-
1Academic Journal
المؤلفون: A. A. Melnikova, F. M. Abbasbeyli, T. Yu. Mushkarina, M. A. Vernyuk, P. A. Zeynalova, L. Yu. Grivtsova, S. A. Ivanov, A. D. Kaprin
المصدر: Онкогематология, Vol 19, Iss 3, Pp 92-98 (2024)
مصطلحات موضوعية: hodgkin’s lymphoma, bone marrow, berezovsky–reed –sternberg cell, flow cytometry, immunohistochemical examination, positron emission tomography combined with computed tomography, Diseases of the blood and blood-forming organs, RC633-647.5
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: A. E. Glukhareva, G. V. Afonin, I. V. Kolobaev, L. Yu. Grivtsova, S. A. Ivanov, A. D. Kaprin
المصدر: Issledovaniâ i Praktika v Medicine, Vol 11, Iss 1, Pp 19-28 (2024)
مصطلحات موضوعية: relative dose intensity, non-small cell lung canses, chemoradiotherapy, Medicine
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: E. A. Bykova, N. A. Falaleeva, S. A. Myalina, P. V. Shegai, L. Yu. Grivtsova
المصدر: Медицинская иммунология, Vol 26, Iss 2, Pp 407-414 (2024)
مصطلحات موضوعية: cervical cancer, immuno-oncology, cytokines, tnfα, tnfα-тимозин-α1, ifnγ, Immunologic diseases. Allergy, RC581-607
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: F. M. Abbasbeyli, A. A. Fedenko, P. A. Zeynalova, R. F. Zibirov, V. N. Grinevich, T. Yu. Mushkarina, A. A. Melnikova, M. A. Vernyuk, L. Yu. Grivtsova
المصدر: Онкогематология, Vol 18, Iss 3, Pp 70-77 (2023)
مصطلحات موضوعية: hodgkin’s lymphoma, reed–sternberg–berezovsky tumor cell, flow cytometry, Diseases of the blood and blood-forming organs, RC633-647.5
وصف الملف: electronic resource
-
5Academic Journal
المؤلفون: F. M. Abbasbeyli, P. A. Zeynalova, M. A. Vernyuk, A. A. Fedenko, T. Yu. Mushkarina, A. A. Melnikova, V. Yu. Kovalskaya, L. Yu. Grivtsova
المصدر: Онкогематология, Vol 18, Iss 3, Pp 84-91 (2023)
مصطلحات موضوعية: classical hodgkin’s lymphoma, bone marrow tumor infiltration, berezovsky–reed–sternberg cells, immunohistochemical study, bone marrow trephine biopsy, positron emission tomography combined with computed tomography, Diseases of the blood and blood-forming organs, RC633-647.5
وصف الملف: electronic resource
-
6Academic Journal
المؤلفون: V. R. Gorodetsky, N. A. Probatova, N. N. Tupitsyn, A. M. Kovrigina, E. N. Sholokhova, M. A. Frenkel, T. T. Kondratyeva, L. Yu. Grivtsova, E. V. Fleishman, A. I. Pavlovskaya
المصدر: Онкогематология, Vol 0, Iss 3, Pp 65-69 (2022)
مصطلحات موضوعية: myeloid/nk cell precursor, acute leukemia, Diseases of the blood and blood-forming organs, RC633-647.5
وصف الملف: electronic resource
-
7Academic Journal
المؤلفون: Yu. V. Gelm, I. A. Pasova, L. Yu. Grivtsova, T. V. Konstantinova, N. V. Mikhaylovsky, V. A. Rybachuk, E. V. Abakushina, S. A. Ivanov, A. D. Kaprin
المصدر: Медицинская иммунология, Vol 24, Iss 3, Pp 481-490 (2022)
مصطلحات موضوعية: nk cells, mononuclear cells, feeder cells, culture, proliferation, elisa, phenotype, Immunologic diseases. Allergy, RC581-607
وصف الملف: electronic resource
-
8Academic Journal
المؤلفون: F. Sh. Kamolova, L. Yu. Grivtsova, S. M. Samborskiy, V. B. Larionova, Yu. E. Ryabukhina, P. A. Zeynalova, A. M. Mudunov
المصدر: Онкогематология, Vol 16, Iss 3, Pp 50-57 (2021)
مصطلحات موضوعية: extramedullary plasmocytoma, head and neck tumors, immunohistochemistry, diagnostics, extraosseous plasmocytoma, immunophenotype, plasma cell tumor, Diseases of the blood and blood-forming organs, RC633-647.5
وصف الملف: electronic resource
-
9Academic Journal
المؤلفون: L. Yu. Grivtsova, T. Yu. Mushkarina, V. V. Lunin, P. A. Zeynalova
المصدر: Онкогематология, Vol 16, Iss 3, Pp 16-25 (2021)
مصطلحات موضوعية: plasma cell tumor, flow cytometry, clonal plasmocytes, aberrance, minimal residual disease, multiple myeloma, classification of hematopoietic lymphoid system tumors, Diseases of the blood and blood-forming organs, RC633-647.5
وصف الملف: electronic resource
-
10Academic Journal
المؤلفون: F. Sh. Kamolova, A. M. Mudunov, P. A. Zeynalova, L. Yu. Grivtsova, G. F. Allakhverdieva, R. I. Azizyan, A. A. Akhundov, I. A. Zaderenko, M. V. Bolotin, D. K. Stelmakh, V. I. Sokorutov, K. D. Il’kaev, V. T. Tsiklauri, I. M. Gelfand, M. B. Pak, O. L. Timofeeva, Yu. E. Ryabukhina, F. M. Abbasbeyli, Ts. Chzhao
المصدر: Онкогематология, Vol 16, Iss 3, Pp 105-117 (2021)
مصطلحات موضوعية: head and neck lymphomas, non-hodgkin’s lymphomas, hodgkin’s lymphoma, extranodal involvement, lymph nodes, Diseases of the blood and blood-forming organs, RC633-647.5
وصف الملف: electronic resource
-
11Academic Journal
المؤلفون: Yu. V. Gelm, E. V. Abakushina, I. A. Pasova, L. Yu. Grivtsova
المصدر: Медицинская иммунология, Vol 23, Iss 2, Pp 381-388 (2021)
مصطلحات موضوعية: lymphocytes, in vitro activation, il-2, il-12, il-15, cell immunotherapy, cell's activity, physiological reserve, Immunologic diseases. Allergy, RC581-607
وصف الملف: electronic resource
-
12Academic Journal
المؤلفون: L. Yu. Grivtsova, V. V. Lunin, A. A. Semenova, V. B. Larionova, G. S. Tumyan
المصدر: Онкогематология, Vol 15, Iss 1, Pp 40-50 (2020)
مصطلحات موضوعية: plasma cell tumor, myeloma, flow cytometry, aberration marker, minimum residual disease, Diseases of the blood and blood-forming organs, RC633-647.5
وصف الملف: electronic resource
-
13Academic Journal
المؤلفون: L. Yu. Grivtsova, V. B. Larionova, N. A. Falaleeva
المصدر: Онкогематология, Vol 16, Iss 4 (2021)
مصطلحات موضوعية: oncology, chemotherapy, hematological toxicity, febrile neutropenia, supportive care, immunocorrection, infectious complication, Diseases of the blood and blood-forming organs, RC633-647.5
وصف الملف: electronic resource
-
14Academic Journal
المؤلفون: L. Yu. Grivtsova, O. E. Popovkina, N. N. Dukhova, O. A. Politiko, V. V. Yuzhakov, L. A. Lepekhina, S. Sh. Kalsina, S. A. Ivanov, A. D. Kaprin
المصدر: Кардиоваскулярная терапия и профилактика, Vol 19, Iss 6 (2020)
مصطلحات موضوعية: мезенхимальные стволовые клетки, кардиомиобласты, клеточный биобанк, антрациклины, кардиомиоциты, кардиотоксичность, Diseases of the circulatory (Cardiovascular) system, RC666-701
وصف الملف: electronic resource
-
15Academic Journal
المؤلفون: M. M. Vasilyeva, I. P. Moshurov, L. Yu. Grivtsova, N. N. Tupitsyn, N. A. Kozlov, M. B. Vasilyev
المصدر: Опухоли женской репродуктивной системы, Vol 14, Iss 4, Pp 20-23 (2019)
مصطلحات موضوعية: breast cancer, therapeutic pathomorphosis, polyoxidonium, Gynecology and obstetrics, RG1-991
وصف الملف: electronic resource
-
16Academic Journal
