-
1Academic Journal
المؤلفون: Lai, Wei-Yu, Lai, Chao-Ming, Ke, Guang-Ruei, Chung, Ren-Shih, Chen, Chien-Teh, Cheng, Chih-Hsin, Pai, Chuang-Wen, Chen, Szu-Yun, Chen, Chang-Chun
المصدر: Journal of the Taiwan Institute of Chemical Engineers ; volume 44, issue 6, page 1039-1044 ; ISSN 1876-1070
-
2Academic Journal
المؤلفون: Ke, Guang-Ruei, Lai, Chao-Ming, Liu, Ya-Yin, Yang, Shang-Shyng
Relation: BIORESOURCE TECHNOLOGY; http://ntur.lib.ntu.edu.tw/handle/246246/243169; http://ntur.lib.ntu.edu.tw/bitstream/246246/243169/-1/118.pdf
-
3Academic Journal
المؤلفون: Lai, Chao-Ming, Ke, Guang-Ruei, Chung, Meng-Yu
المصدر: Renewable Energy ; volume 34, issue 8, page 1913-1915 ; ISSN 0960-1481
-
4Dissertation/ Thesis
المؤلفون: 柯光瑞, Ke, Guang- Ruei
المساهمون: 賴朝明, 臺灣大學:農業化學研究所
مصطلحات موضوعية: 耕作制度, 農田土壤, 溫室氣體, 二氧化碳, 甲烷, 氧化亞氮, Cropping system, agricultural soil, greenhouse gas, carbon dioxide, methane, nitrous oxide
وصف الملف: 665488 bytes; application/pdf
Relation: 工業技術研究院能源與資源研究所氣候變化綱要公約資訊網。2005。(http://sd.erl.itri.org.tw/fccc/ch/index_c.htm)。 王一雄,1997。台灣北部土壤之二氧化碳釋放及其影響因子。台灣地區大氣環境變遷 ( 呂世宗、柳中明、楊盛行編) ,pp.195-206。國立台灣大學全球變遷中心和農業化學系,台北,台灣。 王銀波、謝學武,1997。台灣中南部水稻田、旱田、濕地、林地、及坡地土壤甲烷之釋出及其影響因子。台灣地區大氣環境變遷,(呂世宗、柳中明、楊盛行編),pp.99-121。國立台灣大學全球變遷中心和農業化學系,台北,台灣。 王銀波、謝學武,1998。台灣中南部坡地果園與森林土壤甲烷釋放及其影響因子。台灣地區大氣環境變遷 (三) (呂世宗、柳中明、楊盛行編),pp.34-53。國立台灣大學全球變遷中心和農業化學系,台北,台灣。 陳信偉、顏瑞泓、王一雄,1998。台灣北部土壤之二氧化碳釋放及其影響因子。台灣地區大氣環境變遷 (三) (呂世宗、柳中明、楊盛行編),pp.133-141。國立台灣大學全球變遷中心和農業化學系,台北,台灣。 陳顗竹、賴朝明、楊盛行,2003。水稻田甲烷及二氧化碳排放量測及減量對策。溫室氣體通量測定及減量對策 (IV) (楊盛行編),pp.59-72。國立台灣大學全球變遷中心、國立台灣大學農業化學系和國立屏東科技大學生物科技研究所,台北,台灣。 黃山內、劉瑞美、李孫榮,1999。台灣南部水稻田之甲烷釋放與減量對策。溫室氣體通量測定及減量對策, 楊盛行編,pp.74-83。國立台灣大學全球變遷中心和農業化學系,台北,台灣。 農業統計年報,2003。行政院農委會。 楊秋忠,1997。果園及森林土壤對溫室效應氣體之釋放及吸收研究。台灣地區大氣環境變遷 (呂世宗、柳中明、楊盛行編),pp.122-141。國立台灣大學全球變遷中心和農業化學系,台北,台灣。 楊盛行,1999。溫室氣體通量測定及減量對策。國立台灣大學全球變遷中心、農業化學系和農業陳列館,台北,台灣。p.220。 楊盛行、賴朝明。2001。發展推廣農業部門溫室氣體減量技術。行政院環境保護署委託研究計畫成果報告。pp. 3-20。 楊盛行,2003a。溫室氣體通量測定及減量對策 (Ⅳ)。國立台灣大學全球變遷中心、國立台灣大學農業化學系和國立屏東科技大學生物科技研究所,台北,台灣。pp.250。 楊盛行,2003b。溫室氣體通量測定及減量對策 (Ⅳ)。溫室氣體通量測定及減量對策(Ⅳ) (楊盛行編),pp.1-58。國立台灣大學全球變遷中心、國立台灣大學農業化學系和國立屏東科技大學生物科技研究所,台北,台灣。 楊盛行、劉清標、林良平、賴朝明、王一雄、朱鈞、盧虎生、王銀波、趙震慶、楊秋忠、呂世宗、郭坤土、張哲明、洪肇嘉、劉瑞美、黃山內、李春芳。2003a。溫室氣體測定與減量對策。全球變遷通訊雜誌,第四十期,pp. 140-153。 楊盛行、劉瑞美、賴朝明、夏良宙。2003b。農牧部門溫室氣體排放量測與監測技術之研究。2003永續發展技術與政策研討會論文集,p.665-684。行政院國科會永續發展推動委員會。 趙震慶,2003。中南部水稻田、旱田及堆肥施用對氧化亞氮排放量之影響。溫室氣體通量測定及減量對策 (Ⅳ)。楊盛行編,pp. 107-120。國立台灣大學全球變遷中心、國立台灣大學農業化學系和國立屏東科技大學生物科技研究所,台北,台灣。 劉清標、林良平。2003。水稻田、旱田、溼地及堆肥廠二氧化碳排放量測及減量對策。溫室氣體通量測定及減量對策(Ⅵ),p.89-106。台大全球變遷與農化系。 賴朝明。1997。台灣北部水稻田、旱田、濕地、林地及垃圾掩埋場氧化亞氮之釋放及其影響因子。台灣地區大氣環境變遷之研究成果發表會論文集,p.383-400。台大全球變遷與農化系。 賴朝明。1998。台灣北部旱田、森林土壤及垃圾掩埋場氧化亞氮之釋放及其影響因數。「台灣地區大氣環境變遷之研究」成果發表會研討會。台大全球變遷中心。 賴朝明、楊盛行。1998。氧化亞氮對農作物生產之影響及其因應對策。在氣候變遷對農作物生產之影響,第九章。pp. 141-149。台灣省農業試驗所,台中縣。 賴朝明,趙震慶,洪肇嘉,劉瑞美,姚銘輝,楊盛行,柯光瑞,王樹仁。2004。農(工)業生產及廢棄物處理溫室氣體排放現況、減量潛力及減量成本分析評估:農業生產部份。行政院環保署/國科會空污防制科研合作畫期末報告。NSC 93-EPA-Z-002-008-。 錢元晧。2003。台灣水田、旱田與溼地土壤氧化亞氮釋放通量及其減量對策。台灣大學農業化學研究所碩士論文,p.33-42。 蕭慧娟、盧誌銘、黃啟峰。2000。參加聯合國「氣候變化綱要公約」第十三次附屬機構會議(SB-13)紀要。氣候變化綱要公約資訊速報,25,1-4。 譚鎮中,1997。台灣中南部水田土壤二氧化碳之釋放及其影響因子。台灣地區大氣環境變遷 (呂世宗、柳中明、楊盛行編),pp.207-224。國立台灣大學全球變遷中心和農業化學系,台北,台灣。 