; Young OA, West J, Hart AL, Van Otterdijk FFH. A method for early determination of meat ultimate pH. Meat Sci. 2004; 66(2):493–498. https://doi.org/10.1016/S0309-1740(03)00140-2; Kademi HI, Ulusoy BH, Hecer C. Applications of miniaturized and portable near infrared spectroscopy (NIRS) for inspection and control of meat and meat products. Food Rev Int. 2019; 35(3):201–220. https://doi.org/10.1080/87559129.2018.1514624; Mancini RA, Hunt MC. Current research in meat color. Meat Sci. 2005; 71(1):100-121. https://doi.org/10.1016/j.meatsci.2005.03.003; Li S, Zamaratskaia G, Roos S, Båth K, Meijer J, Borch E, et al. Inter-relationships between the metrics of instrumental meat color and microbial growth during aerobic storage of beef at 4°C. Acta Agric Scand A Anim Sci. 2015; 65(2):97–106.; Hodgen J. Comparison of nix color sensor and nix color sensor pro to standard meat science research colorimeters. Meat Sci. 2016; 112:159. https://doi.org/10.1016/j.meatsci.2015.08.129; Holman BWB, Collins D, Kilgannon AK, Hopkins DL. The e ff ect of technical replicate (repeats) on Nix Pro Color Sensor TM measurement precision for meat : A case-study on aged beef colour stability. Meat Sci. 2018; 135:42–45. https://doi.org/10.1016/j.meatsci.2017.09.001; Holman BWB, Hopkins DL. A comparison of the Nix Colour Sensor ProTM and HunterLab MiniScanTM colorimetric instruments when assessing aged beef colour stability over 72 h display. Meat Sci. 2019; 147:162–165. https://doi.org/10.1016/j.meatsci.2018.09.009; Prieto N, Pawluczyk O, Dugan MER, Aalhus JL. A Review of the Principles and Applications of Near-Infrared Spectroscopy to Characterize Meat, Fat, and Meat Products. Appl Spectrosc. 2017; 71(7):1403–1426. https://doi.org/10.1177/0003702817709299; Farmer LJ, Farrell DT. Review: Beef-eating quality: A European journey. Animal. 2018; 12(11):2424–2433. https://doi.org/10.1017/S1751731118001672; Ma J, Sun D, Pu H, Cheng J, Wei Q. Advanced Techniques for Hyperspectral Imaging in the Food Industry: Principles and Recent Applications. Annu Rev Food Sci Technol. 2019; 10:197–220. https://doi.org/10.1146/annurev-food-032818-121155; Tomasevic I, Tomovic V, Milovanovic B, Lorenzo J, Đorđević V, Karabasil N, et al. Comparison of a computer vision system vs. traditional colorimeter for color evaluation of meat products with various physical properties. Meat Sci. 2019; 148:5–12. https://doi.org/10.1016/j.meatsci.2018.09.015; https://revistas.unisucre.edu.co/index.php/recia/article/view/938

  9. 9
    Academic Journal

    Alternate Title: Agronomic evaluation of Tithonia diversifolia (Hemsl.) A. Gray based on thermal time cutting criterio. (English)

    المصدر: Revista de Investigaciones Veterinarias del Peru; 2024, Vol. 35 Issue 5, p1-11, 11p

  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal

    المصدر: Ciencia y Tecnología Agropecuaria; Vol. 23 No. 1 (2022): Ciencia & Tecnología Agropecuaria-Publicación continua ; Ciencia & Tecnología Agropecuaria; Vol. 23 Núm. 1 (2022): Ciencia & Tecnología Agropecuaria-Publicación continua ; revista Corpoica Ciência e Tecnologia Agropecuária; v. 23 n. 1 (2022): Ciencia & Tecnología Agropecuaria-Publicación continua ; 2500-5308 ; 0122-8706 ; 10.21930/rcta.vol23-num1

