يعرض 1 - 20 نتائج من 513 نتيجة بحث عن '"Jeong, B"', وقت الاستعلام: 0.46s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المصدر: Russian Journal of Plant Physiology; Dec2024, Vol. 71 Issue 6, p1-13, 13p

  3. 3
    Academic Journal
  4. 4
    Book
  5. 5
    Book
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal

    المساهمون: This study was supported by a grant (Project No: PJ01267102 "Study on the physiological mechanism of temperature adaptable pepper lines") from National Institute of Horticultural and Herbal Science, Rural Development Administration, Это исследование было поддержано грантом (Project No: PJ01267102 "Study on the physiological mechanism of temperature adaptable pepper lines"), Национальный научный институт плодоовощеводства и лекарственных растений, Администрация развития сельского хозяйства

    المصدر: Vegetable crops of Russia; № 1 (2022); 5-11 ; Овощи России; № 1 (2022); 5-11 ; 2618-7132 ; 2072-9146

    وصف الملف: application/pdf

    Relation: https://www.vegetables.su/jour/article/view/1912/1333; Bakker J.C. and Van Uffelen J.A.M. The effects of diurnal temperature regimes on growth and yield of sweet pepper. Netherlands J. Agril. Sci. 1998;36(20):1-208. https://doi.org/10.1018174/njas.v36i3.16670; Venema J.H., Posthumus F., de Vries M., van Hasselt P.R. Differential response of domestic and wild Lycopersicon species to chilling under low light: growth, carbohydrate content, photosynthesis and the xanthophyll cycle. J. Physiologia Plantarum. 1999;105:81–88. DOI:10.1034/J.1399-3054.1999.105113.X; Fang X., Zaiqiang Y., Liyun Z. Low temperature and weak light affect greenhouse tomato growth and fruit quality. J. Plant Sci. 2018;6:16-24. doi:10.11648/j.jps.20180601.14; Thomashow M.F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Biol. 1999;50:571–599. https://doi.org/10.1146/annurev.arplant.50.1.571; Chinnusamy V., Zhu J. K. & Sunkar, R. Gene regulation during cold stress acclimation in plants. Methods Mol. Biol. 2010;639:39–55. https://doi.org/10.1007/978-1-60761-702-0_3; Erickson A.N., Markhart A.H., Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant Cell Environ. 2002; 25:123–130. https://doi.org/10.1046/j.0016-8025.2001.00807.x.; Adams S.R., Cockshull K.E., Cave C.R. Effect of temperature on the growth and development of tomato fruits. Ann. Bot. 2001;88:869-877. https://doi.org/10.1006/anbo.2001.1524; Der Van Ploeg A., Heuvelink E. Influence of sub-optimal temperature on tomato growth and yield: a review. J. Hortic. Sci. Biotech. 2005;80:6652-659. https://doi.org/10.1080/14620316.2005.11511994; Yang E.-Y., Rajametov S.N., Cho M.-C., Jeong H.-B., Chae W.-B. Factors Affecting Tolerance to Low Night Temperature Differ by Fruit Types in Tomato. Agriculture. 2021;11:681. https://doi.org/10.3390/agriculture11070681; Munir Sh., Liu H., Xing Y., Hussain S., Ouyang B., Zhang Y., Li H., Ye Z. Overexpression of calmodulin-like (ShCML44) stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses. Sci. Rep. 2016;6;31772. http://doi.org/10.1038/srep31772; Ding F., Liu B., Zhang Sh. Exogenous melatonin ameliorates coldinduced damage in tomato plants. Sci. Hortic. 2017;219:264–271. http://dx.doi.org/10.1016/j.scienta.2017.03.029; Rihan H.Z., Al-Issawi M., Fuller M.P. Advances in physiological and molecular aspects of plant cold tolerance. J. Plant Interact. 2017;12:143–157. https://doi.org/10.1080/17429145.2017.1308568; Liu H., Ouyang B., Zhang J., Wang T., Li H., et al. Differential Modulation of Photosynthesis, Signaling, and Transcriptional Regulation between Tolerant and Sensitive Tomato Genotypes under Cold Stress. PLoS ONE. 2012;7(11):e50785. doi:10.1371/journal.pone.0050785; Chen H., Chen X., Chen D, Li J., Zhang Y., Wang A. A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance: Solanum lycopersicum and Solanum habrochaites. J. BMC Plant Biology, 2015;15:132. DOI:10.1186/s12870-015-0521-6; Hu T., Wang Y., Wang Q., Dang N., Wang L., Liu Ch, et al. The tomato 2-oxoglutarate-dependent dioxygenase gene SlF3HL is critical for chilling stress tolerance. J. Horticulture Research. 