-
1Report
المؤلفون: John, Kamil, Werner, Dirk
المصدر: Czechoslovak J. Math. 50, 51-57 (2000)
مصطلحات موضوعية: Mathematics - Functional Analysis, 46B04, 46B28
URL الوصول: http://arxiv.org/abs/math/9702213
-
2
المؤلفون: John, Kamil
المصدر: Czechoslovak Mathematical Journal | 2006 Volume:56 | Number:3
-
3
المؤلفون: John, Kamil
المصدر: Czechoslovak Mathematical Journal | 1999 Volume:49 | Number:3
-
4
المؤلفون: John, Kamil
المصدر: Czechoslovak Mathematical Journal | 2005 Volume:55 | Number:3
-
5
المؤلفون: Emmanuele, Giovanni, John, Kamil
المصدر: Czechoslovak Mathematical Journal | 2000 Volume:50 | Number:1
-
6
المؤلفون: John, Kamil, Werner, Dirk
المصدر: Czechoslovak Mathematical Journal | 2000 Volume:50 | Number:1
-
7Academic Journal
المؤلفون: John, Kamil
مصطلحات موضوعية: keyword:reflexive Banach space, keyword:biorthogonal system, keyword:$\pi $-tensor product, msc:46B10, msc:46B28
وصف الملف: application/pdf
Relation: mr:MR2261664; zbl:Zbl 1164.46308; reference:[1] J. Diestel: Sequences and Series in Banach Spaces.Springer-Verlag, Berlin-Heidelberg-New York, 1984. MR 0737004; reference:[2] A. Grothendieck: Produits tensoriels topologiques et espaces nucléaires.Mem. Am. Math. Soc. 16 (1955). Zbl 0123.30301, MR 0075539; reference:[3] S. Heinrich: On the reflexivity of the Banach space $L(X,Y)$.Funkcional’nyi Analiz i ego Prilozheniya 8 (1974), 97–98. MR 0342991; reference:[4] J. R. Holub: Reflexivity of $L(E,F)$.Proc. Amer. Math. Soc. 39 (1973), 175–177. Zbl 0262.46015, MR 0315407; reference:[5] H. Jarchow: Locally Convex Spaces.Teubner-Verlag, Stuttgart, 1981. Zbl 0466.46001, MR 0632257; reference:[6] K. John: $w^*$-basic sequences and reflexivity of Banach spaces.Czechoslovak Math. J 55 (2005), 677–681. Zbl 1081.46017, MR 2153091, 10.1007/s10587-005-0054-5; reference:[7] W. B. Johnson, H. P. Rosenthal: On w$^*$ basic sequences and their applications to the study of Banach spaces.Studia Math. 43 (1972), 77–92. MR 0310598, 10.4064/sm-43-1-77-92; reference:[8] G. Köthe: Topological Vector Spaces II.Springer-Verlag, Berlin-Heidelberg-New York, 1984. MR 0551623; reference:[9] A. Pełczyński: A note on the paper of I. Singer “Basic sequences and reflexivity of Banach spaces”.Studia Math. 21 (1962), 371–374. MR 0146636, 10.4064/sm-21-3-370-374; reference:[10] V. Pták: Biorthogonal systems and reflexivity of Banach spaces.Czechoslovak Math. J. 9 (1959), 319–325. MR 0110008; reference:[11] W. Ruckle: Reflexivity of $L(E,F)$.Proc. Amer. Math. Soc. 34 (1972), 171–174. Zbl 0242.46018, MR 0291777; reference:[12] W. Ruess: Duality and geometry of spaces of compact operators.In: Functional Analysis: Surveys and Recent Results III. Math. Studies 90, North Holland, , 1984. Zbl 0573.46007, MR 0761373; reference:[13] I. Singer: Basic sequences and reflexivity of Banach spaces.Studia Math. 21 (1962), 351–369. Zbl 0114.30903, MR 0146635, 10.4064/sm-21-3-351-369; reference:[14] I. Singer: Bases in Banach Spaces, Vol. I.Springer-Verlag, Berlin-Heidelberg-New York, 1970. MR 0298399
-
8Academic Journal
المؤلفون: John, Kamil