Andres, R. J., D. J. Fielding, G. Marland, T.A. Boden, N. Kumar, and A. T. Kearney. 1999. Carbon dioxide emissions from fossil-fuel use, 1751-1950, Tellus. 51B, 759-765. Aulakh, M. S., J. W. Doran, and A. R. Mosier. 1992. Soil denitrification significance, measurement, and effects of management. Adv. Soil Sci. 18: 1-57. Aulakh, M. S., T. S. Khera, and J. W. Doran. 2001. Denitrification, N2O and CO2 fluxes in rice- wheat cropping system as affected by crop residues, fertilizers N and legume green manure. Biol. Fertil. Soil 34: 375-389. Ball, B. C., A. Scott, and J. P. Parker. 1999. Field N2O, CO2 and CH4 fluxes in relation to tillage,compaction and soil quality in Scotland. Soil & Tillage Research 53: 29-39. Batjes, N. H. 1996. The total C and N in soils of the world. Eur. J. Soil Sci. 47: 51–163. Batjes, N. H. 1998. Mitigation of atmospheric CO2 concentrations by increased carbon sequestration in the soil. Biol. Fertil. Soils 27: 230–235. Bedard, C., and R. Knowles. 1989. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and co-oxidation by methanotrophs and nitrifiers. Microbiol. Rev. 53: 68–84. Blake, G. R., and K. H. Hartage. 1986. Bulk Density: Core method. pp: 363-375. In A. Klute et al. (ed.) Method of soil analysis. Part 1. 2nd ed.Agron. Monogr. 9. ASA and SSSA, Madison, WI. Bremner, J. M. and C. S. Mulvaney. 1982. Nitrogen-Total. pp: 612. In: A.L. Page et al. (ed.) Methods of soil Analysis, pt. 2, 2nd ed., ASA, Madision, WI. Brown, L., S. A. Brown, S. C. Jarvis, B. Syed, K. W. T. Goulding, V. R. Phillips, R.W. Sneath, and B. F. Pain. 2001. An inventory of nitrous oxide emissions from agriculture in the UK using the IPCC methodology: emission estimate, uncertainty and sensitivity analysis. Atmospheric Environment 35: 1439-1449. Bouwman, A. F. 1990a. Exchange of greenhouse gases between terrestrial ecosystems and atmosphere. pp: 61-127. In: A. F. Bouwman (ed). Soil and the Greenhouse Effect. Wiley, Chichester. Bouwman, A. F. 1990b. Agronomic aspects of wetlands rice cultivation and associated methane emission. Biochem. 15: 65-88. Bouwman, A.F. 1994. Method to estimate direct nitrous oxide emissions from agricultural soils. Report 773004004, National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands. Chang, H. L. and S. S. Yang. 1997. Measurement of methane emission from soil. J. Chin. Agric. Chem. Soc. 35: 475-484. Cicerone, R. J., J. D. Shetter, and C. C. Delwiche. 1983. Seasonal variation of metane flux from a Californian rice paddy. J. Geophys. Res. 88: 11022-11024. Cicerone, R. J., and R. S. Oremland. 1988. Biogeochemical aspects of atmospheric methane. Global Biochem. Cycles 2: 299-327. Crutzen, P. J. 1981. Atmoshere chemical processes of the oxides of nitrogen, including nitrous oxide. pp: 17-44. In: C. C. Delwiche (ed.). Denitrification, Nitrification and Nitrous Oxide. Wiley, New York. Desjardins, R. L., S. N. Kulshreshtha, B. Junkins, W. Smith, B. Grant, and M. Boehm. 2001. Canadian greenhouse gas mitigation options in agriculture. Nutr. Cycl. Agroecosyst. 60: 317-326. Dendoncker, N., V. W. Bas, D. A. R. Mark, R. Caroline, and L. Suzanna. 