-
1Academic Journal
المؤلفون: K. A. Mishina, К. А. Мишина
المساهمون: The study was carried out as part of the improvement of the State primary special standard of the unit of heat in the field of dissolution calorimetry and reactions GET 133-2012. The measurements were performed on the equipment of the D. I. Mendeleyev Institute for Metrology., Исследование выполнено в рамках совершенствования государственного первичного специального эталона единицы количества теплоты в области калориметрии растворения и реакций ГЭТ 133-2012. Измерения были выполнены на оборудовании ФГУП «ВНИИМ им. Д. И. Менделеева».
المصدر: Measurement Standards. Reference Materials; Том 19, № 3 (2023); 31-43 ; Эталоны. Стандартные образцы; Том 19, № 3 (2023); 31-43 ; 2687-0886
مصطلحات موضوعية: эталон, measurement uncertainty, chemical calibration of ITC, reference materials, standard, неопределенность измерений, химическая калибровка ИКТ, стандартные образцы
وصف الملف: application/pdf
Relation: https://www.rmjournal.ru/jour/article/view/401/288; Sarge S. M., Höhne G. W. H., Hemminger W. Calorimetry: fundamentals, instrumentation and applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. 280 p. https://doi.org/10.1002/9783527649365; Kabiri M., Unsworth L. Application of isothermal titration calorimetry for characterizing thermodynamic parameters of biomolecular interactions: peptide self-assembly and protein adsorption case studies // Biomacromolecules. 2014. Vol. 15. P. 3463–3473. https://doi.org/10.1021/bm5004515; Survey of the year 2008: applications of isothermal titration calorimetry / R. J. Falconer [et al.] // Journal of Molecular Recognition. 2010. Vol. 23, № 5. P. 395–413. https://doi.org/10.1002/jmr.1025; Falconer R. J., Collins B. M. Survey of the year 2009: applications of isothermal titration Calorimetry // Journal of Molecular Recognition. 2011. Vol. 24, № 1. P. 1–16. https://doi.org/10.1002/jmr.1073; Prozeller D., Morsbach S., Landfester K. Isothermal titration calorimetry as a complementary method for investigating nanoparticle– protein interactions // Nanoscale. 2019. Vol. 11, № 41. P. 19265–19273. https://doi.org/10.1039/c9nr05790k; Wadso I., Goldberg R. N. Standards in isothermal microcalorimetry // Pure and Applied Chemistry. 2001. Vol. 73, № 10. P. 1625– 1639. https://doi.org/10.1351/pac200173101625; The Ca2+–EDTA chelation as standard reaction to validate Isothermal Titration Calorimeter measurements (ITC) / C. Rafols [et al.] // Talanta. 2016. Vol. 154. P. 354–359. https://doi.org/10.1016/j.talanta.2016.03.075; Titration calorimetry standards and the precision of isothermal titration calorimetry data / L. Baranauskiene [et al.] // International Journal of Molecular Sciences. 2009. Vol. 10, № 6. P. 2752–2762. https://doi.org/10.3390/ijms10062752; Repeatability, precision, and accuracy of the enthalpies and Gibbs energies of a protein–ligand binding reaction measured by isothermal titration calorimetry / V. Paketurytė [et al.] // European Biophysics Journal. 2019. Vol. 48, № 11. P. 139–152. https://doi.org/10.1007/s00249–018–1341-z; Dean J. A. Lange’s handbook of chemistry. New York, USA: McGraw-Hill, 1999.; Christensen J. J., Hansen L. D., Izatt R. M. Handbook of Proton Ionizations Heats. New York, USA: WileyInterscience, Hoboken, 1976.; The ABRF-MIRG’02 study: assembly state, thermodynamic, and kinetic analysis of an enzyme/inhibitor interaction / D. G. Myszka [et al.] // Journal of Biomolecular Techniques. 2003. Vol. 14, № 4. P. 247–269.; Calibration of nanowatt isothermal titration calorimeters with overflow reaction vessels / N. A. Demarse [et al.] // Analytical Biochemistry. 2011. Vol. 41, № 7. P. 247–255. https://doi.org/10.1016/j.ab.2011.06.014; A multi-laboratory benchmark study of isothermal titration calorimetry (ITC) using Ca2+ and Mg2+ binding to EDTA / A. VelazquezCampoy [et al.] // European Biophysics Journal. 