مصطلحات موضوعية: keyword:reflexive Banach space, keyword:Schauder basis, keyword:quotient space, keyword:w$^*$-basic sequence, keyword:tensor product, msc:46B10, msc:46B15, msc:46B28
وصف الملف: application/pdf
Relation: mr:MR2153091; zbl:Zbl 1081.46017; reference:[1] W. J. Davis and J. Lindenstrauss: On total nonnorming subspaces.Proc. Amer. Math. Soc. 31 (1972), 109–111. MR 0288560, 10.1090/S0002-9939-1972-0288560-8; reference:[2] J. Diestel: Sequences and Series in Banach Spaces.Springer-Verlag, Berlin-Heidelberg-New York, 1984. MR 0737004; reference:[3] M. Fabian, P. Habala, P. Hájek, J. Pelant, V. Montesinos and V. Zizler: Functional Analysis and Infinite Dimensional Geometry.Canad. Math. Soc. Books in Mathematics Springer-Verlag, New York, 2001. MR 1831176; reference:[4] S. Heinrich: On the reflexivity of the Banach space $L(X,Y)$.Funkts. Anal. Prilozh. 8 (1974), 97–98. (Russian) MR 0342991; reference:[5] J. R. Holub: Reflexivity of $L(E,F)$.Proc. Amer. Math. Soc. 39 (1974), 175–177. MR 0315407; reference:[6] H. Jarchow: Locally Convex Spaces.Teubner-Verlag, Stuttgart, 1981. Zbl 0466.46001, MR 0632257; reference:[7] W. B. Johnson and H. P. Rosenthal: On w$^*$ basic sequences and their applications to the study of Banach spaces.Studia Math. 43 (1972), 77–92. MR 0310598, 10.4064/sm-43-1-77-92; reference:[8] J. Lindenstrauss and L. Tzafriri: Classical Banach Spaces I. Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete 92.Springer-Verlag, Berlin-Heidelberg-Berlin, 1977. MR 0500056; reference:[9] J. Mujica: Reflexive spaces of homogeneous polynomials.Bull. Polish Acad. Sci. Math. 49 (2001), 211–222. Zbl 1068.46027, MR 1863260; reference:[10] A. Pełczyński: A note on the paper of I. Singer “Basic sequences and reflexivity of Banach spaces”.Studia Math. 21 (1962), 371–374. MR 0146636, 10.4064/sm-21-3-370-374; reference:[11] V. Pták: Biorthogonal systems and reflexivity of Banach spaces.Czechoslovak Math. J. 9 (1959), 319–325. MR 0110008; reference:[12] W. Ruckle: Reflexivity of $L(E,F)$.Proc. Am. Math. Soc. 34 (1972), 171–174. Zbl 0242.46018, MR 0291777; reference:[13] I. Singer: Basic sequences and reflexivity of Banach spaces.Studia Math. 21 (1962), 351–369. Zbl 0114.30903, MR 0146635, 10.4064/sm-21-3-351-369
-
9Academic Journal
المؤلفون: John, Kamil, Werner, Dirk
وصف الملف: application/pdf
Relation: mr:MR1745458; zbl:Zbl 1040.46020; reference:[1] E. M. Alfsen and E. G. Effros: Structure in real Banach spaces. Parts I and II.Ann. of Math. 96 (1972), 98–173. MR 0352946, 10.2307/1970895; reference:[2] P. G. Casazza and N. J. Kalton: Notes on approximation properties in separable Banach spaces.Geometry of Banach Spaces, Proc. Conf. Strobl 1989, P. F. X. Müller and W. Schachermayer (eds.), London Mathematical Society Lecture Note Series 158, Cambridge University Press, 1990, pp. 49–63. MR 1110185; reference:[3] G. Godefroy, N. J. Kalton, and P. D. Saphar: Unconditional ideals in Banach spaces.Studia Math. 104 (1993), 13–59. MR 1208038; reference:[4] P. Harmand, D. Werner, and W. Werner: $M$-Ideals in Banach Spaces and Banach Algebras.Lecture Notes in Math. 1547, Springer, Berlin-Heidelberg-New York, 1993. MR 1238713; reference:[5] N. J. Kalton: $M$-ideals of compact operators.Illinois J. Math. 37 (1993), 147–169. Zbl 0824.46029, MR 1193134, 10.1215/ijm/1255987254; reference:[6] N. J. Kalton and D. Werner: Property $(M)$, $M$-ideals and almost isometric structure of Banach spaces.J. Reine Angew. Math. 461 (1995), 137–178. MR 1324212; reference:[7] A. Lima: Property $(wM^*)$ and the unconditional metric compact approximation property.Studia Math. 113 (1995), 249–263. Zbl 0826.46013, MR 1330210, 10.4064/sm-113-3-249-263; reference:[8] D. Li: Complex unconditional metric approximation property for $C_\Lambda (\mathbf T)$ spaces.Preprint (1995). MR 1424701; reference:[9] Ch. A. McCarthy: $c_p$.Israel J. Math. 5 (1967), 249–271. MR 0225140; reference:[10] E. Oja: Dual de l’espace des opérateurs linéaires continus.C. R. Acad. Sc. Paris, Sér. A 309 (1989), 983–986. Zbl 0684.47025, MR 1054748; reference:[11] D. Werner: New classes of Banach spaces which are $M$-ideals in their biduals.Math. Proc. Cambridge Phil. Soc. 111 (1992), 337–354. Zbl 0787.46020, MR 1142754, 10.1017/S0305004100075447
-
10Academic Journal
المؤلفون: John, Kamil
مصطلحات موضوعية: keyword:compact operator, keyword:approximation property, keyword:reflexive Banach space, keyword:projection, keyword:separability, msc:46B28
وصف الملف: application/pdf
Relation: mr:MR1800167; zbl:Zbl 1050.46016; reference:Amir D., Lindenstrauss J.: The structure of weakly compact sets in Banach spaces.Ann. of Math. 88 (1968), 35-59. Zbl 0164.14903, MR 0228983; reference:Arterburn D., Whitney R.: Projections in the space of bounded linear operators.Pacific J. Math. 15 (1965), 739-746. MR 0187052; reference:Casazza P.G., Kalton N.J.: Notes on approximation properties on separable Banach spaces.in: Geometry of Banach spaces, London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1991, pp.49-63. MR 1110185; reference:Diestel J., Morrison T.J.: The Radon-Nikodym property for the space of operators.Math. Nachr. 92 (1979), 7-12. Zbl 0444.46021, MR 0563569; reference:Emmanuele G.: On the containment of $c_0$ by spaces of compact operators.Bull. Sci. Mat. 115 (1991), 177-184. MR 1101022; reference:Emmanuele G.: A remark on the containment of $c_0$ in spaces of compact operators.Math. Proc. Cambridge Phil. Soc. 111 (1992), 331-335. MR 1142753; reference:Emmanuele G., John K.: Uncomplementability of spaces of compact operators in lager spaces of operators.Czechoslovak J. Math. 47 (122) (1997), 19-32. MR 1435603; reference:Feder M.: On subspaces of spaces with an unconditional basis and spaces of operators.Illinois J. Math. 24 (1980), 196-205. Zbl 0411.46009, MR 0575060; reference:Feder M.: On the non-existence of a projection onto the spaces of compact operators.Canad. Math. Bull. 25 (1982), 78-81. MR 0657655; reference:Godefroy G., Saphar P.: Duality in spaces of operators and smooth norms on Banach spaces.Illinois J. Math. 32 (4) (1988), 672-695. Zbl 0631.46015, MR 0955384; reference:Godun B.V.: Unconditional bases and basic sequences.Izv. Vyssh. Uchebn. Zaved. Mat 24 (1980), 69-72. MR 0603941; reference:John K.: On the space $K(P,P^\ast)$ of compact operators