-
1Academic Journal
المؤلفون: Le Xuan Truong, Le Cong Nhan
المصدر: Electronic Journal of Differential Equations, Vol 2016, Iss 206,, Pp 1-17 (2016)
مصطلحات موضوعية: Continuation theorem, p-Laplacian differential equation, resonance, Mathematics, QA1-939
وصف الملف: electronic resource
-
2
-
3
المؤلفون: Quach Van Chuong, Le Cong Nhan, Le Xuan Truong
المصدر: Journal of Elliptic and Parabolic Equations. 8:483-512
مصطلحات موضوعية: Numerical Analysis, Applied Mathematics, Analysis
-
4Academic Journal
المؤلفون: Nguyen Van Hieu, Nguyen Van Chuong, Le Thi Thu Phuong, Le Cong Nhan
المصدر: UED Journal of Social Sciences, Humanities and Education; Vol. 8 No. 4 (2018): UED JOURNAL OF SOCIAL SCIENCES, HUMANITIES AND EDUCATION; 8-12 ; Tạp chí Khoa học Xã hội, Nhân văn và Giáo dục; T. 8 S. 4 (2018): TẠP CHÍ KHOA HỌC XÃ HỘI, NHÂN VĂN VÀ GIÁO DỤC ; 8-12 ; 1859-4603
مصطلحات موضوعية: Monolayer MoS2, electronic properties, density functional theory, MoS2 đơn lớp, tính chất điện tử, lí thuyết phiếm hàm mật độ
وصف الملف: application/pdf
Relation: https://jshe.ued.udn.vn/index.php/jshe/article/view/213/184; https://jshe.ued.udn.vn/index.php/jshe/article/view/213
-
5
المؤلفون: Y. Nguyen Van, Le Cong Nhan, Le Xuan Truong
المصدر: Nonlinear Analysis: Real World Applications. 71:103807
مصطلحات موضوعية: Computational Mathematics, Applied Mathematics, General Engineering, General Medicine, General Economics, Econometrics and Finance, Analysis
-
6
المؤلفون: Le Cong Nhan, Huynh V. Phuc, Tuan V. Vu, Nguyen N. Hieu, Khang D. Pham, A.I. Kartamyshev, Chu Van Lanh, Sohail Ahmad, Vo Q. Nha, D. P. Rai
المصدر: RSC Advances. 11:23280-23287
مصطلحات موضوعية: Phase transition, Materials science, Condensed matter physics, Graphene, Band gap, General Chemical Engineering, Diamond, 02 engineering and technology, General Chemistry, engineering.material, 021001 nanoscience & nanotechnology, 01 natural sciences, law.invention, Lattice constant, Chemical bond, law, 0103 physical sciences, engineering, Density functional theory, 010306 general physics, 0210 nano-technology, Bilayer graphene
-
7Academic Journal
المؤلفون: Le, Cong Nhan, Le, Xuan Truong
مصطلحات موضوعية: keyword:Nehari manifold, keyword:fibrering maps, keyword:vanishing potential, keyword:logarithmic nonlinearity, msc:35J60, msc:47J30
وصف الملف: application/pdf
Relation: mr:MR4387467; zbl:Zbl 07547240; reference:[1] Alves, C. O., Souto, M. A. S.: Existence of solutions for a class of elliptic equations in $\mathbb R^N$ with vanishing potentials.J. Differ. Equations 252 (2012), 5555-5568 \99999DOI99999 10.1016/j.jde.2012.01.025 . Zbl 1250.35103, MR 2902126, 10.1016/j.jde.2012.01.025; reference:[2] Alves, C. O., Souto, M. A. S.: Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity.J. Differ. Equations 254 (2013), 1977-1991 \99999DOI99999 10.1016/j.jde.2012.11.013 . Zbl 1263.35076, MR 3003299; reference:[3] Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems.Cambridge Studies in Advanced Mathematics 104. Cambridge University Press, Cambridge (2007). Zbl 1125.47052, MR 2292344, 10.1017/CBO9780511618260; reference:[4] Ambrosetti, A., Wang, Z.