يعرض 1 - 19 نتائج من 19 نتيجة بحث عن '"Itoga, Christy A"', وقت الاستعلام: 2.70s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal

    وصف الملف: application/pdf

    Relation: Ross, Shani E.; Lehmann Levin, Emily; Itoga, Christy A.; Schoen, Chelsea B.; Selmane, Romeissa; Aldridge, J. Wayne (2016). "Deep brain stimulation in the central nucleus of the amygdala decreases ‘wanting’ and ‘liking’ of food rewards." European Journal of Neuroscience 44(7): 2431-2445.; http://hdl.handle.net/2027.42/134151; European Journal of Neuroscience; Riley, C.A. & King, M.S. ( 2013 ) Differential effects of electrical stimulation of the central amygdala and lateral hypothalamus on fos‐immunoreactive neurons in the gustatory brainstem and taste reactivity behaviors in conscious rats. Chem. Senses, 38, 705 – 717.; Ranck, J.B. Jr ( 1975 ) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res., 98, 417 – 440.; Ricardo, J.A. & Koh, E.T. ( 1978 ) Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res., 153, 1 – 26.; Rizzone, M., Lanotte, M., Bergamasco, B., Tavella, A., Torre, E., Faccani, G., Melcarne, A. & Lopiano, L. ( 2001 ) Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters. J. Neurol. Neurosur. Ps., 71, 215 – 219.; Robinson, M.J., Warlow, S.M. & Berridge, K.C. ( 2014 ) Optogenetic excitation of central amygdala amplifies and narrows incentive motivation to pursue one reward above another. J. Neurosci., 34, 16567 – 16580.; Rosenkranz, J.A. & Grace, A.A. ( 1999 ) Modulation of basolateral amygdala neuronal firing and afferent drive by dopamine receptor activation in vivo. J. Neurosci., 19, 11027 – 11039.; Rouaud, T., Lardeux, S., Panayotis, N., Paleressompoulle, D., Cador, M. & Baunez, C. ( 2010 ) Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proc. Natl. Acad. Sci. USA, 107, 1196 – 1200.; Sah, P., Faber, E.S., Lopez De Armentia, M. & Power, J. ( 2003 ) The amygdaloid complex: anatomy and physiology. Physiol. Rev., 83, 803 – 834.; Sani, S., Jobe, K., Smith, A., Kordower, J.H. & Bakay, R.A.E. ( 2007 ) Deep brain stimulation for treatment of obesity in rats. J. Neurosurg., 107, 809 – 813.; Saper, C.B., Chou, T.C. & Elmquist, J.K. ( 2002 ) The need to feed: homeostatic and hedonic control of eating. Neuron, 36, 199 – 211.; Schwalb, J.M. & Hamani, C. ( 2008 ) The history and future of deep brain stimulation. Neurotherapeutics, 5, 3 – 13.; Seeley, R.J., Galaverna, O., Schulkin, J., Epstein, A.N. & Grill, H.J. ( 1993 ) Lesions of the central nucleus of the amygdala. II: effects on intraoral NaCl intake. Behav. Brain Res., 59, 19 – 25.; Spybrook, J., Bloom, H., Congdon, R., Hill, C., Martínez, A. & Raudenbush, S.W. ( 2011 ) Optimal design for longitudinal and multilevel research: Documentation for the “Optimal design” software version 3.0. 2015, 215.; Sternson, S.M. ( 2013 ) Hypothalamic survival circuits: blueprints for purposive behaviors. Neuron, 77, 810 – 824.; Swanson, L.W. & Petrovich, G.D. ( 1998 ) What is the amygdala? Trends Neurosci., 21, 323 – 331.; Tindell, A.J., Berridge, K.C. & Aldridge, J.W. ( 2004 ) Ventral pallidal representation of pavlovian cues and reward: population and rate codes. J. Neurosci., 24, 1058 – 1069.; Tindell, A.J., Smith, K.S., Pecina, S., Berridge, K.C. & Aldridge, J.W. ( 2006 ) Ventral pallidum firing codes hedonic reward: when a bad taste turns good. J. Neurophysiol., 96, 2399 – 2409.; Touzani, K., Taghzouti, K. & Velley, L. ( 1997 ) Increase of the aversive value of taste stimuli following ibotenic acid lesion of the central amygdaloid nucleus in the rat. Behav. Brain Res., 88, 133 – 142.; Tye, K.M., Prakash, R., Kim, S.Y., Fenno, L.E., Grosenick, L., Zarabi, H., Thompson, K.R., Gradinaru, V. et al. ( 2011 ) Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature, 471, 358 – 362.; Wagenaar, D.A. & Potter, S.M. ( 2002 ) Real‐time multi‐channel stimulus artifact suppression by local curve fitting. J. Neurosci. Meth., 120, 113 – 120.; Weaver, F.M., Follett, K., Stern, M., Hur, K., Harris, C., Marks, W.J. Jr, Rothlind, J., Sagher, O. et al. ( 2009 ) Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease A randomized controlled trial. JAMA‐J. Am. Med. Assoc., 301, 63 – 73.; Will, M., Franzblau, E. & Kelley, A. ( 2004 ) The amygdala is critical for opioid‐mediated binge eating of fat. NeuroReport, 15, 1857 – 1860.; Will, M.J., Pritchett, C.E., Parker, K.E., Sawani, A.M., Ma, H. & Lai, A.Y. ( 2009 ) Behavioral characterization of amygdala