    وصف الملف: application/pdf

  13. 13
    Academic Journal
  14. 14
    Academic Journal

    المصدر: Journal of Physics Teaching; Vol. 33: Extra Issue: Selection of papers submitted to REF; 525-532 ; Revista de Enseñanza de la Física; Vol. 33: Número Extra: Selección de Trabajos presentados a REF; 525-532 ; Revista de Enseñanza de la Física; v. 33: Edição extra: Seleção de artigos enviados ao REF; 525-532 ; 2250-6101 ; 0326-7091

    وصف الملف: application/pdf

  15. 15
    Academic Journal
  16. 16
    Academic Journal

    المصدر: Biotechnology in the Agricultural and Agroindustrial Sector; Vol. 19 No. 2 (2021): July to December; 108-118 ; Biotecnología en el Sector Agropecuario y Agroindustrial; Vol. 19 Núm. 2 (2021): Julio a Diciembre; 108-118 ; 1909-9959 ; 1692-3561

    وصف الملف: application/pdf

    Relation: https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1603/1509; ARGÜELLO-RANGEL, JERALDYN; MAHECHA-LEDESMA, LILIANA; ANGULO-ARIZALA, JOAQUÍN. Fodder shrubs_ relevance in cattle systems of Colombian low altitude lands. Agronomía Mesoamericana, v. 30, n. 3, 2019, p. 899-915.https://doi.org/10.15517/AM.V30I3.35136; BENETTON, J.; NEAVE, H.; COSTA, J.; VON KEYSERLINGK, M.; WEARY, D. Automatic weaning based on individual solid feed intake: Effects on behavior and performance of dairy calves. Journal of Dairy Science, v. 102, n. 6, 2019, p. 5475-5491. https://doi.org/10.3168/jds.2018-15830; BURGGRAAF, VICKI; CRAIGIE, CAMERON; MUIR, PAUL; KHAN, MUHAMMAD; THOMSON, BEVERLY; KNOL, FREDERIK; LOWE, KATHERINE; TAUKIRI, KEVIN; STAINCLIFFE, MARYANN; MCDERMOTT, ALAN; LONGHURST, ROBERT; MCCOARD, SUSAN. Effect of rearing diet and early post-weaning pasture quality on the life-time growth, meat quality, carcass traits and environmental impact of dairy-beef cattle. Livestock Science, v. 239, 2020, p. 1-9. https://doi.org/10.1016/j.livsci.2020.104031; CARVALHO, VICTOR; PAULINO, MARIO; DETMANN, EDENIO; VALADARES-FILHO, SEBASTIÃO; LOPES, SIDNEI; RENNÓ, LUCIANA; SAMPAIO, CLAUDIA; SILVA, ALINE. A meta-analysis of the effects of creep-feeding supplementation on performance and nutritional characteristics by beef calves grazing on tropical pastures. Livestock Science, v. 227, 2019, p. 175-182. https://doi.org/10.1016/j.livsci.2019.07.009; CUARTAS-CARDONA, CÉSAR; NARANJO-RAMÍREZ, JUAN; TARAZONA-MORALES, ARIEL; MURGUEITIO-RESTREPO, ENRIQUE; CHARÁ-OROZCO, JULIAN; KU-VERA, JUAN; SOLORIO-SÁNCHEZ, FRANCISCO; FLORES-ESTRADA, MARTHA; SOLORIO-SÁNCHEZ, BALDOMERO; BARAHONA-ROSALES, ROLANDO. Contribution of intensive silvopastoral systems to animal performance and to adaptation and mitigation of climate change. Revista Colombiana de Ciencias Pecuarias, v. 27, n. 2, 2014, p. 76-94.http://www.scielo.org.co/pdf/rccp/v27n2/v27n2a3.pdf; DE