-Q.: Nonlinear Schrödinger equations with vanishing and decaying potentials.Differ. Integral Equ. 18 (2005), 1321-1332 \99999MR99999 2174974 . Zbl 1210.35087, MR 2174974; reference:[5] Ardila, A. H.: Existence and stability of standing waves for nonlinear fractional Schrödinger equation with logarithmic nonlinearity.Nonlinear Anal., Theory Methods Appl. 155 (2017), 52-64 \99999DOI99999 10.1016/j.na.2017.01.006 . Zbl 1368.35242, MR 3631741; reference:[6] Benci, V., Grisanti, C. R., Micheletti, A. M.: Existence of solutions for the nonlinear Schrödinger equation with $V(\infty)=0$.Contributions to Nonlinear Analysis Progress in Nonlinear Differential Equations and Their Applications 66. Birkhäuser, Basel (2006), 53-65 \99999DOI99999 10.1007/3-7643-7401-2_4 . Zbl 1231.35225, MR 2187794; reference:[7] Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I: Existence of a ground state.Arch. Ration. Mech. Anal. 82 (1983), 313-345 \99999DOI99999 10.1007/BF00250555 . Zbl 0533.35029, MR 0695535; reference:[8] Bia{ł}ynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics.Ann. Phys. 100 (1976), 62-93 \99999DOI99999 10.1016/0003-4916(76)90057-9 . MR 0426670; reference:[9] Brown, K. J., Zhang, Y.: The Nehari manifold for a semilinear elliptic problem with a sign-changing weight function.J. Differ. Equations 193 (2003), 481-499 \99999DOI99999 10.1016/S0022-0396(03)00121-9 . Zbl 1074.35032, MR 1998965; reference:[10] Caffarelli, L.: Non-local diffusions, drifts and games.Nonlinear Partial Differential Equations: The Abel symposium 2010 Abel Symposia 7. Springer, Berlin (2012), 37-52 \99999DOI99999 10.1007/978-3-642-25361-4_3 . Zbl 1266.35060, MR 3289358; reference:[11] Campa, I., Degiovanni, M.: Subdifferential calculus and nonsmooth critical point theory.SIAM J. Optim. 10 (2000), 1020-1048 \99999DOI99999 10.1137/S1052623499353169 . Zbl 1042.49018, MR 1777078; reference:[12] Cazenave, T.: Stable solutions of the logarithmic Schrödinger equation.Nonlinear Anal., Theory Methods Appl. 7 (1983), 1127-1140. Zbl 0529.35068, MR 0719365, 10.1016/0362-546X(83)90022-6; reference:[13] Cazenave, T., Haraux, A.: Équations d'évolution avec non linéarité logarithmique.Ann. Fac. Sci. Toulouse, Math. (5) 2 (1980), 21-51 French \99999DOI99999 10.5802/afst.543 . Zbl 0411.35051, MR 0583902; reference:[14] Chang, X.: Ground state solutions of asymptotically linear fractional Schrödinger equations.J. Math. Phys. 54 (2013), Article ID 061504, 10 pages \99999DOI99999 10.1063/1.4809933 . Zbl 1282.81072, MR 3112523; reference:[15] Chen, W., Deng, S.: The Nehari manifold for nonlocal elliptic operators involving concave-convex nonlinearities.Z. Angew. Math. Phys. 66 (2015), 1387-1400. Zbl 1321.35253, MR 3377693, 10.1007/s00033-014-0486-6; reference:[16] Cheng, M.: Bound state for the fractional Schrödinger equation with unbounded potential.J. Math. Phys. 53 (2012), Article ID 043507, 7 pages \99999DOI99999 10.1063/1.3701574 . Zbl 1275.81030, MR 2953151; reference:[17] Corvellec, J.