2021. Vol. 50, № 3–4. P. 429–451. https://doi.org/10.1007/s00249-021-01523-7; Chemical calibration of isothermal titration calorimeters: An evaluation of the dilution of propan-1-ol into water as a test reaction using different calorimeters, concentrations, and temperatures / R. Adao [et al.] // Journal of Chemical Thermodynamics. 2012. Vol. 52. P. 57–63. https://doi.org/10.1016/j.jct.2011.12.018; Kantonen S. A., Henriksen N. M., Gilson M. K. Evaluation and minimization of uncertainty in ITC binding measurements: Heat error, concentration error, saturation, and stoichiometry // Biochimica et Biophysica Acta. 2017. Vol. 1861, № 2. P. 485–498. https://doi.org/10.1016/j.bbagen.2016.09.002; Bayesian analysis of isothermal titration calorimetry for binding thermodynamics / T. H. Nguyen [et al.] // PLOS ONE. 2018. Vol. 13, № 9. P. 1–26. https://doi.org/10.1371/journal.pone.0203224; Hansen L. D., Quinn C. Obtaining precise and accurate results by ITC // European Biophysics Journal. 2019. Vol. 48, № 8. P. 825– 835. https://doi.org/10.1007/s00249-019-01399-8; Tellinghuisen J., Chodera J. D. Systematic errors in isothermal titration calorimetry: Concentrations and baselines // Analytical Biochemistry. 2011. Vol. 414, № 2. P. 297–299. https://doi.org/10.1016/j.ab.2011.03.024; Usually overlooked problems related with measurements of high-heat efects using power compensation isothermal titration calorimetry / Ž. Medoš [et al.] // Journal of Thermal Analysis and Calorimetry. 2021. Vol. 145. P. 87–96. https://doi.org/10.1007/s10973-020-09663-2; Wadsö I. Needs for standards in isothermal microcalorimetry // Thermochimica Acta. 2000. Vol. 347, № 1–2. P. 73–77. https://doi.org/10.1016/S0040–6031(99)00418-9; Darnell A., SikkLy L., Porosk P. Uncertainty of small enthalpy effects measured by isothermal calorimetric titration // Journal of Chemical Metrology. 2021. Vol. 15, № 1. P. 25–37. https://doi.org/10.25135/jcm.57.21.03.1994; Gherrou A., Buschmann H.-J., Schollmeyer E. Complex formation of crown ethers and cryptands with Ba2+ in the biphasic system chloroform/water studied by titration calorimetry // Thermochimica Acta. 2005. Vol. 425, № 1–2. P. 1–5. https://doi.org/10.1016/S0040–6031(03)00369-1; Buschmann H. J., Mutihac R. C., Schollmeyer E. Complex formation of 18-crown-6 with metal cations and ammonium ions in dioxane– water mixtures // Thermochimica Acta. 2008. Vol. 472, № 1–2. P. 17–19. https://doi.org/10.1016/j.tca.2008.03.010; Boyce S. E., Tellinghuisen J., Chodera J. D. Avoiding accuracy-limiting pitfalls in the study of protein-ligand interactions with isothermal titration Calorimetry // Preprint submitted to Analytical Biochemistry. 2015. https://doi.org/10.1101/023796; Turnbull W. B., Daranas A. H. On the value of c: Can low affinity systems be studied by isothermal titration calorimetry? Journal of the American Chemical Society. 2003. Vol. 125, № 48. P. 14859–14866. https://doi.org/10.1021/ja036166s; Impact of protein and ligand impurities on ITC-derived protein–ligand thermodynamics / S. Grüner [et al.] // Biochimica et Biophysica Acta. 2014. Vol. 1840, № 9. P. 2843–2850. https://doi.org/10.1016/j.bbagen.2014.04.018; Isothermal titration calorimetry for drug design: Precision of the enthalpy and binding constant measurements and comparison of the instruments / V. Linkuviene [et al.] // Analytical Biochemistry. 2016. Vol. 515. P. 61–64. https://doi.org/10.1016/j.ab.2016.10.005; https://www.rmjournal.ru/jour/article/view/401
-
2Academic Journal
المؤلفون: K. A. Mishina Mishina, E. N. Korchagina, Ia. V. Kazartsev, К. А. Мишина, Е. Н. Корчагина, Я. В. Казарцев
المساهمون: Авторы выражают благодарность сотрудникам лаборатории научных исследований в области газоаналитических измерений ФГУП «ВНИИМ им. Д. И. Менделеева» – Колобовой Анне Викторовне и Уваровой Наталье Витальевне за консультации и помощь в подготовке документации в ходе утверждения стандартного образца.