ALMEIDA, DANIEL-MAGESTE; MARCONDES, MARCOS-INÁCIO; NAVAJAS-RENNÓ, LUCIANA; SOARES-MARTIN, LEANDRO; CONTRERAS-MARQUEZ, DAVID-ESTEBAN; CASTAÑO-VILLADIEGO, FAIDER; VELEZ-SALDARRIAGA, FELIPE; MAZA-ORTEGA, ROMÁN; SOTELO-MORENO, DEILEN-PAFF; LOPES, SIDNEI-ANTONIO; ACEVEDO-CARDOZO, MANUELA; FONSECA-PAULINO, MARIO. Supplementation strategies for Nellore female calves in creep feeding to improve the performance: nutritional and metabolic responses. Tropical Animal Health and Production, v. 50, n. 8, 2018, p. 1779-1785. https://doi.org/10.1007/s11250-018-1619-2; D´OCCHIO, MICHAEL; BARUSELLI, PIETRO; CAMPANILE, GIUSEPPE. Theriogenology influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle: A review. Theriogenology, v. 125, 2019, p. 277-284. https://doi.org/10.1016/j.theriogenology.2018.11.010; DECLERCK, JONATHAN; WADE, ZAIN; REEVES, NATHAN; MILLER, MARK; JOHNSON, BRAD; DUCHARME, GARY; RATHMANN, RYAN. Influence of Megasphaera elsdenii and feeding strategies on feedlot performance, compositional growth, and carcass parameters of early weaned, beef calves. Translational Animal Science, v. 4, n. 2, 2020, p. 1-13. http://dx.doi.org/10.1093/tas/txaa031; GUGGERI, D.; MEIKLE, A.; CARRIQUIRY, M.; MONTOSSI, F.; DE BARBIERI I.; VIÑOLES, C. Effect of different management systems on growth , endocrine parameters and puberty in Hereford female calves grazing Campos grassland. Livestock Science, v. 167, 2014, p. 455-462. http://dx.doi.org/10.1016/j.livsci.2014.06.026; IBARRA-FLORES, FERNANDO; MORENO-ÁLVAREZ, CYRENNE; MARTIN-RIVERA, MARTHA; MORENO-MEDINA, SALOMÓN; DENOGEAN-BALLESTEROS, FRANCISCO; BALDENEGRO-CAMPA, ARTURO; LEÓN-MONTIJO, FERNANDA. El destete precoz como una herramienta para incrementar la rentabilidad en los ranchos ganaderos de Sonora, México. Revista Mexicana de Agronegocios, v. 28, 2011, p. 531-542.https://www.redalyc.org/pdf/141/14115904008.pdf; LUKUYU, M.; GIBSON, J.; SAVAGE, D.; DUNCAN, A.; MUJIBI, F.; OKEYO, A. Use of body linear measurements to estimate liveweight of crossbred dairy cattle in smallholder farms in Kenya. SpringerPlus, v. 5, 2016, p. 1-14.https://doi.org/10.1186/s40064-016-1698-3; LYNCH, EILISH; MCGEE, MARK; EARLEY, BERNADETTE. Weaning management of beef calves with implications for animal health and welfare. Journal of Applied Animal Research, v. 47, n. 1, 2019, p. 167-175.https://doi.org/10.1080/09712119.2019.1594825; MEJÍA-BAUTISTA, G.; MAGAÑA, J.G.; SEGURA-CORREA, J.C.; DELGADO, R.; ESTRADA-LEÓN, R.J. Comportamiento reproductivo y productivo de vacas Bos indicus, Bos taurus, y sus cruces en un sistema de producción vaca: cría en Yucatán, México. Tropical and Subtropical Agroecosystems, v, 12, n. 2, 2010, p. 289-301.https://www.redalyc.org/pdf/939/93913070010.pdf; MOLINA-BENAVIDES, RAÚL-ANDRÉS; SÁNCHEZ-GUERRERO, HUGO; URIBE-CEBALLOS, JOSE-REINEL; ATZORI, ALBERTO-ESTANISLAO. Efecto de la edad al primer parto y los días abiertos en un bovino