-N., Degiovanni, M., Marzocchi, M.: Deformation properties for continuous functionals and critical point theory.Topol. Methods Nonlinear Anal. 1 (1993), 151-171 \99999DOI99999 10.12775/TMNA.1993.012 . Zbl 0789.58021, MR 1215263; reference:[18] D'Avenia, P., Montefusco, E., Squassina, M.: On the logarithmic Schrödinger equation.Commun. Contemp. Math. 16 (2014), Article ID 1350032, 15 pages \99999DOI99999 10.1142/S0219199713500326 . Zbl 1292.35259, MR 3195154; reference:[19] Degiovanni, M., Zani, S.: Multiple solutions of semilinear elliptic equations with one-sided growth conditions.Math. Comput. Modelling 32 (2000), 1377-1393. Zbl 0970.35038, MR 1800662, 10.1016/S0895-7177(00)00211-9; reference:[20] Nezza, E. Di, Palatucci, G., Valdinoci, E.: Hitchhiker's guide to the fractional Sobolev spaces.Bull. Sci. Math. 136 (2012), 521-573 \99999DOI99999 10.1016/j.bulsci.2011.12.004 . Zbl 1252.46023, MR 2944369; reference:[21] Drábek, P., Pohozaev, S. I.: Positive solutions for the $p$-Laplacian: Application of the fibrering method.Proc. R. Soc. Edinb., Sect. A 127 (1997), 703-726 \99999DOI99999 10.1017/S0308210500023787 . Zbl 0880.35045, MR 1465416; reference:[22] Furtado, M. F., Maia, L. A., Medeiros, E. S.: Positive and nodal solutions for a nonlinear Schrödinger equation with indefinite potential.Adv. Nonlinear Stud. 8 (2008), 353-373 \99999DOI99999 10.1515/ans-2008-0207 . Zbl 1168.35433, MR 2402826; reference:[23] Hefter, E. F.: Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics.Phys. Rev. 32(A) (1985), 1201-1204 \99999DOI99999 10.1103/PhysRevA.32.1201 .; reference:[24] Ji, C., Szulkin, A.: A logarithmic Schrödinger equation with asymptotic conditions on the potential.J. Math. Anal. Appl. 437 (2016), 241-254. Zbl 1333.35010, MR 3451965, 10.1016/j.jmaa.2015.11.071; reference:[25] Khoutir, S., Chen, H.: Existence of infinitely many high energy solutions for a fractional Schrödinger equation in $\mathbb R^N$.Appl. Math. Lett. 61 (2016), 156-162 \99999DOI99999 10.1016/j.aml.2016.06.001 . Zbl 1386.35444, MR 3518463; reference:[26] Laskin, N.: Fractional quantum mechanics and Lévy path integrals.Phys. Lett., A 268 (2000), 298-305 \99999DOI99999 10.1016/S0375-9601(00)00201-2 . Zbl 0948.81595, MR 1755089; reference:[27] Laskin, N.: Fractional Schrödinger equation.Phys. Rev. E (3) 66 (2002), Article ID 056108, 7 pages \99999DOI99999 10.1103/PhysRevE.66.056108 . MR 1948569; reference:[28] Perera, K., Squassina, M., Yang, Y.: Critical fractional $p$-Laplacian problems with possibly vanishing potentials.J. Math. Anal. Appl. 433 (2016), 818-831 \99999DOI99999 10.1016/j.jmaa.2015.08.024 . Zbl 1403.35319, MR 3398738; reference:[29] Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in $\mathbb R^N$.J. Math. Phys. 54 (2013), Article ID 031501, 17 pages \99999DOI99999 10.1063/1.4793990 . Zbl 1281.81034, MR 3059423; reference:[30] Shang, X., Zhang, J.: Ground states for fractional Schrödinger equations with critical growth.Nonlinearity 27 (2014), 187-207 \99999DOI99999 10.1088/0951-7715/27/2/187 . Zbl 1287.35027, MR 3153832; reference:[31] Shang, X., Zhang, J., Yang, Y.: On fractional Schrödinger equation in $\mathbb R^N$ with critical growth.J. Math. Phys. 54 (2013), Article ID 121502, 20 pages. Zbl 1290.35251, MR 3156081, 10.1063/1.4835355; reference:[32] Squassina, M., Szulkin, A.: Multiple solutions to logarithmic Schrödinger equations with periodic potential.Calc. Var. Partial Differ. Equ. 54 (2015), 585-597. Zbl 1326.35358, MR 3385171, 10.1007/s00526-014-0796-8; reference:[33] Szulkin, A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986), 77-109 \99999DOI99999 10.1016/S0294-1449(16)30389-4 . Zbl 0612.58011, MR 0837231; reference:[34] Teng, K.: Multiple solutions for a class of fractional Schrödinger equations in $\mathbb R^N$.Nonlinear Anal., Real World Appl. 21 (2015), 76-86 \99999DOI99999 10.1016/j.nonrwa.2014.06.008 . Zbl 1302.35415, MR 3261580; reference:[35] Ledesma, C. E. Torres: Existence and symmetry result for fractional $p$-Laplacian in $\Bbb{R}^n$.Commun. Pure Appl. Anal. (2017), 16 99-113. Zbl 1364.35426, MR 3583517, 10.3934/cpaa.2017004; reference:[36] Zloshchastiev, K. G.: Logarithmic nonlinearity in theories of quantum gravity: Origin of time and observational consequences.Grav. Cosmol. 16 (2010), 288-297. Zbl 1232.83044, MR 2740900, 10.1134/S0202289310040067
-
8
المؤلفون: Tuan V, Vu, Huynh V, Phuc, Sohail, Ahmad, Vo Quang, Nha, Chu, Van Lanh, D P, Rai, A I, Kartamyshev, Khang D, Pham, Le Cong, Nhan, Nguyen N, Hieu
المصدر: RSC advances. 11(38)
-
9Academic Journal
المؤلفون: KY HO, LE CONG NHAN, LE XUAN TRUONG
المصدر: Topological Methods in Nonlinear Analysis; 2022, Vol. 60 Issue 2, p601-632, 32p
مصطلحات موضوعية: ELLIPTIC equations, EXPONENTS, DIRICHLET problem, CONTINUOUS functions, MATHEMATICAL variables
-
10
المؤلفون: Nguyen Y, Le Cong Nhan, Xuan Truong Le
مصطلحات موضوعية: Physics, Nonlinear system, Work (thermodynamics), Variable exponent, Mathematical analysis, Finite time, Exponential decay, Wave equation, Viscoelasticity, Variable (mathematics)
-
11
المؤلفون: Le Cong Nhan, Le Xuan Truong, Ky Ho
المصدر: Journal of Mathematical Analysis and Applications. 505:125474
مصطلحات موضوعية: Class (set theory), Pure mathematics, Inequality, Applied Mathematics, media_common.quotation_subject, Local boundedness, Hölder condition, Nirenberg and Matthaei experiment, Analysis, media_common, Mathematics
-
12
المؤلفون: Chuong V. Nguyen, Le Cong Nhan, Huynh V. Phuc, Nguyen V. Hieu, Nguyen N. Hieu, Victor V. IIyasov
المصدر: Indian Journal of Physics. 92:447-452
مصطلحات موضوعية: 010302 applied physics, Materials science, Condensed matter physics, Band gap, Bilayer, General Physics and Astronomy, Charge density, 02 engineering and technology, 021001 nanoscience & nanotechnology, 01 natural sciences, 0103 physical sciences, Density functional theory, 0210 nano-technology, Electronic band structure, Bilayer graphene, Graphene nanoribbons, Plane stress
-
13
المؤلفون: Nguyen N. Hieu, Chuong V. Nguyen, Huynh Ngoc Toan, Ngo Thi Anh, Nguyen Van Hieu, Le Cong Nhan
المصدر: Journal of Electronic Materials. 46:3815-3819