involvement in mediating intra‐accumbens opioid‐driven feeding behavior. Behav. Neurosci., 123, 781 – 793.; Wu, Y.R., Levy, R., Ashby, P., Tasker, R.R. & Dostrovsky, J.O. ( 2001 ) Does stimulation of the GPi control dyskinesia by activating inhibitory axons? Movement Disord., 16, 208 – 216.; Wurtz, R.H. & Olds, J. ( 1963 ) Amygdaloid stimulation and operant reinforcement in the rat. J. Comp. Physiol. Psych., 56, 941 – 949.; Ahn, S. & Phillips, A.G. ( 2002 ) Modulation by central and basolateral amygdalar nuclei of dopaminergic correlates of feeding to satiety in the rat nucleus accumbens and medial prefrontal cortex. J. Neurosci., 22, 10958 – 10965.; Arvanitogiannis, A. & Shizgal, P. ( 2008 ) The reinforcement mountain: allocation of behavior as a function of the rate and intensity of rewarding brain stimulation. Behav. Neurosci., 122, 1126 – 1138.; Bar‐Gad, I., Elias, S., Vaadia, E. & Bergman, H. ( 2004 ) Complex locking rather than complete cessation of neuronal activity in the globus pallidus of a 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐treated primate in response to pallidal microstimulation. J. Neurosci., 24, 7410 – 7419.; Baxter, M.G. & Murray, E.A. ( 2002 ) The amygdala and reward. Nat. Rev. Neurosci., 3, 563 – 573.; Berridge, K.C. ( 2000 ) Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neurosci. Biobehav. R., 24, 173 – 198.; Berridge, K.C. & Valenstein, E.S. ( 1991 ) What psychological process mediates feeding evoked by electrical stimulation of the lateral hypothalamus? Behav. Neurosci., 105, 3 – 14.; Betley, J.N., Xu, S., Cao, Z.F., Gong, R., Magnus, C.J., Yu, Y. & Sternson, S.M. ( 2015 ) Neurons for hunger and thirst transmit a negative‐valence teaching signal. Nature, 521, 180 – 185.; Cai, H., Haubensak, W., Anthony, T.E. & Anderson, D.J. ( 2014 ) Central amygdala PKC‐delta(+) neurons mediate the influence of multiple anorexigenic signals. Nat. Neurosci., 17, 1240 – 1248.; Carlson, J.D., Cleary, D.R., Cetas, J.S., Heinricher, M.M. & Burchiel, K.J. ( 2010 ) Deep brain stimulation does not silence neurons in subthalamic nucleus in Parkinson’s patients. J. Neurophysiol., 103, 962 – 967.; Chang, J.Y. ( 2004 ) Brain stimulation for neurological and psychiatric disorders, current status and future direction. J. Pharmacol. Exp. Ther., 309, 1 – 7.; Cleary, D.R., Raslan, A.M., Rubin, J.E., Bahgat, D., Viswanathan, A., Heinricher, M.M. & Burchiel, K.J. ( 2013 ) Deep brain stimulation entrains local neuronal firing in human globus pallidus internus. J. Neurophysiol., 109, 978 – 987.; Collins, D.R. & Paré, D. ( 1999 ) Reciprocal changes in the firing probability of lateral and central medial amygdala neurons. J. Neurosci., 19, 836 – 844.; DiFeliceantonio, A.G. & Berridge, K.C. ( 2012 ) Which cue to ‘want’? opioid stimulation of central amygdala makes goal‐trackers show stronger goal‐tracking, just as sign‐trackers show stronger sign‐tracking. Behav. Brain Res., 230, 399 – 408.; Doshi, P.K. ( 2011 ) Long‐term surgical and hardware‐related complications of deep brain stimulation. Stereot. Funct. Neuros., 89, 89 – 95.; Dostrovsky, J.O. & Lozano, A.M. ( 2002 ) Mechanisms of deep brain stimulation. Movement Disord., 17, S63 – S68.; Galaverna, O.G., Seeley, R.J., Berridge, K.C., Grill, H.J., Epstein, A.N. & Schulkin, J. ( 1993 ) Lesions of the central nucleus of the amygdala. I: effects on taste reactivity, taste aversion learning and sodium appetite. Behav. Brain Res., 59, 11 – 17.; Garcia, L., D’Alessandro, G., Bioulac, B. & Hammond, C. ( 2005a ) High‐frequency stimulation in Parkinson’s disease: more or less? Trends Neurosci., 28, 209 – 216.; Garcia, L., D’Alessandro, G., Fernagut, P.O., Bioulac, B. & Hammond, C. ( 2005b ) Impact of high‐frequency stimulation parameters on the pattern of discharge of subthalamic neurons. J. Neurophysiol., 94, 3662 – 3669.; Gradinaru, V., Mogri, M., Thompson, K.R., Henderson, J.M. & Deisseroth, K. ( 2009 ) Optical deconstruction of parkinsonian neural circuitry. Science, 324, 354 – 359.; Greenberg, B.D., Gabriels, L.A., Malone, D.A., Rezai, A.R., Friehs, G.M., Okun, M.S., Shapira, N.A., Foote, K.D. et al. ( 2010 ) Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive‐compulsive disorder: worldwide experience. Mol. Psychiatr., 15, 64 – 79.; Grill, H.J. & Norgren, R. ( 1978 ) Taste reactivity test.1. Mimetic responses to gustatory stimuli in neurologically normal rats. Brain Res., 143, 263 – 279.; Grill, W.M., