-
1Academic Journal
-
2Academic Journal
المؤلفون: Man Qin, Mingxue Sun, Jun Li
المصدر: Ecological Indicators, Vol 130, Iss , Pp 108002- (2021)
مصطلحات موضوعية: Eco-efficiency evaluation, Latent Dirichlet Allocation topic model, Qualitative comparative analysis, Slack-based Measure Data envelopment analysis, Ecology, QH540-549.5
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: Xuan Wang, Bofeng Zhang, Furong Chang
المصدر: Future Internet; Volume 11; Issue 3; Pages: 60
مصطلحات موضوعية: cross social networks, hot topic community, Labeled Biterm Latent Dirichlet Allocation topic model, clustering algorithm
وصف الملف: application/pdf
Relation: Techno-Social Smart Systems; https://dx.doi.org/10.3390/fi11030060
الاتاحة: https://doi.org/10.3390/fi11030060
-
4Dissertation/ Thesis
المؤلفون: Chenghua, Lin
Thesis Advisors: Richard, Everson : Yulan, He
-
5Dissertation/ Thesis
المؤلفون: 張文騫, Chang, Wen-Chien
المساهمون: 陳志銘, Chen, Chih-Ming
مصطلحات موضوعية: 非同步線上討論, 討論成效, 隱性引導策略, 隱含狄利克雷分布主題模型, 社會性科學議題, 科技接受度, Asynchronous online discussion, Discussion performance, Implicit guidance strategy, Latent Dirichlet Allocation topic model, Socio-scientific issues, Technology acceptance
وصف الملف: 2667567 bytes; application/pdf
Relation: 潘淑滿(2003)。質性研究-理論與實務。新北市:心理出版社。\nAbdous, M., He, W., & Yen, C.-J. (2012). Using data mining for predicting relationships between online question theme and final grade. Journal of Educational Technology and Society, 15(3), 77-88. Retrieved from https://search.proquest.com/docview/1287025367?pq-origsite=gscholar\nAlbe, V. (2008). When Scientific Knowledge, Daily Life Experience, Epistemological and Social Considerations Intersect: Students’ Argumentation in Group Discussions on a Socio-scientific Issue. Research in Science Education, 38, 67–90. doi:10.1007/s11165-007-9040-2\nAtapattu, T., Falkner, K., & Tarmazdi, H. (2016). Topic-wise classification of MOOC discussions: A Visual Analytics Approach. Proceedings of the 9th International Conference on Educational Data Mining, 276-281. Retrieved from http://www.educationaldatamining.org/EDM2016/proceedings/paper_109.pdf\nBlei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993–1022. doi:10.1016/j.linged.2018.05.003\nBlei, D. M., Ng, A. Y., Jordan, M. I., Griffiths, T. L., & Tenenbaum, J. B.(2004). Hierarchical Topic Models and the Nested Chinese Restaurant Process. Proceedings of the 16th International Conference on Neural Information Processing Systems, 17-24. Retrieved from https://papers.nips.cc/paper/2466-hierarchical-topic-models-and-the-nested-chinese-restaurant-process.pdf\nBlumenfeld, P. C., Kempler, T. M., & Krajcik, J. S. (2006). Motivation and cognitive engagement in learning environments. In R. K. Sawyer (Ed.), The Cambridge Handbook of the Learning Sciences (pp. 475-488). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511816833.029\nBodemer, D. (2011). Tacit guidance for collaborative multimedia learning. Computers in Human Behavior, 27(3), 1079-1086. doi:10.1016/j.chb.2010.05.016\nBostock, S., & Lizhi, W. (2005). Gender in students` online discussions. Innovations in Education and Teaching International, 42(1), 73-86. doi:10.1080/14703290500048978\nChau, P. Y. K. (1996). An empirical assessment of a modified technology acceptance model. Journal of Management Information Systems, 13(2), 185-204. doi:10.1080/07421222.1996.11518128\nCole, J., & Foster, H. (2007). Using Moodle: Teaching with the Popular Open Source Course Management System. (2nd ed.). Sebastopol, CA: O’Reilly.\nCurtis, D. D., & Lawson, M. J. (2001). Exploring collaborative online learning. Journal of Asynchronous Learning Networks, 5(1), 21-34. Retrieved from http://en.wikieducator.org/images/6/60/ALN_Collaborative_Learning.pdf\nDavis, F, D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003. doi:10.1287/mnsc.35.8.982\nDehler, J., Bodemer, D., Buder, J., & Hesse, F. W. (2011). Guiding knowledge communication in CSCL via group knowledge awareness. Computers in Human Behavior, 27(3), 1068-1078. doi:10.1016/j.chb.2010.05.018\nDelahunty, J. (2018). Connecting to learn, learning to connect: Thinking together in asynchronous forum discussion. Linguistics and Education, 46, 12-22. doi:10.1016/j.linged.2018.05.003\nDeterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From game design elements to gamefulness: Defining ‘Gamification’. Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments, 9–15. doi:10.1145/2181037.2181040\nDillenbourg, P., & Betrancourt, M. (2006). Collaboration load. In J. Elen & R. E. Clark (Eds.), Handling complexity in learning environments: Research and theory (pp. 142–163). Amsterdam, NL: Elsevier. Retrieved from https://telearn.archives-ouvertes.fr/hal-00190700\nDillenbourg, P., & Jermann, P. (2007). Designing integrative scripts. In F. Fischer, I. Kollar, H. Mandl, & J. M. Haake (Eds.), Scripting Computer-Supported Collaborative Learning (pp. 275–301). Springer US. Retrieved from https://link.springer.com/chapter/10.1007/978-0-387-36949-5_16\nDing, L. (2019). Applying gamifications to asynchronous online discussions: A mixed methods study. Computers in Human Behavior, 91, 1–11. doi:10.1016/j.chb.2018.09.022\nDing, L., Kim, C., & Orey, M. (2017). Studies of student engagement in gamified online discussions. Computers & Education, 115, 126–142. doi:10.1016/j.compedu.2017.06.016\nDuncan, M. J., Smith, M., & Cook, K. (2013). Implementing online problem based learning (PBL) in postgraduates new to both online learning and PBL: An example from strength and conditioning. Journal of Hospitality, Leisure, Sport & Tourism Education, 12(1), 79–84. doi:10.1016/j.jhlste.2012.11.004\nEggert, S., & Bogeholz, S. (2009). Students` use of decision‐making strategies with regard to socioscientific issues: An application of the Rasch partial credit model. Science Education, 94(2), 230-258. doi:10.1002/sce.20358\nErkens, M., & Bodemer, D. (2019). Improving collaborative learning: Guiding knowledge exchange through the provision of information about learning partners and learning contents. Computers and Education, 128, 452-472. doi:10.1016/j.compedu.2018.10.009\nErkens, M., Bodemer, D., & Hoppe, H. U. (2016). Improving collaborative learning in the classroom: Text mining based grouping and representing. International Journal of Computer-Supported Collaborative Learning, 11(4), 387-415. doi:10.1007/s11412-016-9243-5\nEzen-Can, A., Boyer, K. E., Kellogg, S., & Booth, S. (2015). Unsupervised modeling for understanding MOOC discussion forums: A learning analytics approach. Proceedings of the Fifth International Conference on Learning Analytics And Knowledge, 146–150. doi:10.1145/2723576.2723589\nGao, F., Wang, C., & Sun, Y. (2009). A new model of productive online discussion and its implications for research and instruction. Journal of Educational Technology Development and Exchange (JETDE), 2(1), 65–78. doi:10.18785/jetde.0201.05\nGao, F., Zhang, T., & Franklin, T. (2013). Designing asynchronous online discussion environments: Recent progress and possible future directions. British Journal of Educational Technology, 44(3), 469-483. doi:10.1111/j.1467-8535.2012.01330.x\nGoda, K., & Mine, T. (2011). Analysis of students’ learning activities through quantifying Time-series comments. In A. König, A. Dengel, K. Hinkelmann, K. Kise, R. J. Howlett, & L. C. Jain (Eds.), Knowlege-Based and Intelligent Information and Engineering Systems (pp. 154-164). Springer Berlin Heidelberg. doi:10.1007/978-3-642-23863-5_16\nGross, T., Stary, C., & Totter, A. (2005). User-centered awareness in computer-supported cooperative work-systems: Structured embedding of findings from social sciences. International Journal of Human–Computer Interaction, 18(3), 323-360. doi:10.1207/s15327590ijhc1803_5\nHanegan, N. L., Price, L., & Peterson, J. (2008). Disconnections between teacher expectations and student confidence in bioethics. Science and Education, 17(8), 921-940. doi:10.1007/s11191-007-9122-6\nHara, N., Bonk, C. J., & Angeli, C. (2000). Content analysis of online discussion in an applied educational psychology course. Instructional Science, 28(2), 115–152. doi:10.1023/A:1003764722829\nHavre, S., Hetzler, E., Whitney, P., & Nowell, L. (2002). ThemeRiver: visualizing thematic changes in large document collections. IEEE transactions on visualization and computer graphics, 8(1), 9–20. doi:10.1109/2945.981848\nHawkes, M. (2006). Linguistic discourse variables as indicators of reflective online interaction. American Journal of Distance Education, 20(4), 231–244. doi:10.1207/s15389286ajde2004_4\nHe, W. (2013). Examining students’ online interaction in a live video streaming environment using data mining and text mining. Computers in Human Behavior, 29(1), 90-102. doi:10.1016/j.chb.2012.07.020\nHeimbuch, S., & Bodemer, D. (2017). Controversy awareness on evidence-led discussions as guidance for students in wiki-based learning. The Internet and Higher Education, 33, 1-14. doi:10.1016/j.iheduc.2016.12.001\nHew, K. F., Cheung, W. S., & Ng, C. S. L. (2010). Student contribution in asynchronous online discussion: A review of the research and empirical exploration. Instructional Science, 38(6), 571-606. doi:10.1007/s11251-008-9087-0\nHewitt, J. (2001). Beyond threaded discourse. International Journal of Educational Telecommunications, 38(3), 207–221. Retrieved from https://tspace.library.utoronto.ca/handle/1807/26522\nHewitt, J. (2003). How habitual online practices affect the development of asynchronous discussion threads. Journal of Educational Computing Research, 28(1), 31–45. doi:10.2190/PMG8-A05J-CUH1-DK14\nHoffman, M. D., Bach, F., & Blei, D. M. (2010). Online learning for Latent Dirichlet Allocation. Proceedings of the 23rd International Conference on Neural Information Processing Systems 1, 856-864. Retrieved from http://papers.nips.cc/paper/3902-online-learning-for-latent-dirichlet-allocation.pdf\nHsiao, I.-H., & Awasthi, P. (2015). Topic facet modeling: semantic visual analytics for online discussion forums. Proceedings of the Fifth International Conference on Learning Analytics And Knowledge, 231-235. doi:10.1145/2723576.2723613\nHwang, G.-J., Yang, L.-H., & Wang, S.-Y. (2013). A concept map-embedded educational computer game for improving students’ learning performance in natural science courses. Computers and Education, 69(C), 121–130. doi:10.1016/j.compedu.2013.07.008\nJanssen, J., & Bodemer, D. (2013). Coordinated computer-supported collaborative learning: Awareness and awareness tools. Educational Psychologist, 48(1), 40-55. doi:10.1080/00461520.2012.749153\nJanssen, J., Erkens, G., Kirschner, P. A., & Kanselaar, G. (2010). Effects of representational guidance during computer-supported collaborative learning. Instructional Science, 38(1), 59-88. doi:10.1007/s11251-008-9078-1\nJeong, A., & Frazier, S. (2008). How day of posting affects level of critical discourse in asynchronous discussions and computer‐supported collaborative argumentation. British Journal of Educational Technology, 39(5), 875–887. doi:10.1111/j.1467-8535.2007.00789.x\nJia, H., & Liu, X. (2013). Scientific referential metadata creation with information retrieval and labeled topic modeling. Proceeding of iConference 2013, 274-288. doi:10.9776/13192\nKnowlton, D. S. (2001). Promoting durable knowledge construction through online discussion. Mid‐South Instructional Technology Conference. Retrieved from https://eric.ed.gov/?id=ED463724\nKobbe, L., Weinberger, A., Dillenbourg, P., Harrer, A., Hämäläinen, R., & Fischer, F. (2007). Specifying computer-supported collaboration scripts. International Journal of Computer-Supported Collaborative Learning, 2(2-3), 211–224. doi:10.1007/s11412-007-9014-4\nKolstø, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85(3), 291-310. doi:10.1002/sce.1011\nLambiase, J. J. (2010). Hanging by a thread: Topic development and death in an online discussion of breaking news. Language at Internet, 7(9). Retrieved from http://www.languageatinternet.org/articles/2010/2814\nLiu, S. -Y., Lin, C. -S., & Tsai, C. -C. (2011). College students` scientific epistemological views and thinking patterns in socioscientific decision making. Science Education, 95(3), 497-517. doi:10.1002/sce.20422\nLyons, T., & Evans, M. (2013). Blended learning to increase student satisfaction: An exploratory study. Internet Reference Services Quarterly, 18(1), 43–53. doi:10.1080/10875301.2013.800626\nMarra, R. M., Moore, J. L., & Klimczak, A. K. (2004). Content analysis of online discussion forums: A comparative analysis of protocols. Educational Technology Research and Development, 52(2), 23–40. doi:10.1007/BF02504837\nMaskeri, G., Sarkar, S., & Heafield, K. (2008). Mining Business Topics in Source Code using Latent Dirichlet Allocation. Proceedings of the 1st India Software Engineering Conference, 113-120. doi:10.1145/1342211.1342234\nMinami, T., & Ohura, Y. (2013). Lecture data analysis towards to know how the students’ attitudes affect to their evaluations. Proceedings of the 8th International Conference on Information Technology and Applications, 164-169. Retrieved from http://www.icita.org/2013/papers/jp-minami.pdf\nMinami, T., & Ohura, Y. (2015). How student’s attitude influences on learning achievement? An analysis of attitude-representing words appearing in looking-back evaluation texts. International Journal of Database Theory and Application, 8(2), 129-144. doi:10.14257/ijdta.2015.8.2.13\nMing, N., & Baumer, E. (2011). Using Text Mining to Characterize Online Discussion Facilitation. Journal of Asynchronous Learning Networks, 15(2), 71-109. Retrieved from https://files.eric.ed.gov/fulltext/EJ935578.pdf\nNewton, P., Driver, R., & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553-576. doi:10.1080/095006999290570\nOry, J.C (1997). Gender Similarity in the Use of and Attitudes about ALN in a University Setting. Journal of Asynchronous Learning Networks, 1(1), 39-51. doi:10.24059/olj.v1i1.1942\nOsborne, D. M., Byrne, J. H., Massey, D. L., & Johnston, A. N. B. (2018). Use of online asynchronous discussion boards to engage students, enhance critical thinking, and foster staff-student/student-student collaboration: A mixed method study. Nurse Education Today, 70, 40-46. doi:10.1016/j.nedt.2018.08.014\nPalfrey, J., & Gasser, U. (2008). Born digital: Understanding the first generation of digital natives. New York: Basic Books.\nPearson, J. (2006). Investigating ICT using problem-based learning in face-to-face and online learning environments. Computers & Education, 47(1), 56–73. doi:10.1016/j.compedu.2004.09.001\nPeng, X., Liu, S., Liu, Z., Gan, W., & Sun, J. (2016). Mining learners’ topic interests in course reviews based on like-lda model. International journal of innovative computing, information & control, 12(6), 2099-2110. Retrieved from https://www.researchgate.net/profile/Zhi_Liu43/publication/310830465_Mining_Learners`_Topic_Interests_in_Course_Reviews_based_on_Like-LDA_Model/links/5838ea8a08ae3d91723de53e.pdf\nRyan, R. M., & Deci, E. L. (2006). Self-regulation and the problem of human autonomy: Does psychology need choice, Self-determination, and will? Journal of Personality, 74(6), 1557-1586. doi:10.1111/j.1467-6494.2006.00420.x\nSadler, T. D. (2004). Informal Reasoning Regarding Socioscientific Issues A Critical Review of Research. Journal of Research in Science Teaching, 41(5), 513–536. doi:10.1002/tea.20009\nSadler, T., Barab, S., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37(4), 371–391. doi:10.1007/s11165-006-9030-9\nSánchez, R., A., & Hueros, A., D. (2010). Motivational factors that influence the acceptance of Moodle using TAM. Computers in Human Behavior, 26(6), 1632-1640. doi:10.1016/j.chb.2010.06.011\nSangin, M., Molinari, G., Nüssli, M.-A., & Dillenbourg, P. (2011). Facilitating peer knowledge modeling: Effects of a knowledge awareness tool on collaborative learning outcomes and processes. Computers in Human Behavior, 27(3), 1059-1067. doi:10.1016/j.chb.2010.05.032\nSmits, P. B., de Buisonjé, C. D., Verbeek, J. H., van Dijk, F. J., Metz, J. C., & ten Cate, O. J. (2003). Problem-based learning versus lecture-based learning in postgraduate medical education. Scandinavian Journal of Work, Environment & Health, 29(4), 280–287. doi:10.5271/sjweh.732\nSun, G., & Bin, S. (2018). Topic interaction model based on local community detection in MOOC discussion forums and its teaching