2004. Belgium’s CO2 mitigation potential under improved cropland management. Agr. Ecosyst. and Envir. 103: 101-116. Ehhalt, D. H., and U. Schmidt. 1978. Sources and sinks of atmospheric methane. PAGEOPH. 7: 143-155. Falkowski, P., R. J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. Gruber, K. Hibbard, P. Hogberg, S. Linder, F. T. Mackenzie, B. Moore III, T. Pedersen, Y. Rosenthal, S. Seitzinger, V. Smetacek, and W. Steffen. 2000. The global carbon cycle: A test of our knowledge of earth as a system. Science 290: 291-296. Flessa, H. and F. Beese. 1995. Effects of sugarbeet residues on soil redox potential and nitrous oxide emission. Soil Sci. Soc. Am. J. 59: 1044-1051. Flessa, H., R. Ruser, P. Dörsch, T. Kamp, M. A. Jimenez, J. C. Munch, and F. Beese. 2002a. Integrated evaluation of greenhouse gas emissions(CO2, CH4, N2O)from two farming systems in southern Germany. Ecosyst. and Envir. 91: 175-189. Flessa H., M., Potthoff, and N., Loftfield. 2002b. Greenhouse estimates of CO2 and N2O emission following surface application of grass mulch: importance of indigenous microflora of mulch. Soil Bio. and Biochem. 34: 875-879. Frenzel, P., F. Rothfuss, and C. Conrad. 1992. Oxygen profiles and methane turnover in a flooded rice microcosm. Biol. Fertil. Soils 12: 28-32. Gee, G. W., and J. W. Bauder. 1986. Particle size analysis. pp. 383-411. In A. L. Page et al. (eds). Method of soil analysis. Part 1. 2nd ed. Agron Monogr. 9. ASA and SSSA, Madison, WI. Gorham E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1: 182–195. Gunter, W. D., S. Wong, D. B. Cheel, and G. Sjostrom. 1998. Large CO2 Sinks: Their role in the mitigation of greenhouse gases from an international, national (Canadian) and provincial (Alberta) perspective. Appl. Energy 61: 209-227. Hadi, A., K. Inubushi, E. Purnomo, F. Razie, K. Yamakawa, and H. Tsuruta. 2000. Effect of land-use changes on nitrous oxide(N2O)emission from tropical peatlands. Chemosphere, Global Change Science 2: 347-358. Houghton, R. A., and J. L. Hackler. 1999. Emission of carbon from forestry and land-use changes in tropical Asia. Glob. Change Biol. 5: 481–492. Huang, S. N., C. W.Lin, and R. M. Liou. 2000. Effect of the continuous flooding and intermittent irrigation on methane emission of paddy soils in Taiwan. Soil Environ. 3, 217–226, in Chinese with English abstract. Hutchinson, G. L., and E. A. Davidson. 1993. Processes for production and consumption of gaseous nitrogen oxides in soil. pp: 79–94. In: Harper, L.A., Mosier, A.R., Duxbury, J.M., Rolston, D.E. (Eds.), Agricultural Ecosystem Effects on Trace Gases and Global Climate Change. ASA Special Publication No. 55. American Society of Agronomy, Madison, WI. IPCC (Intergovenment Panel on Climate Change). 1996a. Climate Change 1995, the Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. IPCC (Intergovenment Panel on Climate Change). 1996b. Climate Change: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses. Cambridge University Press, Cambridge. IPCC (Intergovenment Panel on Climate Change). 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, vols 1-3. J. T. Houghton et al. (eds). IPCC/OECD/IEA, Paris, France. PCC (Intergovenment Panel on Climate Change). 