doble propósito sobre la huella hídrica y de carbono. Revista de Investigación Agraria y Ambiental, v. 7, n. 2, 2016, p. 107-119.https://dialnet.unirioja.es/servlet/articulo?codigo=6285728; NAVAS-PANADERO, ALEXANDER. Bancos forrajeros de Moringa oleifera, en condiciones de bosque húmedo tropical. Ciencia y Tecnología Agropecuaria, v. 20, n. 2, 2019, p. 207-218.htts://doi.org/10.21930/rcta.vol20_num2_art:1457; NEAVE, HEATHER; COSTA, JOAO; BENETTON, J.B.; WEARY, DANIEL; VON KEYSERLINGK, MARINA. Individual characteristics in early life relate to variability in weaning age, feeding behavior, and weight gain of dairy calves automatically weaned based on solid feed intake. Journal of Dairy Science, v. 102, n. 11, 2019, p. 10250-10265.https://doi.org/10.3168/jds.2019-16438; OLIVEIRA, R.; MORIEL, P.; VENDRAMINI, J.; SILVA, J.; VEDOVATTO, M.; NEIVA, J.; MIOTTO, M.; MIRANDA, M.; SILVA, D. Supplemental monensin affects growth, physiology, and coccidiosis infestation of early-weaned beef calves consuming warm-season perennial or cool-season annual grasses. Applied Animal Science, v. 36, n. 1, 2020, p. 108-117. http://dx.doi.org/10.15232/aas.2019-01930; ORIHUELA, AGUSTIN; GALINA, CARLOS. Effects of separation of cows and calves on reproductive performance and animal welfare in tropical beef cattle. Animals, v. 9, n. 5, 2019, p. 1-13. https://doi.org/10.3390/ani9050223; ORIHUELA, AGUSTÍN; MOTA-ROJAS, DANIEL; NAPOLITANO, FABIO. Weaning strategies to improve productivity and animal welfare in zebu (Bos indicus) and water buffaloes (Bubalus bubalis). Journal of Animal Behaviour and Biometeorology, v. 8, n. 4, 2020, p. 257-265. http://dx.doi.org/10.31893/jabb.20036; PARKINSON, TIMOTHY. Infertility in the cow due to functional and management deficiencies. En: NOAKES, DAVID; PARKINSON, TIMOTHY. and ENGLAND, GARY. Veterinary reproduction and obstetrics. 10 ed. Amsterdam (Netherland): Saunders Ltd., 2018, p. 361-407. https://doi.org/10.1016/C2014-0-04782-X; PERDOMO-CALDERÓN, MIGUEL-FABIÁN; PEÑA-BOSA, LUISA-FERNANDA; CARVAJAL-YASNÓ, JUAN-DIEGO; MURILLO-SALDAÑA, LEIDY-YURANY. Relación nutrición-fertilidad en hembras bovinas en clima tropical. Revista electrónica de Veterinaria, v. 18, n. 9, 2017, p. 1-19.https://www.redalyc.org/pdf/636/Resumenes/Resumen_63653009019_1.pdf; PREEDY, G.; JAEGER, J.; WAGGONER, J.; OLSON, K.; HARMONEY, K. Effects of early or conventional weaning on beef cow and calf performance in pasture and drylot environments. Kansas Agricultural Experiment Station Research Reports, v. 4, n. 2, 2018, p. 1-9. https://doi.org/10.4148/2378-5977.7554; RÍOS-UTRERA, ÁNGEL; VILLAGÓMEZ-AMEZCUA, EUGENIO; ZÁRATE-MARTÍNEZ, JUAN-PRISCILIANO; CALDERÓN-ROBLES, RENE-CARLOS; VEGA-MURILLO, VICENTE-ELIEZER. Análisis reproductivo de vacas Suizo Pardo × Cebú y Simmental × Cebú en condiciones tropicales. Revista MVZ Córdoba, v. 25, n. 1, 2020, p. 1-8.https://doi.org/10.21897/rmvz.1637; ROBINSON, BOB; NOAKES, DAVID. Reproductive physiology of the female. En: NOAKES, DAVID; PARKINSON, TIMOTHY and ENGLAND, GARY. Veterinary reproduction and obstetrics. 