application. Educational Sciences: Theory and Practice, 18(6), 2922-2931. doi:10.12738/estp.2018.6.191\nSuthers, D. D. (2001). Towards a systematic study of representational guidance for collaborative learning discourse. Journal of Universal Computer Science, 7(3), 254–277. Retrieved from https://pdfs.semanticscholar.org/f493/b38c1c90e329ff9ff9063183735a71aa109e.pdf\nSuthers, D. D., & Hundhausen, C. D. (2003). An experimental study of the effects of representational guidance on collaborative learning processes. Journal of the Learning Sciences, 12(2), 183-218. doi:10.1207/S15327809JLS1202_2\nSuthers, D. D., Vatrapu, R., Medina, R., Joseph, S., & Dwyer, N. (2008). Beyond threaded discussion: Representational guidance in asynchronous collaborative learning environments. Computers & Education, 50(4), 1103-1127. doi:10.1016/j.compedu.2006.10.007\nTsai, C. Y. (2018). The effect of online argumentation of socio-scientific issues on students` scientific competencies and sustainability attitudes. Computers and Education, 116, 14-27. doi:10.1016/j.compedu.2017.08.009\nTsai, M. J., Liang, J. C., Hou, H. T., & Tsai, C. C. (2015). Males are not as active as females in online discussion: Gender differences in face-to-face and online discussion strategies. Australasian Journal of Educational Technology, 31(3), 263-277. doi:10.14742/ajet.1557\nWang, Q., & Woo, H. L. (2007). Comparing asynchronous online discussions and Face-to-face discussions in a classroom setting. British Journal of Educational Technology, 38(2), 272–286. doi:10.1111/j.1467-8535.2006.00621.x\nWang, W., Feng, Y., & Dai, W. (2018). Topic analysis of online reviews for two competitive products using Latent Dirichlet Allocation. Electronic Commerce Research and Applications, 29, 142–156. doi:10.1016/j.elerap.2018.04.003\nWei, X., & Croft, W. (2006). LDA-based document models for ad-hoc retrieval. Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval, 178–185. doi:10.1145/1148170.1148204\nWeinberger, A., Stegmann, K., Fischer, F., & Mandl, H. (2007). Scripting argumentative knowledge construction in computer-supported learning environments. In F. Fischer, I. Kollar, H. Mandl, & J. M. Haake (Eds.), Scripting computer-supported collaborative learning: Cognitive, computational and educational perspectives (pp. 191-211). Boston, MA: Springer US. doi:10.1007/978-0-387-36949-5_12\nWolfensberger, B., Piniel, J., Canella, C., & Kyburz-Graber, R. (2010). The challenge of involvement in reflective teaching: Three case studies from a teacher education project on conducting classroom discussions on socio-scientific issues. Teaching and Teacher Education, 26(3), 714-721. doi:10.1016/j.tate.2009.10.007\nWu, D. & Hiltz, S. R. (2004). Predicting learning from asynchronous online discussions. Journal of Asynchronous Learning Network. 8(2), 139- 152. doi:10.1142/S1609945104000115\nWu, P., Yu, S., & Wang, D. (2018). Using a learner-topic model for mining learner interests in open learning environments. Educational Technology & Society, 21(2), 192-204. Retrieved from https://www.jstor.org/stable/26388396?seq=1#page_scan_tab_contents\nXie, K., & Ke, F. (2011). The role of students` motivation in peer‐moderated asynchronous online discussions. British Journal of Educational Technology, 42(6), 916-930. doi:10.1016/j.linged.2018.05.003\nYu, K., Zhang, B., Zhu, H., Cao, H., & Tian, J. (2012). Towards personalized context-aware recommendation by mining context logs through topic models. In P.-N. Tan, S. Chawla, C. K. Ho, & J. Bailey (Eds.), Advances in Knowledge Discovery and Data Mining (pp. 431-443). Springer Berlin Heidelberg. Retrieved from https://link.springer.com/chapter/10.1007/978-3-642-30217-6_36\nZhan, Z., Fong, P., S., W., Mei, H., & Liang, T. (2015). Effects of gender grouping on students’ group performance, individual achievements and attitudes in computer-supported collaborative learning. Computers in Human Behavior, 48, 587-596. doi:10.1016/j.chb.2015.02.038; G0106155003; https://nccur.lib.nccu.edu.tw//handle/140.119/128850; https://nccur.lib.nccu.edu.tw/bitstream/140.119/128850/1/500301.pdf