يعرض 1 - 20 نتائج من 77 نتيجة بحث عن '"Lam, Kwok L."', وقت الاستعلام: 0.54s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: Ba Sunbul, Noora H.; Zhang, Wei; Oraiqat, Ibrahim; Litzenberg, Dale W.; Lam, Kwok L.; Cuneo, Kyle; Moran, Jean M.; Carson, Paul L.; Wang, Xueding; Clarke, Shaun D.; Matuszak, Martha M.; Pozzi, Sara A.; El Naqa, Issam (2021). "A simulation study of ionizing radiation acoustic imaging (iRAI) as a real‐time dosimetric technique for ultra‐high dose rate radiotherapy (UHDR‐RT)." Medical Physics 48(10): 6137-6151.; https://hdl.handle.net/2027.42/170961; Medical Physics; Lohse I, Lang S, Hrbacek J, et al. Effect of high dose per pulse flattening filter‐free beams on cancer cell survival. Radiother Oncol. 2011; 101 ( 1 ): 226 ‐ 232.; Schüler E, Trovati S, King G, et al. Experimental platform for ultra‐high dose rate FLASH irradiation of small animals using a clinical linear accelerator. Int J Radiat Oncol Biol Phys. 2017; 97 ( 1 ): 195 ‐ 203.; Favaudon V, Caplier L, Monceau V, et al. Erratum: ultrahigh dose‐rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 2019; 11 ( 523 ): 1 ‐ 10.; Montay‐Gruel P, Bouchet A, Jaccard M, et al. X‐rays can trigger the FLASH effect: ultra‐high dose‐rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice. Radiother Oncol. 2018; 129 ( 3 ): 582 ‐ 588.; Simmons DA, Lartey FM, Schüler E, et al. Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation. Radiother Oncol. 2019; 139: 4 ‐ 10.; Vozenin MC, De Fornel P, Petersson K, et al. The advantage of FLASH radiotherapy confirmed in mini‐pig and cat‐cancer patients. Clin Cancer Res. 2019; 25 ( 1 ): 35 ‐ 42.; Montay‐Gruel P, Petersson K, Jaccard M, et al. Irradiation in a flash: unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiother Oncol. 2017; 124 ( 3 ): 365 ‐ 369.; Bourhis J, Sozzi WJ, Jorge PG, et al. Treatment of a first patient with FLASH‐radiotherapy. Radiother Oncol. 2019; 139: 18 ‐ 22.; Forghani F, Mahl A, Patton TJ, et al. Simulation of x‐ray‐induced acoustic imaging for absolute dosimetry: accuracy of image reconstruction methods. Med Phys. 2020; 47 ( 3 ): 1280 ‐ 1290.; Hickling S, Hobson M, El Naqa I. Characterization of X‐ray acoustic computed tomography for applications in radiotherapy dosimetry. IEEE Transactions on Radiation and Plasma Medical Sciences. 2018; 2 ( 4 ): 337 ‐ 344.; IAEA. Radiation oncology physics: A handbook for teachers and students. Vol 52; 2005. Vienna: IAEA.; Hristova Y, Kuchment P, Nguyen L. Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media. Inverse Problems. 2008; 24 ( 5 ): 055006.; Xu Y, Wang LV. Time reversal and its application to tomography with diffracting sources. Phys Rev Lett. 2004; 92 ( 3 ): 4.; Burgholzer P, Matt GJ, Haltmeier M, Paltauf G. Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface. Physical Review E‐Statistical, Nonlinear, and Soft Matter Physics. 2007; 75 ( 4 ): 1 ‐ 10.; Oraiqat I, Zhang W, Litzenberg D, et al. An ionizing radiation acoustic imaging (iRAI) technique for real‐time dosimetric measurements for FLASH radiotherapy. Med Phys. 2020; 47 ( 10 ): 5090 ‐ 5101.; Zhang W, Oraiqat I, Lei H, Carson PL, Naqa IEI, Wang X. Dual‐modality X‐ray‐induced radiation acoustic and ultrasound imaging for real‐time monitoring of radiotherapy. BME Frontiers. 2020; 2020: 9853609.; Choi S, Lee D, Park E‐Y, Min J‐J, Lee C, Kim C, 3D X‐ray induced acoustic computed tomography: a phantom study. 2020;:168.SPIE BiOS, 2020, San Francisco, California, United States.; Tang S, Yang K, Chen Y, Xiang L. X‐ray‐induced acoustic computed tomography for 3D breast imaging: a simulation study. Med Phys. 2018; 45 ( 4 ): 1662 ‐ 1672.; Ross CK, Klassen NV, Shortt KR, Smith GD. A direct comparison of water calorimetry and Fricke dosimetry. Physics Med Biol. 1989; 34 ( 1 ): 23 ‐ 42.; Rogers DWO, Walters B, Kawrakow I. BEAMnrc Users Manual. Nrc Report Pirs. 2009.; Walters B, Kawrakow I, Rogers DWO. DOSXYZnrc Users Manual. Nrc Report Pirs. 2005.; Szabo TL. Diagnostic Ultrasound Imaging: Inside Out. 2004.; Mast TD. Empirical relationships between acoustic parameters in human soft tissues. Acoustic Research Letters Online. 2000; 1: 37 ‐ 42.; Treeby BE, Cox BT. k‐Wave: mATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J Biomed Opt. 2010; 15 ( 2 ): 021314.; Samant P, Trevisi L, Ji X, Xiang L. X‐ray induced acoustic computed tomography. Photoacoustics. 2020; 19: 100177.; DRT Sampaio, Uliana JH, Carneiro AAO, Pavoni JF, Pavan TZ, Borges LF. X‐ray acoustic imaging for external beam radiation therapy dosimetry using a commercial ultrasound scanner. 2015 IEEE International Ultrasonics Symposium, IUS. 2015; 2015: 15 ‐ 18.; Hickling S, Léger P, El Naqa I. On the detectability of acoustic waves induced following irradiation by a radiotherapy linear accelerator. IEEE Trans Ultrason Ferroelectr Freq Control. 2016; 63 ( 5 ): 683 ‐ 690.; Hickling S, Lei H, Hobson M, Léger P, Wang X, El Naqa I. Experimental evaluation of x‐ray acoustic computed tomography for radiotherapy dosimetry applications. Med Phys. 2017; 44 ( 2 ): 608 ‐ 617.; Xiang L, Han B, Carpenter C, Pratx G, Kuang Y, Xing L. X‐ray acoustic computed tomography with pulsed X‐ray beam from a medical linear accelerator. Med Phys. 2013; 40 ( 1 ): 1 ‐ 5.; Lei H, Zhang W, Oraiqat I, et al. Toward in vivo dosimetry in external beam radiotherapy using x‐ray acoustic computed tomography: a soft‐tissue phantom study validation. Med Phys. 2018; 45 ( 9 ): 4191 ‐ 4200.; Xiang L, Han B, Carpenter C, Pratx G, Kuang Y, Xing L. X‐ray induced photoacoustic tomography. Photons Plus Ultrasound: Imaging and Sensing 2013. 2013; 8581: 85811I.; Hickling S, Xiang L, Jones KC, et al. Ionizing radiation‐induced acoustics for radiotherapy and diagnostic radiology applications. Med Phys. 2018; 45 ( 7 ): e707 ‐ e721.; Xiang L, Tang S, Ahmad M, Xing L. High resolution X‐ray‐induced acoustic tomography. Sci Rep. 2016; 6: 2 ‐ 7.; Li Y, Samant P, Wang S, Behrooz A, Li D, Xiang L. 3‐D X‐ray‐induced acoustic computed tomography with a spherical array: a simulation study on bone imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2020; 67 ( 8 ): 1613 ‐ 1619.; di Martino F, Barca P, Barone S, et al. FLASH radiotherapy with electrons: issues related to the production, monitoring, and dosimetric characterization of the beam. Front Phys. 2020; 8.; Lempart M, Blad B, Adrian G, et al. Modifying a clinical linear accelerator for delivery of ultra‐high dose rate irradiation. Radiother Oncol. 2019; 139: 40 ‐ 45.

  2. 2
  3. 3
    Academic Journal
  4. 4
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Patent
  8. 8
    Academic Journal

    المساهمون: Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109‐5010

    وصف الملف: application/pdf

    Relation: Litzenberg, Dale W.; Gallagher, Ian; Masi, Kathryn J.; Lee, Choonik; Prisciandaro, Joann I.; Hamstra, Daniel A.; Ritter, Timothy; Lam, Kwok L. (2013). "A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter." Medical Physics 40(8): n/a-n/a.; https://hdl.handle.net/2027.42/135100; Medical Physics; L. Santanam, C. Noel, T. R. Willoughby, J. Esthappan, S. Mutic, E. E. Klein, D. A. Low, P. J. Parikh, J. J. Gordon, A. J. Crimaldi, M. Hagan, J. Moore, and J. V. Siebers, “ Quality assurance for clinical implementation of an electromagnetic tracking system,” Med. Phys. 36, 3477 – 3486 ( 2009 ). 10.1118/1.3158812; This accuracy value is found in version 2.0 of the Calypso User Manual, section 1.7 (LBL0008‐007).; K. R. Winston and W. Lutz, “ Linear accelerator as a neurosurgical tool for stereotactic radiosurgery,” Neurosurgery 22, 454 – 464 ( 1988 ). 10.1227/00006123‐198803000‐00002; T. Willoughby, J. Lehmann, J. A. Bencomo, S. K. Jani, L. Santanam, A. Sethi, T. D. Solberg, W. A. Tome, and T. J. Waldron, “ Quality assurance for nonradiographic radiotherapy localization and positioning systems: Report of Task Group 147,” Med. Phys. 39, 1728 – 1747 ( 2012 ). 10.1118/1.3681967; W. Du and S. Gao, “ Measuring the wobble of radiation field centers during gantry rotation and collimator movement on a linear accelerator,” Med. Phys. 38, 4575 – 4578 ( 2011 ). 10.1118/1.3609098; P. Skworcow, J. A. Mills, O. C. Haas, and K. J. Burnham, “ A new approach to quantify the mechanical and radiation isocentres of radiotherapy treatment machine gantries,” Phys. Med. Biol. 52, 7109 – 7124 ( 2007 ). 10.1088/0031‐9155/52/23/022; M. K. Woo, P. O’Brien, B. Gillies, and R. Etheridge, “ Mechanical and radiation isocenter coincidence: An experience in linear accelerator alignment,” Med. Phys. 19, 357 – 359 ( 1992 ). 10.1118/1.596866; A. Gonzalez, I. Castro, and J. A. Martinez, “ A procedure to determine the radiation isocenter size in a linear accelerator,” Med. Phys. 31, 1489 – 1493 ( 2004 ). 10.1118/1.1755491; R. Nath, P. J. Biggs, F. J. Bova, C. C. Ling, J. A. Purdy, J. van de Geijn, and M. S. Weinhous, “ AAPM code of practice for radiotherapy accelerators: Report of AAPM Radiation Therapy Task Group No. 45,” Med. Phys. 21, 1093 – 1121 ( 1994 ). 10.1118/1.597398; W. Lutz, K. R. Winston, and N. Maleki, “ A system for stereotactic radiosurgery with a linear accelerator,” Int. J. Radiat. Oncol., Biol., Phys. 14, 373 – 381 ( 1988 ). 10.1016/0360‐3016(88)90446‐4; F. Rosca, F. Lorenz, F. L. Hacker, L. M. Chin, N. Ramakrishna, and P. Zygmanski, “ An MLC‐based linac QA procedure for the characterization of radiation isocenter and room lasers’ position,” Med. Phys. 33, 1780 – 1787 ( 2006 ). 10.1118/1.2198171; P. Rowshanfarzad, M. Sabet, D. J. O’Connor, and P. B. Greer, “ Investigation of the sag in linac secondary collimator and MLC carriage during arc deliveries,” Phys. Med. Biol. 57, N209 – N224 ( 2012 ). 10.1088/0031‐9155/57/12/N209; Varian Medical Systems, Palo Alto, CA (private communication).; P. Rowshanfarzad, M. Sabet, D. J. O’Connor, and P. B. Greer, “ Isocenter verification for linac‐based stereotactic radiation therapy: Review of principles and techniques,” J. Appl. Clin. Med. Phys. 12, 185 – 195 ( 2011 ).; H. Lukka, C. Hayter, J. A. Julian, P. Warde, W. J. Morris, M. Gospodarowicz, M. Levine, J. Sathya, R. Choo, H. Prichard, M. Brundage, and W. Kwan, “ Randomized trial comparing two fractionation schedules for patients with localized prostate cancer,” J. Clin. Oncol. 23, 6132 – 6138 ( 2005 ). 10.1200/JCO.2005.06.153; RTOG 9406, A phase I/II dose escalation study using three dimensional conformal radiation therapy for adenocarcinoma of the prostate (available URL: http://www.rtog.org/ClinicalTrials/ProtocolTable/StudyDetails.aspx?study=9406 ).; RTOG 0415, A phase III randomized study of hypofractionated 3DCRT/IMRT versus conventionally fractionated 3DCRT/IMRT in patients treated for favorable‐risk prostate cancer (available URL: http://www.rtog.org/ClinicalTrials/ProtocolTable/StudyDetails.aspx?study=0415 ).; H. M. Sandler, P. Y. Liu, R. L. Dunn, D. C. Khan, S. E. Tropper, M. G. Sanda, and C. A. Mantz, “ Reduction in patient‐reported acute morbidity in prostate cancer patients treated with 81‐Gy intensity‐modulated radiotherapy using reduced planning target volume margins and electromagnetic tracking: Assessing the impact of margin reduction study,” Urology 75, 1004 – 1008 ( 2010 ). 10.1016/j.urology.2009.10.072; RTOG 0938, A randomized phase II trial of hypofractionated radiotherapy for favorable risk prostate cancer‐RTOG CCOP study (available URL: http://www.rtog.org/ClinicalTrials/ProtocolTable/StudyDetails.aspx?study=0938 ).; J. M. Balter, J. N. Wright, L. J. Newell, B. Friemel, S. Dimmer, Y. Cheng, J. Wong, E. Vertatschitsch, and T. P. Mate, “ Accuracy of a wireless localization system for radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 61, 933 – 937 ( 2005 ). 10.1016/j.ijrobp.2004.11.009; L. Santanam, K. Malinowski, J. Hubenshmidt, S. Dimmer, M. L. Mayse, J. Bradley, A. Chaudhari, K. Lechleiter, S. K. M. Goddu, J. Esthappan, S. Mutic, D. A. Low, and P. Parikh, “ Fiducial‐based translational localization accuracy of electromagnetic tracking system and on‐board kilovoltage imaging system,” Int. J. Radiat. Oncol., Biol., Phys. 70, 892 – 899 ( 2008 ). 10.1016/j.ijrobp.2007.10.005