المؤلفون: A. M. Popov, T. U. Verzhbitskaya, E. E. Zueva, O. V. Anan’eva, E. V. Babenko, L. V. Baydun, E. A. Belyakova, E. V. Boyakova, O. G. Bortnikova, M. V. Gorchakova, L. Yu. Grivtsova, E. N. Grinkevich, Yu. V. Davydova, E. I. Zakhar’ko, O. I. Illarionova, N. M. Kaprano, E. A. Koroleva, S. A. Kochengina, E. G. Kuz’mina, E. A. Kustova, T. A. Makarova, Yu. V. Mirolyubova, O. E. Murashkina, T. Yu. Mushkarina, E. S. Nisheva, I. A. Novikova, E. Yu. Osipova, G. E. Pluzhnikova, M. E. Pochtar, N. V. Pronkina, E. V. Rusanova, E. B. Rybkina, O. V. Seliverstova, N. N. Tupitsin, G. I. Uleyskaya, N. T. Urazalieva, L. G. Fechina, O. V. Khoroshikh, O. E. Tsareva, L. A. Shchekina, S. A. Plyasunova, S. A. Lugovskaya
المصدر: Онкогематология, Vol 11, Iss 3, Pp 68-75 (2016)
مصطلحات موضوعية: flow cytometry, acute lymphoblastic leukemia, standardization, Diseases of the blood and blood-forming organs, RC633-647.5
وصف الملف: electronic resource
-
17Academic Journal
المؤلفون: I. S. Dolgopolov, L. Yu. Grivtsova, O. K. Ustinova, M. Yu. Rykov, И. С. Долгополов, Л. Ю. Гривцова, О. К. Устинова, М. Ю. Рыков
المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 67, № 6 (2022); 104-112 ; Российский вестник перинатологии и педиатрии; Том 67, № 6 (2022); 104-112 ; 2500-2228 ; 1027-4065
مصطلحات موضوعية: гранулематозная лимфоцитарная интерстициальная болезнь легких, Kabuki syndrome, KMT2D mutation, cellular immunodeficiency, granulomatous lymphocytic interstitial lung disease, синдром Кабуки, мутация гена KMT2D, клеточный иммунодефицит
وصف الملف: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/1751/1332; White S.M., Thompson E.M., Kidd A., Savarirayan R., Turner A., Amor D. et al. Growth, behavior, and clinical findings in 27 patients with Kabuki (Niikawa-Kuroki) syndrome. Am J Med Genet A 2004; 127a: 118–127. DOI:10.1002/ajmg.a.20674; Cheon C.K., Sohn Y.B., Ko J.M., Lee Y.J., Song J.S., Moon J.W. et al. Identification of KMT2D and KDM6A mutations by exome sequencing in Korean patients with Kabuki syndrome. J Hum Genet 2014; 59(6): 321–325. DOI:10.1038/jhg.2014.25; Banka S., Veeramachaneni R., Reardon W., Howard E., Bunstone S., Ragge N. et al. How genetically heterogeneous is Kabuki syndrome? MLL2 testing in 116 patients, review and analyses of mutation and phenotypic spectrum. EJHG 2012; 20: 381–388. DOI:10.1038/ejhg.2011.220; Lederer D., Grisart B., Digilio M.C., Benoit V., Crespin M., Ghariani S.C. et al. Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome. Am J Hum Genet 2012; 90: 119–124. DOI:10.1016/j.ajhg.2011.11.021; Hu D., Gao X., Morgan M.A., Herz H.-M., Smith E.R., Shilatifard A. The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol Cell Biol 2013; 33: 4745–4754. DOI:10.1128/MCB.01181–13; Miyake N., Koshimizu E., Okamoto N., Mizuno S., Ogata T., Nagai T. et al. MLL2 and KDM6A mutations in patients with Kabuki syndrome. Am J Med Genet 2013; 161: 2234–2243. DOI:10.1002/ajmg.a.36072; Banka S., Lederer D., Benoit V., Jenkins E., Howard E., Bunstoneet S. et al. Novel KDM6A (UTX) mutations and a clinical and molecular review of the X-linked Kabuki syndrome (KS2). Clin Genet 2015; 87: 252–258. DOI:10.1111/cge.12363; Halal F., Gledhill R., Dudkiewicz A. Autosomal dominant inheritance of the Kabuki make-up (Niikawa-Kuroki) syndrome. Am J Med Genet 1989; 33:3 76–381. DOI:10.1002/ajmg.1320330317; Shangguan H., Su C., Ouyang Q., Cao B., Wang J., Gong C., Chen R. Kabuki syndrome: novel pathogenic variants, new phenotypes and review of literature. Orphanet J Rare Dis 2019; 14: 255. DOI:10.1186/s13023–019–1219-x; Topcu Y., Bayram E., Karaoglu P., Yis U., Kurul S.H. Kabuki syndrome and perisylvian cortical dysplasia in a Turkish girl. J Pediatr Neurosci 2013; 8(3): 259–260. DOI:10.4103/1817–1745.123710; Ben-Omran T., Teebi A.S. Structural central nervous system (CNS) anomalies in Kabuki syndrome. Am J Med Genet A. 2005; 137(1): 100–103. DOI:10.1002/ajmg.a.30842; Lin J.L., Lee W.I., Huang J.L., Chen P., Chan K.C., Lo L.J. et al. Immunologic assessment and KMT2D mutation detection in Kabuki syndrome. Clin Gen 2015; 88: 255–260. DOI:10.1111/cge.12484; Hoffman J.D., Ciprero K.L., Sullivan K.E., Kaplan P., McDonald- McGinn D., Zackai E., Ming J. Immune abnormalities are a frequent manifestation of Kabuki syndrome. Am J Med Genet A 2005; 135A: 278–281. DOI:10.1002/ajmg.a.30722; Margot H., Boursier G., Duflos C., Sanchez E., Amiel J., Andrau J.C. et al. Immunopathological manifestations in Kabuki syndrome: a registry study of 177 individuals. Genet Med 2020; 22 (1): 181–188. DOI:10.1038/s41436–019–0623-x; De Dios J.A.A., Javaid A.A., Ballesteros E., Metersky M.L. An 18-year-old woman with Kabuki syndrome, immunoglobulin deficiency and granulomatous lymphocytic interstitial lung disease. Conn Med 2012; 76: 15–18; Adam M.P., Banka S., Bjornsson H.T., Bodamer O., Chudley A.E., Harris J. et al. Kabuki syndrome medical advisory board (2019). Kabuki syndrome: international consensus diagnostic criteria. J Med Genet 2018; 56: 89–95. DOI:10.1136/jmedgenet-2018–105625; Di Candia F., Fontana P., Paglia P., Falco M., Rosano C., Piscopo C. et al. Clinical heterogeneity of Kabuki syndrome in a cohort of Italian patients and review of the literature. Eur J Pediatr 2022; 181 (1): 171–187. DOI:10.1007/s00431–021–04108-w; Stagi S., Gulino A.V., Lapi E., Rigante D. Epigenetic control of the immune system: a lesson from Kabuki syndrome. Immunol Res 2016; 64: 345–359. DOI:10.1007/s12026–015–8707–4; Niikawa N., Kuroki Y., Kajii T., Matsuura N., Ishikiriyama S., Tonoki H. et al. Kabuki make-up (Niikawa-Kuroki) syndrome: a study of 62 patients. Am J Med Genet 1988; 31(3): 565–589. DOI:10.1002/ajmg.1320310312; Wessels M.W., Brooks A.S., Hoogeboom J., NiermeÜer M.F., Willems P.J. Kabuki syndrome: a review study of three hundred patients. Clin Dysmorphol 2002; 11(2): 95–102. DOI:10.1097/00019605–200204000–00004; Boniel S., Szymanska K., Smigiel R., Szczałuba K. Kabuki syndrome — clinical review with molecular aspects. Genes 2021; 12: 468. DOI:10.3390/genes12040468; Zimmermann T., Brasch F., Rauch A., Stachel D., Holter W., Beck J. Lymphoid interstitial pneumonia and Kabuki-Syndrome in a young man. Paediatr Respir Rev 2006; 7(Suppl. 1): 329. DOI:10.1016/j.prrv.2006.04.178; Hurst J.R., Verma N., Lowe D., Baxendale H.E., Jolles S., Kelleher P. et al. British Lung Foundation/United Kingdom Primary Immunodeficiency Network Consensus Statement on the Definition, Diagnosis, and Management of Granulomatous-Lymphocytic Interstitial Lung Disease in Common Variable Immunodeficiency Disorders. J Allergy Clin Immunol Pract 2017; 5(4): 938–945. DOI:10.1016/j.jaip.2017.01.021; Shah M., Bogucki B., Mavers M., de Mello D.E., Knutsen A. Cardiac conduction abnormalities and congenital immunodeficiency in a child with Kabuki syndrome: Case report. BMC Med Genet 2005; 6: 28. DOI:10.1186/1471–2350–6–28; Lindsley A.W., Saal H.M., Burrow T.A., Hopkin R., Shchelochkov O., Khandelwal P. et al. Defects of B-cell terminal differentiation in patients with type-1 Kabuki syndrome. J Allergy Clin Immunol 2016; 137: 179–187. DOI:10.1016/j.jaci.2015.06.002; Croft M. The TNF family in T cell differentiation and function–unanswered questions and future directions. Semin Immunol 2014; 26(3):183–190. DOI:10.1016/j.smim.2014.02.005; Wei G., Wei L., Zhu J., Zang C., Hu-Li J., Yao Z. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 2009; 30: 155. DOI:10.1016/j.immuni.2008.12.009; Suskind D.L., Finn L., Wahbeh G., Christie D., Horslen S. A child with Kabuki syndrome and primary sclerosing cholangitis successfully treated with ursodiol and cholestryamine. J Pediatr Gastroenterol Nutr 2006; 43: 542–544. DOI:10.1097/01.mpg.0000228114. 06488.ef; Matsumoto N., Niikawa N. Kabuki make-up syndrome: a review. Am J Med Genet C Semin Med Genet 2003; 117C: 57–65. DOI:10.1002/ajmg.c.10020; https://www.ped-perinatology.ru/jour/article/view/1751
-
18Academic Journal
المؤلفون: L. Yu. Grivtsova, O. B. Karyakin, M. G. Syadrin, S. M. Samborsky, S. A. Ivanov, A. D. Kaprin, Л. Ю. Гривцова, О. Б. Карякин, М. Г. Сядрин, С. М. Самборский, С. А. Иванов, А. Д. Каприн
المصدر: Cancer Urology; Том 19, № 2 (2023); 111-126 ; Онкоурология; Том 19, № 2 (2023); 111-126 ; 1996-1812 ; 1726-9776
مصطلحات موضوعية: таргетная терапия, muscle-invasive bladder cancer, biomarker, chemotherapy, biotherapy, immunotherapy, targeted therapy, мышечно-инвазивный рак мочевого пузыря, биомаркер, химиотерапия, биотерапия, иммунотерапия
وصف الملف: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1676/1464; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1676/1253; Bellmunt J., Théodore C., Demkov T. et al. Phase III trial of vinflunine plus best supportive care compared with best supportive care alone after a platinum-containing regimen in patients with advanced transitional cell carcinoma of the urothelial tract. J Clin Oncol 2009;27(27):4454–61. DOI:10.1200/JCO.2008.20.5534; McCaffrey J.A., Hilton S., Mazumdar M. et al. Phase II trial of docetaxel in patients with advanced or metastatic transitional-cell carcinoma. J Clin Oncol 1997;15(5):1853–7. DOI:10.1200/JCO.1997.15.5.1853; Szklener K., Chmiel P., Michalski A., Mańdziuk S. New directions and challenges in targeted therapies of advanced bladder cancer: the role of FGFR inhibitors. Cancers 2022;14(6):1416. DOI:10.3390/cancers14061416; Khalife N., Chahine C., Kordahi M. et al. Urothelial carcinoma in the era of immune checkpoint inhibitors. Immunotherapy 2021;13(11):953–64. DOI:10.2217/imt-2021-0042; Heath E.I., Rosenberg J.E. The biology and rationale of targeting nectin–4 in urothelial carcinoma. Nat Rev Urol 2021;18(2):93–103. DOI:10.1038/s41585-020-00394-5; Tagawa S.T., Balar A.V., Petrylak D.P. et al. TROPHY-U-01: a phase II open-label study of sacituzumab govitecan in patients with metastatic urothelial carcinoma progressing after platinumbased chemotherapy and checkpoint inhibitors abstract. J Clin Oncol 2021;39(22):2474–85. DOI:10.1200/JCO.20.03489; Powles T., Park S.H., Voog E. et al. Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. N Engl J Med 2020;383(13):1218–30. DOI:10.1056/NEJMoa2002788; Bellmunt J., de Wit R., Vaughn D.J. et al. KEYNOTE-045 Investigators. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 2017;376(11):1015–26. DOI:10.1056/NEJMoa1613683; Powles T., Rosenberg J.E., Sonpavde G.P. et al. Enfortumab vedotin in previously treated advanced urothelial carcinoma. N Engl J Med 2021;384(12):1125–35. DOI:10.1056/NEJMoa2035807; Loriot Y., Balar A., Petrylak D. et al. LBA24 TROPHY-U-01 cohort 1 final results: a phase II study of sacituzumab govitecan (SG) in metastatic urothelial cancer (mUC) that has progressed after platinum (PLT) and checkpoint inhibitors (CPI). Ann Oncol 2020;31:1142–215.; Loriot Y., Necchi A., Park S.H. et al. BLC2001 Study Group. Erdafitinib in locally advanced or metastatic urothelial carcinoma. N Engl J Med 2019;381(4):338–48. DOI:10.1056/NEJMoa1817323; Loehrer Sr P.J., Einhorn L.H., Elson P.J. et al. A randomized comparison of cisplatin alone or in combination with methotrexate,vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: a cooperative group study. J Clin Oncol 1992;10(7):1066–73. DOI:10.1200/JCO.1992.10.7.1066; Logothetis C.J., Dexeus F.H., Finn L. et al. A prospective randomized trial comparing MVAC and CISCA chemotherapy for patients with metastatic urothelial tumors. J Clin Oncol 1990;8(6):1050–5. DOI:10.1200/JCO.1990.8.6.1050; Von der Maase H., Hansen S.W., Roberts J.T. et al. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. J Clin Oncol 2000;18(17):3068–77. DOI:10.1200/JCO.2000.18.17.3068; Galsky M.D., Arija J.Á.A., Bamias A. et al. Atezolizumab with or without chemotherapy in metastatic urothelial cancer (IMvigor130): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2020;395(10236):1547–57. DOI:10.1016/S0140-6736(20)30230-0; Powles T., Csőszi T., Özgüroğlu M. et al. Pembrolizumab alone or combined with chemotherapy versus chemotherapy as first-line therapy for advanced urothelial carcinoma (KEYNOTE-361): a randomised, open-label, phase 3 trial. Lancet Oncol 2021;22(7):931–45. DOI:10.1016/S1470-2045(21)00152-2; Powles T., van der Heijden M.S., Castellano D. et al. Durvalumab alone and durvalumab plus tremelimumab versus hemotherapy in previously untreated patients with unresectable, locally advanced or metastatic urothelial carcinoma (DANUBE): a randomised, openlabel, multicentre, phase 3 trial. Lancet Oncol 2020;21(12):1574–88. DOI:10.1016/S1470-2045(20)30541-6; Rosenberg J.E., Flaig T.W., Friedlander T.W. et al. Study EV-103: durability results of enfortumab vedotin plus pembrolizumab for locally advanced or metastatic urothelial carcinoma. J Clin Oncol 2020;38:5044 (2021;39(15):4528).; Li X., Heyer W.D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 2008;18(1):99–113. DOI:10.1038/cr.2008.1; Reardon J.T., Vaisman A., Chaney S.G., Sancar A. Efficient nucleotide excision repair of cisplatin, oxaliplatin, and bis-acetoammine-dichloro-cyclohexylamine-platinum(IV) (JM216) platinum intrastrand DNA diadducts. Cancer Res 1999;59(16):3968–71.; Lord R.V.N., Brabender J., Gandara D. et al. Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer. Clin Cancer Res 2002;8(7):2286–91.; Britten R.A., Liu D., Tessier A. et al. ERCC1 expression as a molecular marker of cisplatin resistance in human cervical tumor cells. Int J Cancer 2000;89(5):453–7.; Olaussen K.A., Dunant A., Fouret P. et al. IALT Bio Investigators. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatinbased adjuvant chemotherapy. N Engl J Med 2006;355(10):983–91. DOI:10.1056/NEJMoa060570; Dabholkar M., Vionnet J., Bostick-Bruton F. et al. Messenger RNA levels of XPAC and ERCC1 in ovarian cancer tissue correlate with response to platinum-based chemotherapy. J Clin Invest 1994;94(2):703–8. DOI:10.1172/JCI117388; Metzger R., Leichman C.G., Danenberg K.D. et al. ERCC1 mRNA levels complement thymidylate synthase mRNA levels in predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy. J Clin Oncol 1998;16(1):309–16. DOI:10.1200/JCO.1998.16.1.309; Shirota Y., Stoehlmacher J., Brabender J. et al. ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol 2001;19(23):4298–304. DOI:10.1200/JCO.2001.19.23.4298; Klatte T., Seitz C., Rink M. et al. ERCC1 as a prognostic and predictive biomarker for urothelial carcinoma of the bladder following radical cystectomy. J Urol 2015;194(5):1456–62. DOI:10.1016/j.juro.2015.06.099; Necchi A., Lo Vullo S., Raggi D. et al. Neoadjuvant sorafenib, gemcitabine, and cisplatin administration preceding cystectomy in patients with muscle-invasive urothelial bladder carcinoma: an open-label, single-arm, single-center, phase 2 study. Urol Oncol 2018;36(1):8.e1–8. DOI:10.1016/j.urolonc.2017.08.020; Hemdan T., Segersten U., Malmström P. 122 ERCC1-negative tumors benefit from neoadjuvant cisplatin-based chemotherapy whereas patients with ERCC1-positive tumors do not – results from a cystectomy trial database. Eur Urol 2014;13(1):e122.; Choueiri T.K., Jacobus S., Bellmunt J. et al. Neoadjuvant dosedense methotrexate, vinblastine, doxorubicin, and cisplatin with pegfilgrastim support in muscle-invasive urothelial cancer: pathologic, radiologic, and biomarker correlates. J Clin Oncol 2014;32(18):1889–94. DOI:10.1200/JCO.2013.52.4785; Sakano S., Ogawa S., Yamamoto Y. et al. ERCC1 and XRCC1 expression predicts survival in bladder cancer patients receiving combined trimodality therapy. Mol Clin Oncol 2013;1(3):403–10. DOI:10.3892/mco.2013.85; Sun J.M., Sung J.Y., Park S.H. et al. ERCC1 as a biomarker for bladder cancer patients likely to benefit from adjuvant chemotherapy. BMC Cancer 2012;12:187. DOI:10.1186/1471-2407-12-187; Kawashima A., Takayama H., Kawamura N. et al. Co-expression of ERCC1 and Snail is a prognostic but not predictive factor of cisplatin-based neoadjuvant chemotherapy for bladder cancer. Oncol Lett 2012;4(1):15–21. DOI:10.3892/ol.2012.689; Ozcan M.F., Dizdar O., Dincer N. et al. Low ERCC1 expression is associated with prolonged survival in patients with bladder cancer receiving platinum–based neoadjuvant chemotherapy. Urol Oncol 2013;31(8):1709–15. DOI:10.1016/j.urolonc.2012.06.014; Nikitas N., Karadimou A., Tsitoura E. et al. Association of ERCC1 SNPs with outcome in platinum–treated patients with advanced urothelial cancer: a Hellenic Cooperative Oncology Group study. Pharmacogenomics 2012;13(14):1595–607. DOI:10.2217/pgs.12.162; Kim K.H., Do I.G., Kim H.S. et al. Excision repair cross-complementation group 1 (ERCC1) expression in advanced urothelial carcinoma patients receiving cisplatin–based chemotherapy. APMIS 2010;118(12):941–8. DOI:10.1111/j.1600-0463.2010.02648.x; Hoffmann A.C., Wild P., Leicht C. et al. MDR1 and ERCC1 expression predict outcome of patients with locally advanced bladder cancer receiving adjuvant chemotherapy. Neoplasia 2010;12(8):628–36. DOI:10.1593/neo.10402; Bellmunt J., Paz-Ares L., Cuello M. et al. Spanish Oncology Genitourinary Group. Gene expression of ERCC1 as a novel prognostic marker in advanced bladder cancer patients receiving cisplatin-based chemotherapy. Ann Oncol 2007;18(3):522–8. DOI:10.1093/annonc/mdl435; Urun Y., Leow J.J., Fay A.P. et al. ERCC1 as a prognostic factor for survival in patients with advanced urothelial cancer treated with platinum based chemotherapy: a systematic review and meta-analysis. Crit Rev Oncol Hematol 2017;120:120–6. DOI:10.1016/j.critrevonc.2017.10.012; Li Q., Damish A.W., Frazier Z. et al. ERCC2 helicase domain mutations confer nucleotide excision repair deficiency and drive cisplatin sensitivity in muscle–invasive bladder cancer. Clin Cancer Res 2019;25(3):977–88. DOI:10.1158/1078-0432.CCR-18-1001; Van Allen E.M., Mouw K.W., Kim P. et al. Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma. Cancer Discov 2014;4(10):1140–53. DOI:10.1158/2159-8290.CD-14-0623; Liu D., Plimack E.R., Hoffman-Censits J. et al. Clinical validation of chemotherapy response biomarker ERCC2 in muscle-invasive urothelial bladder carcinoma. JAMA Oncol 2016;2(8):1094–6. DOI:10.1001/jamaoncol.2016.1056; Christensen E., Birkenkamp-Demtröder K., Sethi H. et al. Early detection of metastatic relapse and monitoring of therapeutic efficacy by ultra-deep sequencing of plasma cell-free DNA in patients with urothelial bladder carcinoma. J Clin Oncol 2019;37(18):1547–57. DOI:10.1200/JCO.18.02052; Groenendijk F.H., de Jong J., Fransen van de Putte E.E. et al. ERBB2 mutations characterize a subgroup of muscle-invasive bladder cancers with excellent response to neoadjuvant chemotherapy. Eur Urol 2016;69(3):384–8. DOI:10.1016/j.eururo.2015.01.014; Groenendijk F.H., Fransen van de Putte E.E., van Rhijn B.W. et al. Garraway and Jonathan E. Rosenberg’s Letter to the Editor re: Groenendijk F.H., de Jong J., Fransen van de Putte E.E. et al. ERBB2 mutations characterize a subgroup of muscle-invasive bladder cancers with excellent response to neoadjuvant chemotherapy. Eur Urol 2015;68(2):e33–4.; Taber A., Christensen E., Lamy P. et al. Molecular correlates of cisplatin-based chemotherapy response in muscle invasive bladder cancer by integrated multiomics analysis. Nat Commun 2020;11(1):4858. DOI:10.1038/s41467-020-18640-0; Kim J., Mouw K.W., Polak P. et al. Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors. Nat Genet 2016;48(6):600–6. DOI:10.1038/ng.3557; Galsky M.D., Daneshmand S., Chan K.G. et al. Phase 2 trial of gemcitabine, cisplatin, plus nivolumab with selective bladder sparing in patients with muscle-invasive bladder cancer (MIBC): HCRN GU16-257. J Clin Oncol 2021;39:4503.; Yang D., Khan S., Sun Y. et al. Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA 2011;306(14):1557–65. DOI:10.1001/jama.2011.1456; Sakai W., Swisher E.M., Karlan B.Y. et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 2008;451(7182):1116–20. DOI:10.1038/nature06633; Tutt A., Tovey H., Cheang M.C.U. et al. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat Med 2018;24(5):628–37. DOI:10.1038/s41591-018-0009-7; Robertson A.G., Kim J., Al-Ahmadie H. et al. TCGA Research Network. Comprehensive molecular characterization of muscleinvasive bladder cancer. Cell 2017;171(3):540–56.e25.; Carlo M.I., Ravichandran V., Srinavasan P. et al. Cancer susceptibility mutations in patients with urothelial malignancies. J Clin Oncol 2020;38(5):406–14. DOI:10.1200/JCO.19.01395; Nassar A.H., Abou Alaiwi S., AlDubayan S.H. et al. Prevalence of pathogenic germline cancer risk variants in high-risk urothelial carcinoma. Genet Med 2020;22(4):709–18. DOI:10.1038/s41436-019-0720-x; Mullane S.A., Werner L., Guancial E.A. et al. Expression levels of DNA damage repair proteins are associated with overall survival in platinum-treated advanced urothelial carcinoma. Clin Genitourin Cancer 2016;14(4):352–9. DOI:10.1016/j.clgc.2015.12.029; Lord C.J., Ashworth A. RAD51, BRCA2 and DNA repair: a partial resolution. Nat Struct Mol Biol 2007;14(6):461–2. DOI:10.1038/nsmb0607-461; Plimack E.R., Dunbrack R.L., Brennan T.A. et al. Defects in DNA repair genes predict response to neoadjuvant cisplatin-based chemotherapy in muscle-invasive bladder cancer. Eur Urol 2015;68(6):959–67. DOI:10.1016/j.eururo.2015.07.009; Miron B., Ross E.A., Anari F. et al. Defects in DNA repair genes and long-term survival in cisplatin-based neoadjuvant chemotherapy for muscle invasive bladder cancer (MIBC). J Clin Oncol 2019;37:4536.; Teo M.Y., Bambury R.M., Zabor E.C. et al. DNA damage response and repair gene alterations are associated with improved survival in patients with platinum-treated advanced urothelial carcinoma. Clin Cancer Res 2017;23(14):3610–8. DOI:10.1016/j.urolonc.2018.05.011; Rosenberg J.E., Ballman K.A., Halabi S. et al. Randomized phase III trial of gemcitabine and cisplatin with bevacizumab or placebo in patients with advanced urothelial carcinoma: results of CALGB 90601 (Alliance). J Clin Oncol 2021;39(22):2486–96. DOI:10.1200/JCO.21.00286; Geynisman D.M., Abbosh P., Ross E.A. et al. A phase II trial of risk enabled therapy after initiating neoadjuvant chemotherapy for bladder cancer (RETAIN BLADDER): interim analysis. J Clin Oncol 2021;39(6):397.; Powles T., Loriot Y., Bellmunt J. et al. 699O avelumab first-line (1L) maintenance + best supportive care (BSC) vs BSC alone for advanced urothelial carcinoma (UC): association between clinical outcomes and exploratory biomarkers. Ann Oncol 2020;31(4):552–3. DOI:10.1016/j.annonc.2020.08.771; Powles T., Assaf Z.J., Davarpanah N. et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature 2021;595(7867): 432–7. DOI:10.1038/s41586-021-03642-9; Bellmunt J., Hussain M., Gschwend J.E. et al. Adjuvant atezolizumab versus observation in muscle-invasive urothelial carcinoma (IMvigor010): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 2021;22(4):525–37. DOI:10.1016/S1470-2045(21)00004-8; Kamoun A., de Reyniès A., Allory Y. et al. Bladder Cancer Molecular Taxonomy Group. A consensus molecular classification of muscleinvasive bladder cancer. Eur Urol 2020;77(4):420–33. DOI:10.1016/j.eururo.2019.09.006; Wang L., Gong Y., Saci A. et al. Fibroblast growth factor receptor 3 alterations and response to PD-1/PD-L1 blockade in patients with metastatic urothelial cancer. Eur Urol 2019;76(5):599–603. DOI:10.1016/j.eururo.2019.06.025; Rose T.L., Weir W.H., Mayhew G.M. et al. Fibroblast growth factor receptor 3 alterations and response to immune checkpoint inhibition in metastatic urothelial cancer: a real world experience. Br J Cancer 2021;125(9):1251–60. DOI:10.1038/s41416-021-01488-6; Powles T., Carroll D., Chowdhury S. et al. An adaptive, biomarkerdirected platform study of durvalumab in combination with targeted therapies in advanced urothelial cancer. Nat Med 2021;27(5):793–801. DOI:10.1038/s41591-021-01317-6; Sharma P., Retz M., Siefker-Radtke A. et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol 2017;18(3):312–22. DOI:10.1016/S1470-2045(17)30065-7; Powles T., O’Donnell P.H., Massard C. et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 Open-label study. JAMA Oncol 2017;3(9):e172411. DOI:10.1001/jamaoncol.2017.2411; FDA alerts health care professionals and oncology clinical investigators about an efficacy issue identified in clinical trials for some patients taking keytruda (pembrolizumab) or tecentriq (atezolizumab) as monotherapy to treat urothelial cancer with low expression of PD-L1. Available at: https://www.fda.gov/drugs/drugsafety-and-availability/fda-alerts-health-care-professionals-andoncologyclinical-investigators-about-efficacy-issue.; Galsky M.D., Necchi A., Sridhar S.S. et al. A phase III, randomized, open-label, multicenter, global study of first-line durvalumab plus standard of care (SoC) chemotherapy and durvalumab plus tremelimumab, and SoC chemotherapy versus SoC chemotherapy alone in unresectable locally advanced or metastatic urothelial cancer (NILE). J Clin Oncol 2021;39(6):TPS504. DOI:10.1200/JCO.2021.39.6_suppl.TPS504; Rui X., Gu T.T., Pan H.F., Zhang H.Z. Evaluation of PD-L1 biomarker for immune checkpoint inhibitor (PD-1/PD-L1 inhibitors) treatments for urothelial carcinoma patients: a metaanalysis. Int Immunopharmacol 2019;67:378–85. DOI:10.1016/j.intimp.2018.12.018; Litchfield K., Reading J.L., Puttick C. et al. Meta-analysis of tumorand T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 2021;184(3):596–614.e14. DOI:10.1016/j.cell.2021.01.002; Powles T., Durán I., van der Heijden M.S. et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet 2018;391(10122):748–57. DOI:10.1016/S0140-6736(17)33297-X; Hirsch F.R., McElhinny A., Stanforth D. et al. PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol 2017;12(2):208–22. DOI:10.1016/j.jtho.2016.11.2228; Ratcliffe M.J., Sharpe A., Midha A. et al. Agreement between programmed cell death ligand-1 diagnostic assays across multiple protein expression cutoffs in non-small cell lung cancer. Clin Cancer Res 2017;23(14):3585–91. DOI:10.1158/1078-0432.CCR-16-2375; Tsao M.S., Kerr K.M., Kockx M. et al. PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of blueprint phase 2 project. J Thorac Oncol 2018;13(9):1302–11. DOI:10.1016/j.jtho.2018.05.013; Decazes P., Bohn P. Immunotherapy by immune checkpoint inhibitors and nuclear medicine imaging: current and future applications. Cancers (Basel) 2020;12(2):371. DOI:10.3390/cancers12020371; Bensch F., van der Veen E.L., Lub-de Hooge M.N. et al. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med 2018;24(12):1852–8. DOI:10.1038/s41591-018-0255-8; Niemeijer A.N., Leung D., Huisman M.C. et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with nonsmallcell lung cancer. Nat Commun 2018;9(1):4664. DOI:10.1038/s41467-018-07131-y; Alexandrov L.B., Nik-Zainal S., Wedge D.C. et al. Signatures of mutational processes in human cancer. Nature 2013;500(7463): 415–21. DOI:10.1016/j.celrep.2012.12.008; Rosenberg J.E., Hoffman-Censits J., Powles T. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 2016;387(10031):1909–20. DOI:10.1016/S0140-6736(16)00561-4; Samstein R.M., Lee C.H., Shoushtari A.N. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 2019;51(2):202–6. DOI:10.1038/s41588-018-0312-8; Mariathasan S., Turley S.J., Nickles D. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018;554(7693):544–8. DOI:10.1038/nature25501; Bellmunt J., de Wit R., Fradet Y. et al. 747P association of TMB with efficacy of pembrolizumab (pembro) in patients (pts) with advanced urothelial cancer (UC): results from KEYNOTE-045 and KEYNOTE-052. Ann Oncol 2020;31(suppl 4):580–1. DOI:10.1016/j.annonc.2020.08.819; FDA approves pembrolizumab for adults and children with TMB-H solid tumors. Available at: https://www.fda.gov/drugs/drugapprovals-and-databases/fda-approves-pembrolizumab-adults-and-children-tmb-h-solid-tumors.; Yarchoan M., Albacker L.A., Hopkins A.C. et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight 2019;4(6):126908. DOI:10.1172/jci.insight.126908; Galsky M.D., Saci A., Szabo P.M. et al. Nivolumab in patients with advanced platinum-resistant urothelial carcinoma: efficacy, safety, and biomarker analyses with extended follow-up from checkmate 275. Clin Cancer Res 2020;26(19):5120–8. DOI:10.1158/1078-0432.CCR-19-416; Galsky M.D., Banchereau R., Hamidi H.R. et al. Tumor, immune, and stromal characteristics associated with clinical outcomes with atezolizumab (atezo) + platinum-based chemotherapy (PBC) or atezo monotherapy (mono) versus PBC in metastatic urothelial cancer (mUC) from the phase III IMvigor130 study. J Clin Oncol 2020;38:5011. DOI:10.1200/JCO.2020.38.15_suppl.5011; Valero C., Lee M., Hoen D. et al. Response rates to anti-PD-1 Immunotherapy in microsatellite-stable solid tumors with 10 or more mutations per megabase. JAMA Oncol 2021;7(5):739–43. DOI:10.1001/jamaoncol.2020.7684; McGranahan N., Rosenthal R., Hiley C.T. et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 2017;171(6):1259–71.e11. DOI:10.1016/j.cell.2017.10.001; Zhang J., Bu X., Wang H. et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 2018;553(7686):91–5. DOI:10.1038/nature25015; Wang L., Saci A., Szabo P.M. et al. EMT- and stroma-related gene expression and resistance to PD-1 blockade in urothelial cancer. Nat Commun 2018;9(1):3503. DOI:10.1038/s41467-018-05992-x; Calon A., Lonardo E., Berenguer-Llergo A. et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet 2015;47(4):320–9. DOI:10.1038/ng.3225; Massagué J. TGFbeta in cancer. Cell 2008;134(2):215–30. DOI:10.1016/j.cell.2008.07.001; Lin R.L., Zhao L.J. Mechanistic basis and clinical relevance of the role of transforming growth factor-β in cancer. Cancer Biol Med 2015;12(4):385–93. DOI:10.7497/j.issn.2095-3941.2015.0015; O’Donnell P.H., Grivas P., Balar A.V. et al. Biomarker findings and mature clinical results from KEYNOTE-052: first-line pembrolizumab (pembro) in cisplatin-ineligible advanced urothelial cancer (UC). J Clin Oncol 2017;35:4502. DOI:10.1200/JCO.2017.35.15_SUPPL.4502; Chen B., Khodadoust M.S., Liu C.L. et al. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol 2018;1711:243–59. DOI:10.1007/978-1-4939-7493-1_12; Aran D., Hu Z., Butte A.J. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 2017;18(1):220. DOI:10.1186/s13059-017-1349-1; Cao J., Yang X., Li J. et al. Screening and identifying immunerelated cells and genes in the tumor microenvironment of bladder urothelial carcinoma: based on TCGA database and bioinformatics. Front Oncol 2019;9:1533. DOI:10.3389/fonc.2019.01533; Gohil S.H., Iorgulescu J.B., Braun D.A. et al. Applying highdimensional single-cell technologies to the analysis of cancer immunotherapy. Nat Rev Clin Oncol 2021;18(4):244–56. DOI:10.1038/s41571-020-00449-x; Guruprasad P., Lee Y.G., Kim K.H., Ruella M. The current landscape of single-cell transcriptomics for cancer immunotherapy. J Exp Med 2021;218(1):e20201574. DOI:10.1084/jem.20201574; Oh D.Y., Kwek S.S., Raju S.S. et al. Intratumoral CD4+ T cells mediate anti-tumor cytotoxicity in human bladder cancer. Cell 2020;181(7):1612–25.e13. DOI:10.1016/j.cell.2020.05.017; Chen Z., Zhou L., Liu L. et al. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat Commun 2020;11(1):5077. DOI:10.1038/s41467-020-18916-5; Sfakianos J.P., Daza J., Hu Y. et al. Epithelial plasticity can generate multi-lineage phenotypes in human and murine bladder cancers. Nat Commun 2020;11(1):2540. DOI:10.1038/s41467-020-16162-3; Mota J.M., Leite C.A., Souza L.E. et al. Post-sepsis state induces tumor-associated macrophage accumulation through CXCR4/CXCL12 and favors tumor progression in mice. Cancer Immunol Res 2016;4(4):312–22. DOI:10.1158/2326-6066.CIR-15-0170; Wang L., Sfakianos J.P., Beaumont K.G. et al. Myeloid cell-associated resistance to PD-1/PD-L1 blockade in urothelial cancer revealed through bulk and single-cell RNA sequencing. Clin Cancer Res 2021;27(15):4287–300. DOI:10.1158/1078-0432.CCR-20-4574; Siefker-Radtke A.O., Necchi A., Park S.H. et al. ERDAFITINIB in locally advanced or metastatic urothelial carcinoma (mUC): long-term outcomes in BLC2001. J Clin Oncol 2020;38(15):5015. DOI:10.1200/JCO.2020.38.15_suppl.5015; Challita-Eid P.M., Satpayev D., Yang P. et al. Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res 2016;76(10):3003–13. DOI:10.1158/0008-5472.CAN-15-1313; Doronina S.O., Toki B.E., Torgov M.Y. et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 2003;21(7):778–84. DOI:10.1038/nbt832; Itoh N., Ornitz D.M. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem 2011;149(2):121–30. DOI:10.1093/jb/mvq121; Plotnikov A.N., Schlessinger J., Hubbard S.R., Mohammadi M. Structural basis for FGF receptor dimerization and activation. Cell 1999;98(5):641–50. DOI:10.1016/s0092-8674(00)80051-3; Dieci M.V., Arnedos M., Andre F., Soria J.C. Fibroblast growth factor receptor inhibitors as a cancer treatment: from a biologic rationale to medical perspectives. Cancer Discov 2013;3(3):264–79. DOI:10.1158/2159-8290.CD-12-0362; Di Martino E., Tomlinson D.C., Knowles M.A. A decade of FGF receptor research in bladder cancer: past, present, and future challenges. Adv Urol 2012;2012:429213. DOI:10.1155/2012/429213; Helsten T., Elkin S., Arthur E. et al. The FGFR landscape in cancer: analysis of 4,853 tumors by nextgeneration sequencing. Clin Cancer Res 2016;22(1):259–67. DOI:10.1158/1078-0432.CCR-14-3212; Costa R., Carneiro B.A., Taxter T. et al. FGFR3-TACC3 fusion in solid tumors: mini review. Oncotarget 