يعرض 1 - 12 نتائج من 12 نتيجة بحث عن '"Khoda, Mahbub E."', وقت الاستعلام: 0.38s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Book

    المساهمون: Hu, Jia, Min, Geyong, Wang, Guojun, Georgalas, Nektarios

    المصدر: Proceedings of the 2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)

    Relation: Chowdhury, Abdullahi, Islam, Mohammad Manzurul, Kaisar, Shahriar, Khoda, Mahbub E., Naha, Ranesh, Khoshkholghi, Mohammad Ali, & Aiash, Mahdi (2023) Leveraging Oversampling Techniques in Machine Learning Models for Multi-class Malware Detection in Smart Home Applications. In Hu, Jia, Min, Geyong, Wang, Guojun, & Georgalas, Nektarios (Eds.) Proceedings of the 2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). Institute of Electrical and Electronics Engineers Inc., United States of America, pp. 2216-2221.; https://eprints.qut.edu.au/251944/

  3. 3
    Academic Journal

    المصدر: Sensors

    Relation: Chowdhury, Abdullahi, Kaisar, Shahriar, Khoda, Mahbub E., Naha, Ranesh, Khoshkholghi, Mohammad Ali, & Aiash, Mahdi (2023) IoT-Based Emergency Vehicle Services in Intelligent Transportation System. Sensors, 23(11), Article number: 5324.; https://eprints.qut.edu.au/249067/

  4. 4
    Conference

    المساهمون: Federation University Australia

    المصدر: 2020 16th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) ; page 1-6

  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Conference

    المصدر: Khoda, ME, Imam, T, Kamruzzaman, J, Gondal, I, Rahman, A, (2019). Selective adversarial learning for mobile malware. 05-08 August 2019, 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), Rotorua, New Zealand, IEEE, Piscataway, NJ, p. 272-279, http://dx.doi.org/10.1109/TrustCom/BigDataSE.2019.00044

    Relation: Proceedings: 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), 05-08 August 2019, Rotorua, New Zealand, 2019, p. 272-279; http://hdl.cqu.edu.au/10018/1312063; cqu:18784; http://dx.doi.org/10.1109/TrustCom/BigDataSE.2019.00044; eISSN:2324-9013

  8. 8
    Conference

    المصدر: Khoda, ME, Kamruzzaman, J, Gondal, I, Imam, T, Rahman, A, (2019). Mobile malware detection: An analysis of deep learning model. 13-15 February 2019, 20th IEEE International Conference on Industrial Technology (ICIT 2019), Melbourne, Australia, IEEE, Piscataway, NJ, p. 1161-1166, http://dx.doi.org/10.1109/ICIT.2019.8755048

    Relation: Proceedings, 2019 IEEE International Conference on Industrial Technology (ICIT), 20th IEEE International Conference on Industrial Technology (ICIT 2019), 13-15 February 2019, Melbourne, Australia, 2019, p. 1161-1166; http://hdl.cqu.edu.au/10018/1312049; cqu:18782; http://dx.doi.org/10.1109/ICIT.2019.8755048

  9. 9
    Academic Journal

    المصدر: Khoda, ME, Imam, T, Kamruzzaman, J, Gondal, I, Rahman, A, (2020). Robust malware defense in industrial IoT applications using machine learning with selective adversarial samples. IEEE Transactions on Industry Applications, Vol. 56, No. 4, p. 4415-4424 http://dx.doi.org/10.1109/tia.2019.2958530

    Relation: IEEE Transactions on Industry Applications, 2020, Vol. 56, No. 4, p. 4415-4424; http://hdl.cqu.edu.au/10018/1334810; cqu:20296; http://dx.doi.org/10.1109/tia.2019.2958530; eISSN:1939-9367

  10. 10
    Book

    المصدر: Neural Information Processing ; Lecture Notes in Computer Science ; page 486-498 ; ISSN 0302-9743 1611-3349 ; ISBN 9783030042110 9783030042127

  11. 11
    Academic Journal
  12. 12
    Periodical