on Pisier space P.Note di Matematica 72 (1992), 69-75. MR 1258564; reference:John K.: On the uncomplemented subspace ${\Cal K}(X,Y)$.Czechoslovak Math. J. 42 (1992), 167-173. MR 1152178; reference:Johnson J.: Remarks on Banach spaces of compact operators.J. Funct. Analysis 32 (1979), 304-311. Zbl 0412.47024, MR 0538857; reference:Kuo T.H.: Projections in the space of bounded linear operators.Pacific. J. Math. 52 (1974), 475-480. MR 0352939; reference:Kalton N.J.: Spaces of compact operators.Math. Ann. 208 (1974), 267-278. Zbl 0266.47038, MR 0341154; reference:Lindenstrauss J.: On nonseparable reflexive Banach spaces.Bull. Amer. Math. Soc. 72 (1966), 967-970. Zbl 0156.36403, MR 0205040; reference:Ruess W.: Duality and geometry of spaces of compact operators.in Functional Analysis: Surveys and Recent Results III, Math. Studies 90, North Holland, 1984. Zbl 0573.46007, MR 0761373; reference:Saphar P.D.: Projections from $L(E,F)$ onto $K(E,F)$.Proc. Amer. Math. Soc. 127 (4) (1999), 1127-1131. Zbl 0912.46011, MR 1473679; reference:Singer I.: Bases in Banach spaces. Vol. II.Berlin-Heidelberg-New York, Springer, 1981. MR 0610799; reference:Thorp E.: Projections onto the space of compact operators.Pacific J. Math. 10 (1960), 693-696. MR 0114128; reference:Tong A.E.: On the existence of non-compact bounded linear operators between certain Banach spaces.Israel J. Math. 10 (1971), 451-456. MR 0296663; reference:Tong A.E., Wilken D.R.: The uncomplemented subspace $K(E,F)$.Studia Math. 37 (1971), 227-236. Zbl 0212.46302, MR 0300058; reference:Zippin M.: Banach spaces with separable duals.Trans. Amer. Math. Soc. 310 (1988), 371-379. Zbl 0706.46015, MR 0965758
-
11Academic Journal
المؤلفون: John, Kamil
مصطلحات موضوعية: keyword:factorization of linear operators, keyword:u-ideal, keyword:approximation properties, keyword:unconditional basis, msc:46A32, msc:46B20, msc:46B25, msc:46B28, msc:46B99, msc:46H10, msc:47L20
وصف الملف: application/pdf
Relation: mr:MR1708346; zbl:Zbl 1008.46002; reference:[E,J] G. Emmanuele, K. John: Some remarks on the position of the space ${\mathcal K}(X,Y)$ inside the space ${\mathcal W}(X,Y)$.New Zealand J. Math. 26(2) (1997), 183–189. MR 1601639; reference:[F] J. H. Fourie: Projections on operator duals.Quaestiones Math. 21 (1998), 11–18. Zbl 0938.47020, MR 1658463, 10.1080/16073606.1998.9632022; reference:[G,K,S] G. Godefroy, N. J. Kalton, P. D. Saphar: Unconditional ideals in Banach spaces.Studia Math. 104 (1) (1993), 13–59. MR 1208038; reference:[H,W,W] P. Harmand, D. Werner, W. Werner: M-ideals in Banach Spaces and Banach Algebras.Lecture Notes in Math., 1547, Springer, Berlin, 1993. MR 1238713; reference:[J1] K. John: On the space ${\mathcal K}(P,P^\ast )$ of compact operators on Pisier space P.Note di Matematica 12 (1992), 69–75. MR 1258564; reference:[J2] K. John: On a result of J. Johnson.Czechoslovak Math. Journal 45 (1995), 235–240. Zbl 0869.46011, MR 1331461; reference:[Jo] J. Johnson: Remarks on Banach spaces of compact operators.J. Funct. Analysis 32 (1979), 304–311. Zbl 0412.47024, MR 0538857, 10.1016/0022-1236(79)90042-9; reference:[Ka] N. J. Kalton: Spaces of compact operators.Math. Annalen 208 (1974), 267–278. Zbl 0266.47038, MR 0341154, 10.1007/BF01432152; reference:[Li] Å. Lima: Property $(wM^*)$ and the unconditional metric approximation property.Studia Math. 113 (3) (1995), 249–263. Zbl 0826.46013, MR 1330210, 10.4064/sm-113-3-249-263; reference:[LT,I] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces, Sequence Spaces.EMG 92 Springer Verlag (1977). MR 0500056; reference:[LT,II] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces, Function Spaces.EMG 97 Springer Verlag (1979). MR 0540367; reference:[Pie] A. Pietsch: Operator ideals.Berlin, Deutscher Verlag der Wissenschaften, 1978. Zbl 0405.47027, MR 0519680; reference:[Pi] J. Pisier: Counterexamples to a conjecture of Grothendieck.Acta Mat. 151 (1983), 180–208. Zbl 0542.46038, MR 0723009; reference:[Ru] W. Ruess: Duality and Geometry of spaces of compact operators.Functional Analysis: Surveys and Recent Results III, Math. Studies 90, North Holland, 1984, pp. 59–78. Zbl 0573.46007, MR 0761373
-
12Academic Journal
المؤلفون: John, Kamil
المصدر: John, Kamil;: Tensor Product of Several Spaces and Nuclearity.
مصطلحات موضوعية: Mathematica
وصف الملف: image/jpeg; application/pdf
-
13Academic Journal
المؤلفون: John, Kamil
المصدر: John, Kamil;: Counterexample to a Conjecture of Grothendieck.
مصطلحات موضوعية: Mathematica
وصف الملف: image/jpeg; application/pdf
-
14Academic Journal
المؤلفون: John, Kamil
المصدر: John, Kamil;: On the compact non-nuclear operator problem.
مصطلحات موضوعية: Mathematica
وصف الملف: image/jpeg; application/pdf
-
15Academic Journal
المؤلفون: John, Kamil
المصدر: John, Kamil;: On Tensor Product Characterization of Nuclear Spaces.
مصطلحات موضوعية: Mathematica
وصف الملف: image/jpeg; application/pdf
-
16Academic Journal
المؤلفون: John, Kamil
المصدر: John, Kamil: Mathematische Annalen. 265 1983
مصطلحات موضوعية: 510.mathematics, Article
وصف الملف: image/jpeg; application/pdf
Relation: http://resolver.sub.uni-goettingen.de/purl?PPN235181684_0265%7Clog31; DigiZeit PPN235181684_0265%7Clog31
-
17Academic Journal
المؤلفون: John, Kamil
المصدر: John, Kamil: Mathematische Annalen. 269 1984
مصطلحات موضوعية: 510.mathematics, Article
وصف الملف: image/jpeg; application/pdf
Relation: http://resolver.sub.uni-goettingen.de/purl?PPN235181684_0269%7Clog33; DigiZeit PPN235181684_0269%7Clog33
-
18Academic Journal
المؤلفون: John, Kamil
المصدر: John, Kamil: Mathematische Annalen. 257 1981
مصطلحات موضوعية: 510.mathematics, Article
وصف الملف: image/jpeg; application/pdf
Relation: http://resolver.sub.uni-goettingen.de/purl?PPN235181684_0257%7Clog55; DigiZeit PPN235181684_0257%7Clog55
-
19Academic Journal
المؤلفون: John, Kamil
المصدر: John, Kamil: Mathematische Annalen. 287 1990
مصطلحات موضوعية: 510.mathematics, Article
وصف الملف: image/jpeg; application/pdf
Relation: http://resolver.sub.uni-goettingen.de/purl?GDZPPN002334208; DigiZeit GDZPPN002334208
-
20Academic Journal
المؤلفون: John, Kamil
مصطلحات موضوعية: reflexive Banach space, Schauder basis, quotient space, w$^*$-basic sequence, tensor product
جغرافية الموضوع: 677-681
وصف الملف: média; svazek