2016;7(34):55924–38. DOI:10.1158/1078-0432.CCR-14-3212; Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014;507(7492):315–22. DOI:10.1038/nature12965; Siefker-Radtke A., Loriot Y., Siena S. et al. 752P Updated data from the NORSE trial of erdafitinib (ERDA) plus cetrelimab (CET) in patients (pts) with metastatic or locally advanced urothelial carcinoma (mUC) and specific fibroblast growth factor receptor (FGFR) alterations. Ann Oncol 2020;31:584–5. DOI:10.1016/j.annonc.2020.08.824; Pal S.K., Rosenberg J.E., Hoffman-Censits J.H. et al. Efficacy of BGJ398, a fibroblast growth factor receptor 1–3 inhibitor, in patients with previously treated advanced urothelial carcinoma with FGFR3 alterations. Cancer Discov 2018;8(7):812–21. DOI:10.1158/2159-8290.CD-18-0229; Bellmunt J., Picus J., Kohli M. et al. FIERCE-21: phase 1b/2 study of docetaxel + b-701, a selective inhibitor of FGFR3, in relapsed or refractory (R/R) metastatic urothelial carcinoma (mUCC). J Clin Oncol 2018;36:4534.; Necchi A., Castellano D.E., Mellado B. et al. Fierce-21: Phase II study of vofatmab (B-701), a selective inhibitor of FGFR3, as salvage therapy in metastatic urothelial carcinoma (mUC). J Clin Oncol 2019;37:409.; Siefker-Radtke A.O., Currie G., Abella E. et al. FIERCE-22: clinical activity of vofatamab (V) a FGFR3 selective inhibitor in combination with pembrolizumab (P) in WT metastatic urothelial carcinoma, preliminary analysis. J Clin Oncol 2019;37:4511. DOI:10.1200/JCO.2019.37.15_SUPPL.4511; Abdul-Karim R.M., Chaudhry A., Patrikidou A. et al. Derazantinib (DZB) in combination with atezolizumab (AZB) in patients with solid tumors: results from the dose-finding phase Ib substudy of FIDES-02. J Clin Oncol 2021;39:437. DOI:10.1200/JCO.2021.39.6_suppl.437; Chaudhry A., Sternberg C.N., De Santis M. et al. FIDES-02, a phase Ib/II study of derazantinib (DZB) as monotherapy and combination therapy with atezolizumab (A) in patients with surgically unresectable or metastaticurothelial cancer (UC) and FGFR genetic aberrations. J Clin Oncol 2020;38:TPS590. DOI:10.1200/JCO.2020.38.6_suppl.TPS590; Quinn D.I., Petrylak D.P., Bellmunt J. et al. FORT-1: phase II/III study of rogaratinib versus chemotherapy (CT) in patients (pts) with locally advanced or metastatic urothelial carcinoma (UC) selected based on FGFR1/3 mRNA expression. J Clin Oncol 2020;38:489.; Rosenberg J.E., Gajate P., Morales-Barrera R. et al. Safety and preliminary efficacy of rogaratinib in combination with atezolizumab in a phase Ib/II study (FORT-2) of first-line treatment in cisplatinineligible patients (pts) with locally advanced or metastatic urothelial cancer (UC) and FGFR mRNA overexpression. J Clin Oncol 2020;38(15_suppl):5014. DOI:10.1200/JCO.2020.38.15_suppl.5014; Yue S., Li Y., Chen X. et al. FGFR–TKI resistance in cancer: current status and perspectives. J Hematol Oncol 2021;14(1):23. DOI:10.1186/s13045-021-01040-2; Goyal L., Saha S.K., Liu L.Y. et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov 2017;7(3):252–63. DOI:10.1158/2159-8290.CD-16-1000; Datta J., Damodaran S., Parks H. et al. Akt activation mediates acquired resistance to fibroblast growth factor receptor inhibitor BGJ398. Mol Cancer Ther 2017;16(4):614–24. DOI:10.1158/1535-7163.MCT-15-1010; Wang L., Šuštić T., Leite de Oliveira R. et al. A functional genetic screen identifies the phosphoinositide 3-kinase pathway as a determinant of resistance to fibroblast growth factor receptor inhibitors in FGFR mutant urothelial cell carcinoma. Eur Urol 2017;71(6):858–62. DOI:10.1016/j.eururo.2017.01.021; Ryan M.R., Sohl C.D., Luo B., Anderson K.S. The FGFR1 V561M gatekeeper mutation drives AZD4547 resistance through STAT3 activation and EMT. Mol Cancer Res 2019;17(2):532–43. DOI:10.1158/1541-7786.MCR-18-0429; Mandai K., Rikitake Y., Mori M., Takai Y. Nectins and nectin-like molecules in development and disease. Curr Top Dev Biol 2015;112:197–231. DOI:10.1016/bs.ctdb.2014.11.019; Chu C.E., Sjöström M., Egusa E.A. et al. Heterogeneity in NECTIN4 expression across molecular subtypes of urothelial cancer mediates sensitivity to enfortumab vedotin. Clin Cancer Res 2021;27(18):5123–30. DOI:10.1158/1078-0432.CCR-20-4175; Hoffman-Censits J.H., Lombardo K.A., Parimi V. et al. Expression of nectin-4 in bladder urothelial carcinoma, in morphologic variants, and nonurothelial histotypes. Appl Immunohistochem Mol Morphol 2021;29(8):619–25. DOI:10.1097/PAI.0000000000000938; Rapani E., Sacchetti A., Corda D., Alberti S. Human TROP-2 is a tumor-associated calcium signal transducer. Int J Cancer 1998;76(5):671–6. DOI:10.1002/(sici)1097-0215(19980529)76:53.0.co;2-7; Faltas B., Goldenberg D.M., Ocean A.J. et al. Sacituzumab govitecan, a novel antibody – drug conjugate, in patients with metastatic platinum-resistant urothelial carcinoma. Clin Genitourin Cancer 2016;14(1):e75–9. DOI:10.1016/j.clgc.2015.10.002; Hurvitz S.A., Tolaney S.M., Punie K. et al. Biomarker evaluation in the phase 3 ASCENT study of sacituzumab govitecan versus chemotherapy in patients with metastatic triple-negative breast cancer. Cancer Res 2021;81:Abstract GS3–6.; Grivas P., Tagawa S.T., Bellmunt J. et al. TROPiCS-04: study of sacituzumab govitecan in metastatic or locally advanced unresectable urothelial cancer that has progressed after platinum and checkpoint inhibitor therapy. J Clin Oncol 2021;39:TPS498.; Drakaki A., Rezazadeh Kalebasty A., Lee J. et al. Phase Ib/II umbrella trial to evaluate the safety and efficacy of multiple 2L cancer immunotherapy (CIT) combinations in advanced/metastatic urothelial carcinoma (mUC): MORPHEUS-mUC. J Clin Oncol 2020;38:TPS591.; Iqbal N., Iqbal N. Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol Biol Int 2014;2014:852748. DOI:10.1155/2014/852748; Coogan C.L., Estrada C.R., Kapur S., Bloom K.J. HER-2/neu protein overexpression and gene amplification in human transitional cellcarcinoma of the bladder. Urology 2004;63(4):786–90. DOI:10.1016/j.urology.2003.10.040; Latif Z., Watters A.D., Dunn I. et al. HER2/neu overexpression in the development of muscleinvasive transitional cell carcinoma of the bladder. Br J Cancer 2003;89(7):1305–9. DOI:10.1038/sj.bjc.6601245; Choudhury N.J., Campanile A., Antic T. et al. Afatinib activity in platinum-refractory metastatic urothelial carcinoma in patients with ERBB alterations. J Clin Oncol 2016;34(18):2165–71. DOI:10.1200/JCO.2015.66.3047; Font Pous A., Puente J., Castellano D.E. et al. Phase II trial of afatinib in patients with advanced/metastatic urothelial carcinoma (UC) with genetic alterations in ERBB receptors 1–3 who failed on platinum-based chemotherapy (CT). J Clin Oncol 2018;36(6):TPS540. DOI:10.1200/JCO.2018.36.6_suppl.TPS540; Hainsworth