2019;6:45. https://doi.org/10.1038/s41438-019-0127-5; Goodstal F.J., Kohler G.R., Randall L.B., Bloom A.J., St Clair D.A. A major QTL introgressed from wild Lycopersicon hirsutum confers chilling tolerance to cultivated tomato (Lycopersicon esculentum). J. Theor. Appl. Genet. 2005;111:898–905. https://doi.org/10.1007/s00122-005-0015-2; Somerville C. Direct tests of the role of membrane lipid composition in low temperature-induce photoinhibition and chilling sensitivity in plants and cyanobacteria. Proc. Natl. Acad. Sci. (USA). 1995;92:6215–6218. doi:10.1073/pnas.92.146215; Foolad M., Lin G. Relationship between cold tolerance during seed germination and vegetative growth in tomato: Germplasm evaluation. J. Am. Soc. Hortic. Sci. 2000;125:679–683. https://doi.org/10.21273/JASHS.125.6.679; Park E., Hong S.J., Lee A.Y., Park J., Cho B.K., Kim G. Phenotyping of Low-Temperature Stressed Pepper Seedlings Using Infrared Thermography. J. of Biosystems Eng. 2017;42(3):163-169. https://doi.org/10.5307/JBE.2017.42.3.163; Kato K. Flowering and fertility of forced green peppers at lower temperatures. J. Jpn. Soc. Hortic. Sci. 1989;58:113–121.; Shaked R., Rosenfeld K., Pressman E. The effect of low night temperatures on carbohydrates metabolism in developing pollen grains of pepper in relation to their number and functioning. Sci. Hortic. 2004;102:29–36. https://doi.org/10.1016/j.scienta.2003.12.007; Seo J.-U.; Hwang J.-M.; Oh S.-M. Effects of night temperature treatment of raising seedlings before transplanting on growth and development of pepper. J. Bio-Env. Con. 2006;15:149–155.; Rajametov S.N., Lee K., Jeong H.B., Cho, M.C., Nam C.W., Yang E.Y. Physiological Traits of Thirty-Five Tomato Accessions in Response to Low Temperature. J. Agriculture. 2021;11:792. https://doi.org/10.3390/agriculture11080792; Rajametov S.N., Lee K., Jeong H.B., Cho M.C., Nam C.W., Yang E.Y. The Effect of Night Low Temperature on the Agronomical Traits of ThirtyNine Pepper Accessions (Capsicum annuum L.). J. Agronomy. 2021;11:1986. https://doi.org/10.3390/agronomy11101986; Zhang C., Liu J., Zhang Y., Cai X., Gong P., Zhang J., Ye Z. Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. J. Plant Cell Rep. 2011;30:389–398. DOI 10.1007/s00299-010-0939-0; Hu Y., Wu Q., Sprague S., Park S., Oh M., et al. Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components. J. Hortic. Res. 2015;2:15051. doi:10.1038/hortres.2015.51; Rajametov S.N., Yang E.Y., Jeong H.B., Cho M.C., Chae S.Y., Paudel N. Heat Treatment in Two Tomato Cultivars: A Study of the Effect on Physiological and Growth Recovery. J. Horticulturae. 2021;7:119. https://doi.org/10.3390/horticulturae7050119; Rajametov Sh., Yang E.Y., Cho M.Ch., Chae S.Y., Bong J.H. Screening of pepper (Capsicum L.) seedlings tolerance to low temperature. The Agrarian Sci J. 2020;11:78-82. https://doi.org/10.28983/asj./2020i11pp78-82; Hoek H.I.S., Hanisch Ten Cate C.H., Keijzer C.J., Schel J.H., Dons H.J.M. Development of the fifth leaf is indicative for whole plant performance at low temperature in tomato. J. Ann. Bot. 1993;72:367–374.; Xu J., Wolters-Arts M., Mariani C., Huber H., Rieu I. Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum). J. Euphytica. 2017;213:156. https://doi:10.1007/s10681-017-1949-9; Rajametov Sh., Yang E.Y., Cho M.Ch., Chae S.Y., Won B.Ch. Physiological traits associated with high temperature tolerance differ by fruit types and sizes in tomato (Solanum lycopersicum L.). J. Hortic. Environ. Biotechnol. 2020;61:837-847. https://doi.org/10.1007/s13580-020-00280-4; Abdul-Baki A.A., Stommel J.R. Pollen viability and fruit set of tomato genotypes under optimum and high-temperature regimes. J. Hort. Sci. 1995;30:115–117. https://doi.org/10.21273./HORTSCI.30.1.115; Sato S., Peet M.M., Thomas J.F. Physiological factors limit fruit set of Tomato (Lycopersicon esculentum Mill.) under chronic high temperature. Plant Cell Environ. 2000;23:719-726. https://doi:10.1046/j.1365-3040.2000.00589.x; Rajametov S., Yang E.Y., Cho M.C., Bong J.H., Chae S.Y., Chae W.B. Heat-tolerant hot pepper exhibits constant photosynthesis via increased transpiration rate, high proline content and fast recovery in heat stress condition. Sci. Rep. 2021;11:14328. https://doi.org/10.1038/s41598-021-93697-5; https://www.vegetables.su/jour/article/view/1912

  10. 10
    Academic Journal
  11. 11
    Academic Journal

    المساهمون: Ministry of Trade, Industry and Energy, Ministry of Science and ICT

    المصدر: Journal of Asian Ceramic Societies ; volume 10, issue 2, page 306-313 ; ISSN 2187-0764

  12. 12
    Academic Journal
  13. 13
    Academic Journal

    المساهمون: Iannaccone T., Scarponi G.E., Jeong B., Cozzani V.

    مصطلحات موضوعية: Process safety, LNG, marine fuel, inherent safety

    وصف الملف: ELETTRONICO

    Relation: volume:86; firstpage:385; lastpage:390; numberofpages:6; journal:CHEMICAL ENGINEERING TRANSACTIONS; http://hdl.handle.net/11585/844881; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85109472238; https://www.cetjournal.it/index.php/cet/article/view/CET2186065

  14. 14
    Academic Journal
  15. 15
    Academic Journal

    المساهمون: This study was supported by a grant (Project No: PJ01267102 “Study on the physiological mechanism of temperature adaptable pepper lines”) from the National Institute of Horticultural and Herbal Science, Rural Development Administration.

    المصدر: Vegetable crops of Russia; № 6 (2021); 5-9 ; Овощи России; № 6 (2021); 5-9 ; 2618-7132 ; 2072-9146