2000. Land use, land-use change and forestry. IPCC special report. Cambridge University Press, Cambridge, UK. IPCC (Intergovenment Panel on Climate Change). 2001a. IPCC Third Assessment Report — Climatic Change 2001: Technical summary. Cambridge University Press, Cambridge. IPCC (Intergovenment Panel on Climate Change). 2001b. Climate Change: The Scientific Basis: Radiative Forcing of Climate Change. pp: 353-416. In: O. Boucher, J. Haigh, D. Hauglustaine, J. Haywood, G. Myhre, T. Nakajima, G. Y. Shi, S. Solomon. Cambridge University Press, Cambridge. IPCC (Intergovenment Panel on Climate Change). 2001c. Climate Change 2001: Mitigation, Technological and Economic Potential of Greenhouse Gas Emissions Reduction. pp:171-279. In: Kornelis, B., L. G. David, G. Ken, J. Thomas, K. Takao, L. Mark, M. Mack, N. Siva Prasad (eds). Climate Change 2001: Mitigation. Cambridge University Press, Cambridge. IPCC (Intergovenment Panel on Climate Change). 2001d. “Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, Agriculture”. pp: 53-76. In: Taka H., and M. Wang (eds.). Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Cambridge University Press, Cambridge. Jackson, M. L. 1962. p.240. In Soil Chemical Analysis. Prentice-Hall, Inc., Englewood Cliffs, N. J. Kaltschmitt M., and G. H. Reinhardt. 1997. Nachwachsende Energieträger, Grundlagen, Verfahren, ökologische Bilanzierung. Vieweg-Verlag Braunschweig, Wiesbaden, Germany. Keeney, D.R., and D. W. Nelson. 1982. Nitrogen-inorganic forms. pp: 634-698. In: A.L. Page (ed.), Methods in soil analysis, pat 2, chemical and microbiological properties. (2nd ed.) Agron monogr. 9. SSSA, WI, USA. Kimura, M., H. Murakami, and H. Wada. 1991. CO2, H2, and CH4 production in rice rhizoshpere. Soil Sci. Plant Nutr. 37: 55-60. Kimura, M., T. Minoda, and J. Murase. 1993. Water-soluble organic materials in paddy soil ecosystem. II. Effects of temperature on controls of total organic materials, organic acids, and methane in leachate from submerged paddy soils amended with rice straw. Soil Sci. Plant Nut. 39: 713-724 Lal, R. 1999. Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Prog. Environ. Sci. 1: 307–326. Maljanen, M., P. J. Martikainen, H. Aaltonen, and J. Silvola. 2002. Short-term variation in fluxes of carbon dioxide, nitrous oxide and methane in cultivated and forested organic boreal soils. Soil Bio. and Biochem. 34: 577-584. McKenny, D. J., S. W. Wang, C. F. Drury, and W. I. Findlay. 1993. Denitrification and mineralization in soil amended with legume, grass, and corn residues. Soil Sci. Soc. Am. J. 46: 112-11 Mclean E. O. 1982. Soil pH and lime requirement. pp. 199-224. In A. L Page et al. (eds). Method of soil analysis. Part 1. 2nd ed. Agron Monogr. 9. ASA and SSSA, Madison, WI. Mer, J. L., and P. Roger. 2001. Production, oxidation, emission and consumption of methane by soils: a review. Eur. J. Soil Biol. 37: 25–50. Minami, K. 1997. Mitigation of nitrous oxide emission from fertilized soils. Program and Extended Abstracts of International Symposium on Atmosphere Chemistry and Future Global Environment, pp. 179-182, held by International Global Atmosphere Chemistry, Nagoya, Japan, November 11-13. Minami, K. S. Ohnishi, and S. Fukushi. 