10 ed. Amsterdam (Netherland): Saunders Ltd., 2018, p. 2-34. https://doi.org/10.1016/C2014-0-04782-X; TAO, HUI; GUO, FENG; TU, YAN; SI, BING-WEN; XING, YU-CHUAN; HUANG, DE-JUN; DIAO, QI-YU. Effect of weaning age on growth performance, feed efficiency, nutrient digestibility and blood-biochemical parameters in Droughtmaster crossbred beef calves. Asian-Australasian Journal of Animal Sciences, v. 31, n. 6, 2018, p. 864-872.http://dx.doi.org/10.5713/ajas.17.0539; TAPASCO, JEIMAR; MARTÍNEZ, JESUS; CALDERÓN, SILVIA; ROMERO, GERMÁN; ORDÓÑEZ, DANIEL; ÁLVAREZ, ANDRÉS; SÁNCHEZ, LEONARDO y LUDEÑA, CARLOS. Impactos económicos del cambio climático en colombia: Sector ganadero. 2015. https://publications.iadb.org/bitstream/handle/11319/7186/Impactos_economicos_cambio_climatico_Colombia_Sector_Ganadero.pdf?sequence=1 citado 21 de septiembre de 2019 [consultado octubre 11 de 2019].; VENDRAMINI, J.; MORIEL, P.; COOKE, R.; ARTHINGTON, J.; DA SILVA, M.; PICCOLO, M.; SANCHEZ, J.; GOMES, V.; CAMPOS, P. Effects of monensin inclusion into increasing amount of concentrate on growth and physiological parameters of early-weaned beef calves consuming warm-season grasses. Journal of Animal Science, v. 96, n. 12, 2018, p. 5112-5123. https://doi.org/10.1093/jas/sky374; VERGARA, OSCAR; BOTERO, LUZ; MARTÍNEZ, CATY. Factores ambientales que afectan la edad al primer parto y primer intervalo de partos en vacas del sistema doble propósito. Revista MVZ Córdoba, v. 14, n. 1, 2009, p. 1594-1601.https://doi.org/10.21897/rmvz.368; WISEMAN, AKSEL; REDDEN, MILES; MCGEE, ADAM; SPENCER, COURTNEY; REUTER, RYAN; HORN, GERALD; LALMAN, DAVID. Effects of timing of weaning on energy utilization in primiparous beef cows and post-weaning performance of their progeny. Journal of Animal Science, v. 97, n. 3, 2019, p. 1198-1211.https://doi.org/10.1093/jas/skz019; WU, SHENGRU; CUI, ZHANHONG; CHEN, XIAODONG; WANG, PEIYUE; YAO, JUNHU. Changed caecal microbiota and fermentation contribute to the beneficial effects of early weaning with alfalfa hay, starter feed, and milk replacer on the growth and organ development of yak calves. Animals, v. 9, n. 11, 2019, p. 1-10.https://doi.org/10.3390/ani9110921; XAVIER, EDUARDO-GULARTE; GALINA CARLOS-SALVADOR; ALVES-PIMENTEL, CLAUDIO; FIALA-RECHSTEINER, SANDRA; MAQUIVAR, MARTIN. Calf presence and estrous response, ovarian follicular activity and the pattern of luteinizing hormone in postpartum Bos indicus cows. Animal Reproduction, v. 15, n. 4, 2018, p. 1208-1213.https://doi.org/10.21451/1984-3143-AR2017-0049; https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1603

  17. 17
    Academic Journal

    المصدر: Biotechnology in the Agricultural and Agroindustrial Sector; Vol. 20 No. 1 (2022): Enero a Junio; 27-40 ; Biotecnología en el Sector Agropecuario y Agroindustrial; Vol. 20 Núm. 1 (2022): Enero a Junio; 27-40 ; 1909-9959 ; 1692-3561

    وصف الملف: application/pdf; text/xml

    Relation: https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1535/1587; https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1535/1679; AGROSAVIA. Alimentro. Retrieved January 19, 2020, from Reporte de análisis Maíz forrajero (Zea mais) Grano, Hoja y Tallo. 2013. https://alimentro.agrosavia.co/Estadisticas/ReporteAnalisis [Consultado Enero 23 de 2019]. ÁLVAREZ-CARDONA, ALBERTO; ZAPATA-SÁNCHEZ, BLANCA. Costos y métodos de costeo. Aplicación y análisis para el sector agropecuario. 1 ed. Bogotá (Colombia): Universidad Nacional de Colombia, 2011, 244 p.; ARIAS-GAMBOA, LUIS M.; ALPÍZAR-NARANJO, ANDRES; CASTILLO-UMAÑA, MIGUEL Á.; CAMACHO-CASCANTE, MARIA I.; ARRONIS-DÍAZ, VICTORIA; PADILLA-FALLAS, JOSE E. Producción, calidad bromatológica de la leche y los costos de suplementación con Tithonia diversifolia ( Hemsl .) A . Gray , en vacas Jersey. Pastos y Forrajes, v. 41, n. 4, 2018, p. 258–264. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942018000400005; BATES, DOUGLAS; MÄCHLER, MARTIN; BOLKER, BEN; WALKER, STEVEN. Fitting Linear Mixed-Effects Models using lme4. Journal of Statistical Software, v. 67, n. 1, 2015, p. 1–48. https://doi.org/10.18637/jss.v067.i01; BETANCOURT, JAIME A.; NUÑEZ, LUZ A.;CASTAÑO, J.; GASTON A. Suministro De Ensilaje De Tithonia Diversifolia Sólo O Mezclado Con Afrecho De Yuca En La Dieta De Pollos De Engorde. Tropical and Subtropical Agroecosystems, v. 20, n. 2, 2017, p. 203–213. https://www.redalyc.org/pdf/939/93952506005.pdf; BORREANI, GIORGIO; TABACCO, ERNESTO; SCHMIDT, R.J.; HOLMES, B.J.; MUCK, R.E. Silage review: Factors affecting dry matter and quality losses in silages. Journal of Dairy Science, v. 101, n. 5, 2018, p. 3952–3979. https://doi.org/10.3168/jds.2017-13837; BRAUN, ANDREA; VAN-DIJK, SUZANNE; GRULKE, MARKUS. Incremento de los Sistemas Silvopastoriles en America del Sur. Ed. Katalin Solymosi. Asunción (Paraguay): Banco Interamericano de Desarrollo, 2016, 461 p. https://publications.iadb.org/publications/spanish/document/Incremento-de-los-Sistemas-Silvopastoriles-en-America-del-Sur.pdf; BUXADÉ, CARLOS. Zootecnia. Bases de producción animal. Tomo II. Reproducción y alimentación. Madrid (España): Mundi-prensa, 1995, 344 p.; CARDONA-IGLESIAS, J. LEONARDO; MAHECHA-LEDESMA, LILIANA; ANGULO-ARIZALA, JOAQUIN. Estimación de metano en vacas pastoreando sistemas silvopastoriles con Tithonia diversifolia y suplementadas con grasas poliinsaturadas. Revista Científica FVC-LUZ, v. 29, n. 2, 2019a, p. 107–118.http://www.saber.ula.ve/bitstream/handle/123456789/46223/articulo4.pdf?sequence=1&isAllowed=y; CARDONA-IGLESIAS, J. LEONARDO; MAHECHA-LEDESMA, LILIANA; ANGULO-ARIZALA, JOAQUIN. Consumo y productividad en vacas holstein pastoreando un sistema silvopastoril vs monocultivo de kikuyo y suplementadas con grasas insaturadas. Revista