J.D., Meric-Bernstam F., Swanton C. et al. Targeted therapy for advanced solid tumors on the basis of molecular profiles: results from MyPathway, an open-label, phase IIa multiple basket study. J Clin Oncol 2018;36(6):536–42. DOI:10.1200/JCO.2017.75.3780; Sheng X., Zhou A., Yao X. et al. A phase II study of RC48-ADC in HER2-positive patients with locally advanced or metastatic urothelial carcinoma. J Clin Oncol 2019;37(15_suppl):4509. DOI:10.1200/JCO.2019.37.15_suppl.4509; Bob T., Makker V., Buonocore D.J. et al. A multi-histology basket trial of ado-trastuzumab emtansine in patients with HER2 amplified cancers. J Clin Oncol 2018;36(15_suppl):2502. DOI:10.1200/JCO.2018.36.15_suppl.2502; Duan Y., Haybaeck J., Yang Z. Therapeutic potential of PI3K/AKT/mTOR pathway in gastrointestinal stromal tumors: rationale and progress. Cancers (Basel) 2020;12(10):2972. DOI:10.3390/cancers12102972; Sathe A., Nawroth R. Targeting the PI3K/AKT/mTOR pathway in bladder cancer. Methods Mol Biol 2018;1655:335–50. DOI:10.1007/978-1-4939-7234-0_23; Iyer G., Al-Ahmadie H., Schultz N. et al. Prevalence and cooccurrence of actionable genomic alterations in high-grade bladder cancer. J Clin Oncol 2013;31(25):3133–40. DOI:10.1200/JCO.2012.46.5740; Platt F.M., Hurst C.D., Taylor C.F. et al. Spectrum of phosphatidylinositol 3-kinase pathway gene alterations in bladder cancer. Clin Cancer Res 2009;15(19):6008–17. DOI:10.1158/1078-0432.CCR-09-0898; Calderaro J., Rebouissou S., de Koning L. et al. PI3K/AKT pathway activation in bladder carcinogenesis. Int J Cancer 2014;134(8):1776–84. DOI:10.1002/ijc.28518; Cappellen D., Gil Diez de Medina S., Chopin D. et al. Frequent loss of heterozygosity on chromosome 10q in muscle-invasive transitional cell carcinomas of the bladder. Oncogene 1997;14(25):3059–66. DOI:10.1038/sj.onc.1201154; Aveyard J.S., Skilleter A., Habuchi T., Knowles M.A. Somatic mutation of PTEN in bladder carcinoma. Br J Cancer 1999;80(5–6):904–8. DOI:10.1038/sj.bjc.6690439; Tsuruta H., Kishimoto H., Sasaki T. et al. Hyperplasia and carcinomas in Pten-deficient mice and reduced PTEN protein in human bladder cancer patients. Cancer Res 2006;66(17):8389–96. DOI:10.1158/0008-5472.CAN-05-4627; Knowles M.A., Habuchi T., Kennedy W., Cuthbert-Heavens D. Mutation spectrum of the 9q34 tuberous sclerosis gene TSC1 in transitional cell carcinoma of the bladder. Cancer Res 2003;63(22):7652–6.; Milowsky M.I., Iyer G., Regazzi A.M. et al. Phase II study of everolimus in metastatic urothelial cancer. BJU Int 2013;112(4):462–70. DOI:10.1111/j.1464-410X.2012.11720.x; Bellmunt J., Lalani A.A., Jacobus S. et al. Everolimus and pazopanib (E/P) benefit genomically selected patients with metastatic urothelial carcinoma. Br J Cancer 2018;119(6):707–12. DOI:10.1038/s41416-018-0261-0; Wagle N., Grabiner B.C., van Allen E.M. et al. Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Cancer Discov 2014;4(5):546–53. DOI:10.1158/2159-8290.CD-13-0353; Kim J.W., Milowsky M.I., Hahn N.M. et al. Sapanisertib, a dual mTORC1/2 inhibitor, for TSC1- or TSC2-mutated metastatic urothelial carcinoma (mUC). J Clin Oncol 2021;39(6):431.; McPherson V., Reardon B., Bhayankara A. et al. A phase 2 trial of buparlisib in patients with platinum-resistant metastatic urothelial carcinoma. Cancer 2020;126(20):4532–44. DOI:10.1002/cncr.33071; Flaherty K.T., Gray R.J., Chen A.P. et al. NCI-MATCH team. Molecular landscape and actionable alterations in a genomically guided cancer clinical trial: national cancer institute molecular analysis for therapy choice (NCI-MATCH). J Clin Oncol 2020;38(33):3883–94. DOI:10.1200/JCO.19.03010; Sathe A., Guerth F., Cronauer M.V. et al. Mutant PIK3CA controls DUSP1-dependent ERK 1/2 activity to confer response to AKT target therapy. Br J Cancer 2014;111(11):2103–13. DOI:10.1038/bjc.2014.534; Dickstein R.J., Nitti G., Dinney C.P. et al. Autophagy limits the cytotoxic effects of the AKT inhibitor AZ7328 in human bladder cancer cells. Cancer Biol Ther 2012;13(13):1325–38. DOI:10.4161/cbt.21793; Seront E., Rottey S., Filleul B. et al. Phase II study of dual phosphoinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitor BEZ235 in patients with locally advanced or metastatic transitional cell carcinoma. BJU Int 2016;118(3):408–15. DOI:10.1111/bju.13415; Munster P., Aggarwal R., Hong D. et al. First-in-human phase I study of GSK2126458, an oral pan-class I phosphatidylinositol-3-kinase inhibitor, in patients with advanced solid tumor malignancies. Clin Cancer Res 2016;22(8):1932–9. DOI:10.1158/1078-0432.CCR-15-1665; Apolo A.B., Nadal R., Tomita Y. et al. Cabozantinib in patients with platinum-refractory metastatic urothelial carcinoma: an openlabel, single-centre, phase 2 trial. Lancet Oncol 2020;21(8):1099–109. DOI:10.1016/S1470-2045(20)30202-3; Apolo A.B., Nadal R., Girardi D.M. et al. Phase I study of cabozantinib and nivolumab alone or with ipilimumab for advanced or metastatic urothelial carcinoma and other genitourinary tumors. J Clin Oncol 2020;38(31):3672–84. DOI:10.1200/JCO.20.01652; https://oncourology.abvpress.ru/oncur/article/view/1676
-
19
المؤلفون: V. B. Larionova, L. Yu. Grivtsova, N. A. Falaleeva
المصدر: Onkogematologiâ, Vol 16, Iss 4 (2021)
مصطلحات موضوعية: Oncology, medicine.medical_specialty, Chemotherapy, business.industry, medicine.medical_treatment, Cancer, Hematology, medicine.disease, Treatment use, chemotherapy, supportive care, febrile neutropenia, infectious complication, immunocorrection, Internal medicine, oncology, medicine, Diseases of the blood and blood-forming organs, RC633-647.5, business, hematological toxicity
-
20
المؤلفون: L Yu Grivtsova, E. E. Beketov, E M Yatsenko, E. V. Sayapina, A. D. Kaprin, S. E. Ul'yanenko, N V Nasedkina, V. N. Petrov, E V Isaeva, L. A. Lepekhina
المصدر: Bulletin of Experimental Biology and Medicine. 168:561-565
مصطلحات موضوعية: Male, 0301 basic medicine, Lung Neoplasms, Skin Neoplasms, Transplantation, Heterologous, Melanoma, Experimental, Cell Count, Mesenchymal Stem Cell Transplantation, General Biochemistry, Genetics and Molecular Biology, Mice, 03 medical and health sciences, 0302 clinical medicine, In vivo, Tumor Microenvironment, medicine, Animals, Humans, Survival rate, Tumor microenvironment, Chemistry, Macrophages, Mesenchymal stem cell, Mesenchymal Stem Cells, General Medicine, Cellular Reprogramming, Survival Analysis, Phenotype, Mice, Inbred C57BL, 030104 developmental biology, medicine.anatomical_structure, Mice, Inbred CBA, Cancer research, Administration, Intravenous, Female, Bone marrow, Reactive Oxygen Species, Reprogramming, 030217 neurology & neurosurgery, B16 melanoma