المصدر: Measurement Standards. Reference Materials; Том 17, № 2 (2021); 19-32 ; Эталоны. Стандартные образцы; Том 17, № 2 (2021); 19-32 ; 2687-0886
مصطلحات موضوعية: стандартный образец, Wobbe index, gas calorimetry, thermophysical properties, reference material, число Воббе, газовая калориметрия, теплофизические свойства
وصف الملف: application/pdf
Relation: https://www.rmjournal.ru/jour/article/view/298/229; Global gas report 2018 / The Boston Consulting group // Snam [website]. URL: http://www.snam.it/export/sites/snam-rp/repository/file/gas_naturale/global-gas-report/global_gas_report_2018.pdf (дата обращения 23.10.2020).; Malek L., Hulteberg C. Measuring and ensuring the gas quality of the Swedish gas grid. Energiforsk, 2016. 38 p. URL: https://portal.research.lu.se/portal/en/publications/measuring-and-ensuring-the-gas-quality-of-the-swedish-gas-grid(e8249698–1599–444f-992f-d6fb19a63b48).html (дата обращения 23.10.2020).; ГОСТ 31369–2008 Газ природный. Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава. М: Стандартинформ. 2009. 54 с.; ISO 15971:2008 Natural gas – Measurement of properties – Calorific value and Wobbe index // ISO [website]. URL: https://www.iso.org/standard/44867.html (дата обращения 23.10.2020).; Dörr H., Koturbash T., Kutecherov V. Review of impacts of gas qualities with regard to quality determination and energy metering of natural gas. Measurement Science and Technology. 2019. Vol. 30. № 4. 022001. https://doi.org/10.1088/1361–6501/aaeef4; OIML R140: 2007 (E) Measuring systems for gaseous fuel // OIML [website]. URL: https://www.oiml.org/en/files/pdf_r/r140-e07.pdf (дата обращения 23.10.2020).; Measurement of gas calorific value: a new frontier to be reached with an optimised reference gas calorimeter / C. Villermaux [et al.] // 23rd World Gas Conference, Amsterdam 2006. URL: http://members.igu.org/html/wgc2006/pdf/paper/add12646.pdf (дата обращения 23.10.2020).; GERG project: development and setup of a new combustion reference calorimeter for natural gases / M. Jaeschke [et al.] // International journal of thermophysics. 2007. Vol. 28. Pp. 220–244. https://doi.org/10.1007/s10765-007-0167-1; ISO 6976:2016 Natural gas – Calculation of calorific values, density, relative density and Wobbe indices from composition // ISO [website]. URL: https://www.iso.org/ru/standard/55842.html (дата обращения 07.07.2019).; Traceable measurement and uncertainty analysis of the gross calorific value of methane determined by isoperibolic calorimetry / F. Haloua [et al.] // Metrologia. 2015. Vol. 52. № 6. Pp. 741–755. http://dx.doi.org/10.1088/0026–1394/52/6/741.; Rauch J., Haloua F. Measurements of the calorific value of methane with the new GERG reference calorimeters. Journal of Physics: Conference Series. 2018. Vol. 1065. № 20. http://dx.doi.org/10.1088/1742–6596/1065/20/202007; Alexandrov Yu. I., Chunovkina A. G., Korchagina E. N. Revised value of the heat of combustion for high purity methane. Proceedings conference and exhibition on natural gas quality. Loughboroug, 26–28 November 2002. NPL, 2002, p. 7; First experimental comparison of calorific value measurements of real biogas with reference and field calorimeters subjected to different standard methods / F. J. Perez-Sanz [et al.] // International journal of thermal sciences. 2019. Vol. 135. Pp. 72–82. https://doi.org/10.1016/j.ijthermalsci.2018.06.034; Kacur J., Kostur K. Indirect measurement of syngas calorific value. Proceedings of the 2015 16th international Carpathian control conference (ICCC). Szilvasvarad, Hungary, 27–30 May 2015. 