Científica De La Facultad De Ciencias Veterinarias De La Universidad Del Zulia, v. 29, n. 1, 2019b, p. 20–33.https://produccioncientificaluz.org/index.php/cientifica/article/view/29616; CASTRO-MONTOYA, JOAQUIN; DICKHOEFER, UTA. Effects of tropical legume silages on intake, digestibility and performance in large and small ruminants: A review. Grass and Forage Science, v. 73, n. 1, 2018, p. 26–39. https://doi.org/10.1111/gfs.12324; GALINDO-BLANCO, JUANA L.; RODRÍGUEZ-GARCÍA, IDALMIS; GONZÁLEZ-IBARRA, NIURCA; GARCÍA-LÒPEZ, ROBERTO; HERRERA-VILLAFRANCA, MAGALY. Sistema silvopastoril con Tithonia diversifolia (Hemsl.) A. Gray: efecto en la población microbiana ruminal de vacas. Pastos y Forrajes, v. 41, n. 4, 2018, p. 273–280.http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942018000400006; HAYDOCK, K.; SHAW, N. The comparative yield method for estimating dry matter yield of pasture. Australian Journal of Experimental Agriculture, v. 15, n. 76, 1975, p. 663. https://doi.org/10.1071/EA9750663; HOLGUIN-CASTAÑO, VILMA; ORTÍZ-GRIALES, SANIN; HUERTAS, ALEXANDRA; FANDIÑO, CLEMENCIA; MORA-DELGADO, JAIRO. Consumo voluntario y ganancia de peso en corderos alimentados con ensilaje de Cenchrus purpureus Schum y Tithonia diversifolia (Hemsl.) A . Gray Voluntary intake and weight gain in lambs fed with silage of Cenchrus purpureus Schum and Tithonia diversifo. Revista de Investigación Agraria y Ambiental, v. 9, n. 2, 2018, p. 181–191.https://doi.org/10.22490/21456453.2175; JAMARUN, NOVESAR; PAZLA, R.; ZAIN, MARDIATI; ARIEF, ARIEF. Milk quality of Etawa crossbred dairy goat fed combination of fermented oil palm fronds, Tithonia (Tithonia diversifolia) and Elephant Grass (Pennisetum Purpureum). Journal of Physics: Conference Series, v. 1469, n. 1, 2020, p.1-9. https://doi.org/10.1088/1742-6596/1469/1/012004; LAZZARINI, BELEN; BAUDRACCO, JAVIER; TUÑON, G.; GASTALDI, LAURA; LYONS, NICOLÁS; QUATTROCHI, H.; LOPEZ-VILLALOBOS, N. Review: Milk production from dairy cows in Argentina: Current state and perspectives for the future. Applied Animal Science, v. 35, n. 4, 2019, p. 426–432. https://doi.org/10.15232/aas.2019-01842; LONDOÑO C., JUAN D.; MAHECHA, LILIANA; ANGULO, JOAQUIN. Desempeño agronómico y valor nutritivo de Tithonia diversifolia (Hemsl.) A Gray para la alimentación de bovinos. Revista Colombiana de Ciencia Animal - RECIA, v. 11, n. 1, 2019, p. 1-14. https://doi.org/10.24188/recia.v0.n0.2019.693; COLOMBIA. MINISTERIO DE AGRICULTURA Y DESARROLLO RURAL. Bogotá (Colombia), Res. 000017 de 2012. https://www.minagricultura.gov.co/ministerio/direcciones/Documents/d.angie/Res 000017 de 2012.pdf [consultado marzo 2020]; MAHECHA, LILIANA; ESCOBAR, JUAN P.; SUÁREZ, JUAN F.; RESTREPO, LUIS F. Tithonia diversifolia (hemsl.) Gray (botón de oro) como suplemento forrajero de vacas F1 (Holstein por Cebú). Livestock Research for Rural Development, v. 19, 2007.http://www.lrrd.org/lrrd19/2/mahe19016.htm; MEJIA-DIAZ, ESTEFANÍA; MAHECHA-LEDESMA, LILIANA; ANGULO-ARIZALA, JOAQUIN. Consumo de materia seca en un sistema silvopastoril de Tithonia diversifolia en trópico alto. Agronomía Mesoamericana, v. 