مصطلحات موضوعية: Phase transition, Materials science, Condensed matter physics, Solid-state physics, Band gap, Graphene, 02 engineering and technology, 021001 nanoscience & nanotechnology, Condensed Matter Physics, 01 natural sciences, Electronic, Optical and Magnetic Materials, law.invention, Bond length, Tight binding, law, Lattice (order), 0103 physical sciences, Materials Chemistry, Electrical and Electronic Engineering, 010306 general physics, 0210 nano-technology, Graphene nanoribbons
-
14
-
15
المؤلفون: Chuong V. Nguyen, Huynh V. Phuc, Le Cong Nhan, Hong T. T. Nguyen, Nguyen N. Hieu, Nguyen V. Hieu, Cuong Q. Nguyen, Tuan V. Vu
المصدر: Optik. 238:166761
مصطلحات موضوعية: Materials science, Phonon, business.industry, Band gap, 02 engineering and technology, 021001 nanoscience & nanotechnology, 01 natural sciences, Atomic and Molecular Physics, and Optics, Electronic, Optical and Magnetic Materials, 010309 optics, Strain engineering, Electric field, 0103 physical sciences, Monolayer, Optoelectronics, Direct and indirect band gaps, Janus, Electrical and Electronic Engineering, 0210 nano-technology, business, Visible spectrum
-
16Academic Journal
المؤلفون: Nguyen Van Y1, Le Cong Nhan2 nhanlc@hcmute.edu.vn.com, Le Xuan Truong3
المصدر: Electronic Journal of Qualitative Theory of Differential Equations. 2022, p1-21. 21p.
مصطلحات موضوعية: *HEAT equation
-
17
المؤلفون: Do Huy Hoang, Le Xuan Truong, Le Cong Nhan
المصدر: Archivum Mathematicum. :111-130
مصطلحات موضوعية: Physics, Pure mathematics, Kernel (algebra), Generalized inverse, Differential equation, General Mathematics, Operator (physics), Dimension (graph theory), Boundary value problem, Differential operator, Resonance (particle physics)
-
18
المؤلفون: Le Cong Nhan, Le Xuan Truong, Do Huy Hoang
المصدر: Vietnam Journal of Mathematics. 45:625-638
مصطلحات موضوعية: Work (thermodynamics), Differential equation, General Mathematics, 010102 general mathematics, Mathematical analysis, Nonlocal boundary, Order (ring theory), Differential operator, 01 natural sciences, Resonance (particle physics), law.invention, 010101 applied mathematics, Projector, law, Boundary value problem, 0101 mathematics, Mathematics
-
19
المؤلفون: Le Xuan Truong, Le Cong Nhan
المصدر: Journal of Mathematical Physics. 62:011507
مصطلحات موضوعية: Class (set theory), High energy, Variable exponent, 010102 general mathematics, Mathematical analysis, Statistical and Nonlinear Physics, 01 natural sciences, Nonlinear wave equation, 0103 physical sciences, 010307 mathematical physics, 0101 mathematics, Finite time, Mathematical Physics, Mathematics
-
20
المؤلفون: Le Cong Nhan, Le Xuan Truong, Quach Van Chuong
المصدر: Nonlinear Analysis: Real World Applications. 56:103155
مصطلحات موضوعية: High energy, geography, Class (set theory), geography.geographical_feature_category, Variable exponent, Applied Mathematics, 010102 general mathematics, Mathematical analysis, General Engineering, General Medicine, 01 natural sciences, 010101 applied mathematics, Computational Mathematics, Mountain pass, 0101 mathematics, General Economics, Econometrics and Finance, Laplace operator, Analysis, Energy (signal processing), Mathematics, Energy functional