    وصف الملف: application/pdf

    Relation: https://www.vegetables.su/jour/article/view/1849/1316; Root T.L., Price J.T., Hall K.R., Schneider S.H., Rosenzweigk C., Pounds J.A. Fingerprints of global warming on wild animals and plants. Nature. 2003;421(2):57–60. https://doi.org/10.1038/nature01333; Vuuren D.P.V., Meinshausenc M., Plattnerd G.K., Joose F., Strassmanne K.M., Smithg S.J., Temperature increase of 21st century mitigation scenarios. Proc. Natl. Acad. Sci. 2008;105(40):15258–15262. https://doi.org/10.1073/pnas.0711129105; Beena R., Veena V., Narayankutty M.C. Evaluation of rice genotypes for acquired thermo-tolerance using Temperature Induction Response technique. Oryza. Int. J. Rice. 2018;55(2):285–291. https://doi.org/10.5958/2249-5266.2018.00035.8; Erickson A.N., Markhart A.H., Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant Cell Environ. 2002;25:123–130. https://doi.org/10.1046/j.0016-8025.2001.00807.x.; Heuvelink E., Korner O. Parthenocarpic fruit growth reduces yield fluctuation and blossom-end rot in sweet pepper. Ann. Bot. 2001;88:69–74. https://doi.org/10.1006/anbo.2001.1427; Rajametov S., Yang E.Y., Cho M.C., Bong J.H., Chae S.Y., Chae W.B. Heat-tolerant hot pepper exhibits constant photosynthesis via increased transpiration rate, high proline content and fast recovery in heat stress condition. Sci. Rep. 2021;(11):14328. https://doi.org/10.1038/s41598-021-93697-5; Pagamas P., Nawata E. Effect of high temperature during the seed development on quality and chemical composition of chili pepper seed. Jpn. J. Trop. Agr. 2007;(51):22–29.; Park E., Hong S.J., Lee A.Y., Park J., Cho B.K., Kim G. Phenotyping of Low-Temperature Stressed Pepper Seedlings Using Infrared Thermography. J. Biosyst. Eng. 2017;42(3):163-169. https://doi.org/10.1053/JBE.2017.42.3.163.; Rajametov S, Yang E.Y., Bong J.H., Cho M.C., Chae S.Y., Paudel N. Heat treatment in two tomato cultivars: a study of the effect on physiological and growth recovery. J. Hortic. 2021;7(5):119. https://doi.org/10.3390/horticulturae7050119; Gisbert-Mullor R., Padilla Y.G., Martínez-Cuenca M., L´opez-Galarza S., Calatayud A. Suitable rootstocks can alleviate the effects of heat stress on pepper plants. Sci. Hort. 2021;(290):110529. https://doi.org/10.1016/j.scienta.2021.110529; Camejo D., Rodríguez,P., Morales M.A., Dell’Amico J.M., Torrecillas A., Alarcón J.J. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 2005;(162):281–289. https://doi.org/10.1016/j.jplph.2004.07.014; Bhattarai S., Harvey J.T., Djidonou D., Leskovar D.I. Exploring Morpho-Physiological Variation for Heat Stress Tolerance in Tomato. Plants. 2021;(10):347. https://doi.org/10.3390/plants10020347; Zhou R., Yu X., Kjær K.H., Rosenqvist E., Ottosen C.O., Wu Z. Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance. Envir. Exp. Bot. 2015;(118):1–11. https://doi.org/10.1016/j.envexpbot.2015.05.006; Camejo D., Torres W. High temperature effects on tomato (Lycopericon esculetinum) pigment and protein content and cellular viability. Cult. Trop. 2001;(22):13-17.; Scafaro A.P., Haynes P.A., Atwell B.J. Physiological and molecular changes in Oryza meridionalis Ng. a heat tolerant spices of wild rice. J. Exp. Bot. 2010;(61):191-202. https://doi.org/10.1093/jxb/erp294.; Zhou R., Kjær K.H, Rosenqvist E., Yu X., Wu Z., Ottosen C.O. Physiological response to heat stress during seedling and anthesis stage in tomato genotypes differing in heat tolerance. J Agron. Crop Sci. 2017;(203):68–80. https://doi.org/10.1111/jac.12166; Hussain T., Ayyub C.M., Amjad M., Hussain M. Analysis of morpho- physiological changes occurring in chilli genotypes (Capsicum spp.) under high temperature conditions. Pak. J. Agri. Sci. 2021;58(1):43-50. DOI:10.21162/PAKJAS/21.7185.; Ghai N., Kaur J., Jindal S.K., Dhaliwal M.S., Pahwa K. Physiological and biochemical response to higher temperature stress in hot pepper (Capsicum annuum L.). J. Appl. Nat. Sci. 2016;8(3):1133 – 1137. doi:10.31018/jans.v8i3.930; Komayama K., Khatoon M., Takenaka D., Horie J., Yamashita A., Yoshioka M., Nakayama Y., Yoshida M., Ohira S., Morita N., Velitchkova M., Enami I., Yamamoto Y. Quality control of photosystem II: cleavage and aggregation of heat-damaged D1 protein in spinach thylakoids. Biochem. Biophys. Acta. 2007;(1767):838-46.; Camejo D., Jiménez A., Alarcón J.J., Torres W., Gómez J. M., Sevilla F. Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Funct. Plant Biol. 2006;(33):177–187.; Taiz L., Zeiger E., Moller I.M., Murphy A. Plant Physiology and Development. Sinauer Associates, Massachusetts. 2015. 761p.; Cornic G. Drought stress inhibits photosynthesis by decreased stomatal aperture not by affecting ATP synthesis. Trends Plant Sci. 2000;(5):187-88. https://doi.org/10.1016/51360-1385(00)01625-3; Todorov D., Karanov E., Smith A.R., Hall M.A. Chlorophyllase activity and chlorophyll content in wild and mutant plants of Arabidopsis thaliana. Biol. Plant. 2003;(46):125– 127. https://doi.org/10.1023/A:1024896418839.; Sharkey T.D., Zhang R. High temperature effects on electron and proton circuits of photosynthesis. J. Integr. Plant Biol. 2010;(52):712–722. https://doi.org/10.1111/j.1744-7909.2010.00975.x.; Vijayakumar A., Beena R. Impact of Temperature Difference on the Physicochemical Properties and Yield of Tomato: A Review. Chem. Sci. Rev. Lett. 2020;9(35):665-681. https://doi.org/10.1016/j.heliyon.2021.e05988; Oh S.Y., Koh S.C. Fruit development and quality of hot pepper (Capsicum annuum L.) under various temperature regimes. Hortic. Sci. Technol. 2019;37(3):313-321. https://doi.org/10.7235/HORT.20190032; Wahid A., Gelani S., Ashraf M., Foolad M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007;(61):199-223. https://doi:10.1016/j.envexpbot.2007.05.011; Zhou R., Yu X., Wen J., Jensen N.B., dos Santos T.M., Wu Z., Rosenqvist E., Ottosen C.O. Interactive effects of elevated CO2 concentration and combined heat and drought stress on tomato photosynthesis. BMC Plant Biol. 2020;(20):1–12. https://doi.org/10.1186/s12870-020-02457-6.; Jahan M.S., Wang Y., Shu S., Zhong M., Chen Z., Wu J., Sun J., Guo S. Exogenous salicylic acid increases the heat tolerance in Tomato (Solanum lycopersicum L) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species. Sci. Hortic. 2019;(247):421–429. https://doi.org/10.1016/j.scienta.2018.12.047; Li X., Ahammed G.J., Zhang Y.Q., Zhang G.Q., Sun Z.H., Zhou J., Zhou Y.H., Xia X.J., Yu J.Q., Shi K. Carbon dioxide enrichment alleviates heat stress by improving cellular redox homeostasis through an ABA-independent process in tomato plants. Plant Biol. 2014;(17):81–89. https://doi.org/10.1111/plb.12211; Camposa H., Trejob C., Valdiviab C.B.P., Navab R.G., Conde-Martínezb F.V., Cruz-Ortegac M.R. Stomatal and non-stomatal limitations of bell pepper (Capsicum annuum L.) plants under water stress and re-watering: Delayed restoration of photosynthesis during recovery. Environ. Exp. Bot. 2014;(98):56-64. https://doi.org/10.1016/j.envexpbot.2013.10.015; https://www.vegetables.su/jour/article/view/1849