28, n. 2, 2017, p. 389-403. https://doi.org/10.15517/ma.v28i2.23561; MORAND, VICTORIO; BALBI, CELSA. Maíz para silo de planta entera: efecto de genotipo y altura de corte en la producción y calidad para alimentación animal. Información Tecnológica, v. 31, n. 3, 2020, p. 231–240. https://doi.org/10.4067/s0718-07642020000300231; NAVARRO D., HUMBERTO; SIEBAL S., ENRIQUE; CELIS R., SERGIO. Manual de producción de leche para pequeños y medianos productores. Documento 148. Osorno (Chile): Ministerio de Agricultura, Instituto de Investigaciones Agropecuarias, Centro Regional de Integración (INIA), 2006, p. 79-90.http://biblioteca.inia.cl/medios/biblioteca/boletines/NR33823.pdf; UNITED STATES OF AMERICA. NATIONAL RESEARCH COUNCIL (NRC). “Nutrient requirements of dairy cattle. 6th ed. Washington, D.C. (United States Of America): National Academy Press, 1989.; RAMÍREZ-RIVERA, E.J.; RODRÍGUEZ-MIRANDA, J.; HUERTA-MORA, I.R.; CÁRDENAS-CÁGAL, A.; JUÁREZ-BARRIENTOS, JUAN M. Tropical milk production systems and milk quality: a review. Tropical Animal Health and Production, v. 51, n. 6, 2019, p. 1295–1305. https://doi.org/10.1007/s11250-019-01922-1; RIVERA, JULIAN E.; CHARÁ, JULIAN; GÓMEZ-LEYVA, JUAN F.; RUÍZ, TOMAS; BARAHONA, ROLANDO. Variabilidad fenotípica y composición fitoquímica de Tithonia diversifolia A. Gray para la producción animal sostenible. Livestock Research for Rural Development, v. 30, 2021.http://www.lrrd.org/lrrd30/12/rive30200.html; SÁNCHEZ-LEDEZMA, WILLIAM; HIDALGO-ARDÓN, CARLOS. Potencial forrajero de nueve híbridos de maíz en la zona alta lechera de Costa Rica. Agronomía Mesoamericana, v. 29, n. 1, 2018, p. 153-164.https://doi.org/10.15517/ma.v29i1.27732; SANDOVAL-PELCASTRE, A.; RAMÍREZ-MELLA, MONICA; RODRÍGUEZ-ÁVILA, NORMA L.; CANDELARIA-MARTÍNEZ, BERNARDINO. Árboles Y Arbustos Tropicales Con Potencial Para Disminuir La Producción De Metano En Rumiantes. Tropical and Subtropical Agroecosystems, v. 23, n. 33, 2020, p. 1–16.https://www.researchgate.net/publication/342433653_Revision_Review_ARBOLES_Y_ARBUSTOS_TROPICALES_CON_POTENCIAL_PARA_DISMINUIR_LA_PRODUCCION_DE_METANO_EN_RUMIANTES_TROPICAL_TREES_AND_SHRUBS_WITH_POTENTIAL_TO_REDUCE_THE_PRODUCTION_OF_METHANE_IN_RUMINANT?enrichId=rgreq-12ec0e94f15ebd77c53dbfeecf7e8ea7-XXX&enrichSource=Y292ZXJQYWdlOzM0MjQzMzY1MztBUzo5MDYxMTY3NDU2NjY1NjBAMTU5MzA0NjQ3NTA5OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf; VASTA, VALENTINA; DAGHIO, MATTEO; CAPPUCCI, ALICE; BUCCIONI, ARIANNA; SERRA, A; VITI, CARLO; MELE, MARCELLO. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. Journal of Dairy Science, v. 102, n. 5, 2019, p. 3781–3804. https://doi.org/10.3168/jds.2018-14985; YANAPA-SANGA, ALFREDO. Niveles séricos de calcio, fósforo y magnesio en vacas brown swiss según número de partos y nivel de producción [Tesis Médico Veterinario y Zootecnista]. Puno (Perù): Universidad Nacional del Altiplano, Facultad de Medicina Veterinaria y Zootecnia, 2019. 67 p.http://repositorio.unap.edu.pe/handle/UNAP/12710; https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1535

  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20
    Book