  9. 9
    Book
  10. 10
    Academic Journal
  11. 11
    Conference

    المساهمون: Loew, Murray H., Hanson, Kenneth M.

    المصدر: SPIE Proceedings ; Medical Imaging 1996: Image Processing ; ISSN 0277-786X

  12. 12
    Academic Journal

    المصدر: Physics in Medicine and Biology ; volume 51, issue 24, page 6329-6347 ; ISSN 0031-9155 1361-6560

  13. 13
    Academic Journal

    المصدر: Physics in Medicine and Biology ; volume 51, issue 14, page 3603-3603 ; ISSN 0031-9155 1361-6560

  14. 14
    Conference
  15. 15
    Academic Journal

    المصدر: Physics in Medicine and Biology ; volume 50, issue 16, page 3849-3858 ; ISSN 0031-9155 1361-6560

  16. 16
    Academic Journal
  17. 17
    Academic Journal

    المؤلفون: Balter, James M., Lam, Kwok L.

    المساهمون: Department of Radiation Oncology, University of Michigan Health Systems, Ann Arbor, Michigan 48109

    وصف الملف: application/pdf

    Relation: Balter, James M.; Lam, Kwok L. (2001). "Technical note: Acquisition of CT models for radiotherapy applications with reduced tube heating." Medical Physics 28(4): 590-592.; https://hdl.handle.net/2027.42/135004; Medical Physics; J. Balter, R. K. Ten Haken, and K. L. Lam, “Treatment setup verification,” in Teletherapy, Present and Future, edited by T. R. Mackie and J. R. Palta (Advanced Medical Publishing, Madison, WI, 1996), pp. 471–493.; M. Murphy, “ The importance of computed tomography slice thickness in radiographic patient positioning for radiosurgery,” Med. Phys. MPHYA6 --> 26, 171 – 175 ( 1999 ). MPHYA6 --> 0094‐2405

  18. 18
    Academic Journal
  19. 19
    Academic Journal

    المساهمون: Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, Department of Radiation Oncology and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennslyvania 15213

    وصف الملف: application/pdf

    Relation: Muthuswamy, Moorthy S.; Lam, Kwok L. (1999). "A method of beam–couch intersection detection." Medical Physics 26(2): 229-235.; https://hdl.handle.net/2027.42/134785; Medical Physics; E. D. Yorke, “ The geometry of avoiding beam intersections and blocking tray collisions,” Med. Phys. MPHYA6 --> 16, 288 – 291 ( 1989 ).; J. Bayouth, M. Muthuswamy, A. Kalend, M. Izadbakhsh, and J. Greenberger, “ Computer controlled conformal therapy‐Analytical and computer simulation of collision avoidance and treatment delivery,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 32 ( S1 ), 188 ( 1995 ).; J. L. Humm, “ Collision avoidance in computerized treatment planning,” Med. Phys. MPHYA6 --> 21, 1053 – 1064 ( 1994 ).; M. L. Kessler, D. L. McShan, and B. A. Fraass, “ A computer controlled conformal radiotherapy system. III: Graphical simulation and monitoring of treatment delivery,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 33, 1173 – 1180 ( 1995 ).; R. Siddon, “ Solution to treatment planning problems using coordinate transformations,” Med. Phys. MPHYA6 --> 8, 766 – 774 ( 1981 ).

  20. 20
    Academic Journal

    المساهمون: Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109‐0010

    وصف الملف: application/pdf

    Relation: Litzenberg, Dale W.; Balter, James M.; Hornick, David C.; Lam, Kwok L.; Ten Haken, Randall K. (1999). "A mathematical model for correcting patient setup errors using a tilt and roll device." Medical Physics 26(12): 2586-2588.; https://hdl.handle.net/2027.42/134812; Medical Physics; D. C. Hornick, D. W. Litzenberg, K. L. Lam, J. M. Balter, J. Hetrick, and R. K. Ten Haken, “ A tilt and roll device for automated correction of rotational setup errors,” Med. Phys. MPHYA6 --> 25, 1739 – 1740 ( 1998 ).; K. L. Lam, R. K. Ten Haken, D. L. McShan, and A. F. Thorton, Jr., “ Automated determination of patient setup errors in radiation therapy using spherical radio‐opaque markers,” Med. Phys. MPHYA6 --> 20, 1145 – 1152 ( 1993 ).; K. L. Lam and R. K. Ten Haken, “ Improvement of precision in spatial localization of radio‐opaque markers using the two‐film technique,” Med. Phys. MPHYA6 --> 18, 1126 – 1131 ( 1991 ).