  16. 16
    Academic Journal
  17. 17
    Conference

    المساهمون: Large Optics Fabrication and Testing Group, Wyant College of Optical Sciences, University of Arizona, Systems and Industrial Engineering, College of Engineering, University of Arizona, Lunar and Planetary Laboratory, College of Science, University of Arizona

    المصدر: Proceedings of SPIE - The International Society for Optical Engineering

    Relation: Luke Mayer, Byeongjoon Jeong, Trenton Brendel, Roberto Furfaro, Vishnu Reddy, Daewook Kim, "Scattering properties of black pigments: implications for detecting faint sources near the moon using ground-based telescopes," Proc. SPIE 12677, Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems IV, 126770B (4 October 2023); https://doi.org/10.1117/12.2673551; http://hdl.handle.net/10150/671513; Proceedings of SPIE - The International Society for Optical Engineering

  18. 18
    Conference

    المساهمون: College of Aerospace and Mechanical Engineering, University of Arizona, Department of Physics, University of Arizona, James C. Wyant College of Optical Sciences, University of Arizona, Department of Astronomy, Steward Observatory, University of Arizona, College of Computer Science, University of Arizona

    المصدر: Proceedings of SPIE - The International Society for Optical Engineering

    Relation: W. Ellis, D. Kim, J. Hyatt, C. Davila-Peralta, J. Berkson, R. Ball, B. Jeong, R. Pecha, N. Julicher, I. Pimienta, J. Voris, S. Kwon, C. Garard, D. Torres, "Radio telescope manufacturing with adaptive aluminum thermoforming and fringe projection metrology," Proc. SPIE 12677, Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems IV, 126770J (4 October 2023); https://doi.org/10.1117/12.2676306; http://hdl.handle.net/10150/671507; Proceedings of SPIE - The International Society for Optical Engineering

  19. 19
    Conference

    المؤلفون: Jeong, B., Choi, H., Ordones, S., Kim, D.

    المساهمون: Wyant College of Optical Sciences, University of Arizona, Large Binocular Telescope Observatory, University of Arizona, Department of Astronomy, Steward Observatory, University of Arizona

    المصدر: Proceedings of SPIE - The International Society for Optical Engineering

    Relation: Byeongjoon Jeong, Heejoo Choi, Sotero Ordones, Daewook Kim, "Optimizing deflectometry to suppress ghost signal noise," Proc. SPIE 12677, Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems IV, 1267709 (4 October 2023); https://doi.org/10.1117/12.2677686; http://hdl.handle.net/10150/671496; Proceedings of SPIE - The International Society for Optical Engineering

  20. 20
    Conference