1983. The emission of N2O from soil through nitrification. Jpn. J. Soil Sci. Plant Nutri. 54: 277-280. Mosier, A., C. Kroeze, C. Nevison., O. Oenema, S. Seizinger, and O. van Cleemput. 1998. Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle: OECD/ IPCC/ IEA phase 11 development of IPCC guidelines for national greenhouse gas inventory methodology. Nutr. Cycl. Agroecosyst. 52: 225-248. Nelson, D.W., and L. E. Sommers. 1982. Total carbon, organic carbon and organic matter. In: Methods of Soil Analysis. Part 2. Chemical and Microbiolgical Properties. pp: 539-580. In: Page, A.L. Amer. Soc. Agronomy, Wisconsin. Neue, H. U., R. Wassmann, H. K. Kludze, B. Wang, and R. L. Lantin. 1997. Factors and processes controlling methane emissions from rice fields. Nutr. Cycl. Agroecosyst. 49: 111–117. OECD(Organization for Economic Cooperation and Development). 1998. Agriculture and Forestry: identification of options for net greenhouse gas reduction. Working Paper, Vol. VI, No. 67,OECD/GD(97)74. OECD(Organization for Economic Cooperation and Development). 2002. Environmental Data 2002-PART I. The State of The Environment: Air and climate. Ojima, D. S., D. W Valentine., A. R. Mosier, W. J. Parton, and D. S. Schimel. 1993. Effect of land use change on methane oxidation in temperate forest and grassland soils. Chemosphere 26: 675–685. Paustian, K., G. P. Robertson, and E. T. Elliott. 1995. Management impacts on carbon storage and gas fluxes (CO2, CH4) in midlatitude cropland. pp. 69– 83. In: Lal et al. (eds), Soil and Global Change. Advances in Soil Science. CRC Press, Boca Raton, FL. Rolston, D. E. 1986. Gas flux. pp: 1103-1119. In: Klute, A.(ed.) Methods of Soil Analysis, 2nd edition, American Society Agronomy and Soil Society, American Monograph No. 9, Wisconsin, USA. Shrestha, B. M., B. K. Sitaula, B. R. Singh and R. M. Bajracharya. 2004. Fluxes of CO2 and CH4 in soil profiles of a mountainous watershed of Nepal as influenced by land use, temperature, moisture and substrate addition. Nutr. Cycl. Agroecosyst. 68: 155–164. Singh, S., S. Kumar, and M. C. Jain. 1997. Methane emission from two Indian soils planted with different rice cultivators. Biol. Fertil. Soils 25: 285–289. Singh, S., J. S. Singh, and A. K. Kashyap. 1998. Contrasting pattern of methane flux in rice agriculture. Naturwissenschaften 85: 494–497. Sitaula, B. K., S. Hansen, J. I. B. Sitaula, and L. Bakken. 2000. Methane oxidation potentials and fluxes in agricultural soil: effect of fertilisation and soil compaction. Biogeochem. 48: 323–339. Skiba, U., and K. A. Smith. 2000. The control of nitrous oxide emissions from agricultural and natural soils. Chemosphere - Global Change Science 2: 379-386. Smith, K. A., P. E. Thomson, H. Clayton, I. P. McTaggart, and F. Conen. 1998. Effects of temperature, water content and nitrogen fertilization on emissions of nitrous oxide by soils. Atmospheric Environment 32: 3301-3309. Steffen, W., J. Canadell, M. Apps, E. D. Schulze, P. G. Jarvis, D. Baldocchi, P. Ciais, W. Cramer, J. Ehleringer, and G. Farquhar. 