229–234 pp. https://doi.org/10.1109/CarpathianCC.2015.7145079.; Rauch J., Haloua F. Calorific value of biomethane: Comparative measurements using reference gas calorimeters value. Journal of Physics: Conference Series. 2018. Vol. 1065. № 20. http://dx.doi.org/10.1088/1742–6596/1065/20/202007; Tsochatzidis N. A., Karantanas E. Assessment of calorific value at a gas transmission network. Journal of natural gas science and engineering. 2012. № 9. Pp. 45–50. https://doi.org/10.1016/j.jngse.2012.05.009; Comparison of traceable methods for determining the calorific value of non-conventional fuel gases / F. Haloua [et al.] // International journal of thermal sciences. 2016. Vol. 100. Pp. 438–447. https://doi.org/10.1016/j.ijthermalsci.2015.10.020; Ulbig P., Hoburg D. Determination of the calorific value of natural gas by different methods. Thermochimica acta. 2002. Vol. 382. № 1–2. Pp. 37–35. https://doi.org/10.1016/S0040–6031(01)00732-8; ISO Guide 35:2017 Reference materials – Guidance for characterization and assessment of homogeneity and stability // ISO [website]. URL: https://www.iso.org/standard/60281.html; ГСССД 195–01 Метан жидкий и газообразный. Термодинамические свойства, коэффициенты динамической вязкости и теплопроводности при температурах 91…700 К и давлениях 0,1…100 МПа. M: Стандартинформ. 2008. 31 с.; ГСССД 196–01 Таблицы стандартных справочных данных. Этан жидкий и газообразный. Термодинамические свойства, коэффициенты динамической вязкости и теплопроводности при температурах 91…625 К и давлениях 0,1…70 МПа. M.: Стандартинформ. 2008. 36 с.; ГСССД 197–01 Таблицы стандартных справочных данных. Пропан жидкий и газообразный. Термодинамические свойства, коэффициенты динамической вязкости и теплопроводности при температурах 86…700 К и давлениях 0,1…100 МПа. M.: Стандартинформ. 2008. 38 с.; https://www.rmjournal.ru/jour/article/view/298
-
3
المؤلفون: K. M. Mishina, N. A. Goncharova, M. E. Monastyrskaya, A. Y. Perkova
المصدر: Lecture Notes in Civil Engineering ISBN: 9783030947699
-
4Academic Journal
المؤلفون: A. M. Bat’kovsky, K. N. Mingaliev, K. M. Mishina, A. V. Fomina
المصدر: Радиопромышленность, Vol 26, Iss 2, Pp 83-92 (2016)
مصطلحات موضوعية: economic efficiency, cash flow, production cycle, operating cycle, financial cycle, financial stability, Electronics, TK7800-8360
Relation: https://www.radioprom.org/jour/article/view/138; https://doaj.org/toc/2413-9599; https://doaj.org/toc/2541-870X; https://doaj.org/article/948dde463e5444a68d500ecc2637d34e
-
5
المؤلفون: K. I. Mishina, A. N. Leonov
المصدر: Thermal Engineering. 55:738-742
مصطلحات موضوعية: Waste management, Chemistry, business.industry, technology, industry, and agriculture, Energy Engineering and Power Technology, chemistry.chemical_element, Combustion, complex mixtures, respiratory tract diseases, chemistry.chemical_compound, Nuclear Energy and Engineering, Fluidized bed, Mass transfer, otorhinolaryngologic diseases, Coal, Nitrogen oxide, Fluidized bed combustion, business, Carbon, Staged combustion
-
6
المؤلفون: S V, SHESTAKOV, E V, PONOMAREV, K I, MISHINA
المصدر: Terapevticheskii arkhiv. 35
مصطلحات موضوعية: Electrocardiography, Atrial Fibrillation, Humans, Procainamide, Quinidine
-
7
المؤلفون: K I, MISHINA
المصدر: Klinicheskaia meditsina. 41
مصطلحات موضوعية: Hypertension, Pulmonary, Hypertension, Humans, Familial Primary Pulmonary Hypertension, Lung
-
8
المؤلفون: K I, Mishina
المصدر: Zhurnal ushnykh, nosovykh i gorlovykh boleznei = The journal of otology, rhinology, and laryngologie [sic]. 32(2)
مصطلحات موضوعية: Tonsillitis, Adrenocorticotropic Hormone, Adrenal Cortex Hormones, Preoperative Care, Humans, Rheumatic Fever, Tonsillectomy