1998. The terrestrial carbon cycle: implications for the Kyoto protocol. Science 280 (5368): 1393-1394. Tiedje, J. M., A. J. Sexstone, T. B. Parkin, N. P. Revsbech, and D. R. Shelton. 1984. Anaerobic processes in soil. Plant and Soil 76: 197-212. Wassmann, R., H. Papen, and H. Rennenberg. 1993. Methane emission from rice paddies and possible mitigation strategies. Chemosphere 26: 201-217. Wassmann, R., H. U. Neue, J. K. Ladha, and M. S. Aulakh. 2004. Mitgating greenhouse gas emissions from rice- wheat cropping systems in Asia. Environment, Development and Sustainability 6: 65–90. Watson, R. T., L. G. Meirafilho, E. Sanhueza, and A. Janetos. 1992. Greenhouse gases: Sources and sinks. pp: 25-46. In: Houghton J. H., B. A. Callander, and S. L. Varney (eds.). Climate Change 1992, The supplementary reports to the IPCC Scientific assessment. Cambrige University Press, Cambrige, England. Whitman, W. B., E. Ankwanda, and R. Wolfe. 1982. Nutrition and carbon metabolism of Methanococcus valtae. J. Bactetiol 149: 852-863. Williams, R. T., and R. L. Crawford. 1984. Methane production in Minnesota. Appl. Environ. Microbiol. 47: 1266-1271. Van Moortel, E., P. B. Boeckx, and O. Van Cleemput. 2000. Inventory of nitrous oxide emissions from agriculture in Belgium calculations according to the revised 1996 Intergovernmental Panel on Climate Change guidelines. Biol. Fertil. Soils 30: 500-509. Xing, G. X., and X. Y. Yan. 1999. Direct nitrous oxide emissions from agricultural fields in China estimated by the revised 1996 IPPC guidelines for national greenhouse gases. Environ. Sci. and Policy 2: 355-361. Xing, G. X., S. L. Shi, G. Y. Shen, L. J. Du, and Z. Q. Xiong. 2002. Nitrous oxide emission from paddy soil in three rice-based cropping system in China. Nutr. Cycl. Agroecosyst. 64: 135-143. Yan, X., L. Du, S. Shi, and G. Xing. 2000. Nitrous oxide emission from wetland rice soil as affected by the application of controlled- availability fertilizers and mid- season aeration. Biol. Fertil. Soils 32: 60-66. Yang, S. S., and H. L. Chang. 1998. Effect of environmental conditions on methane production and emission from paddy soil. Agr. Ecosyst. and Envir. 69: 69-80. Yang, S. S., and H. L. Chang. 2001a. Effect of green manure amendment and flooding on methane emission from paddy fields. Chemosphere: Global Change Science 3: 41-49. Yang, S. S., and H. L. Chang. 2001a. Methane emission from paddy fields in Taiwan. Biol. Fertil. Soils 33: 157-165. Yang, S. S. C. M. Liu, C. M. Lai, and Y. L. Liu. 2003. Estimation of methane and nitrous oxide emission from paddy fields and uplands during 1990-2000 in Taiwan. Chemosphere 52: 1295-1305. Yeh, H. W., and W. Y. Kao. 1996. 13CPDB variation in contemporary bryophytes and the constraint on its use as a proxy of paleoatmospheric CO2 contents. J. Geol. Soc. China 39(3): 325-336.; zh-TW; http://ntur.lib.ntu.edu.tw/handle/246246/58443; http://ntur.lib.ntu.edu.tw/bitstream/246246/58443/1/ntu-94-R92623021-1.pdf
-
5Academic Journal
المؤلفون: Lai, Chao-Ming, Ke, Guang-Ruei, Chung, Meng-Yu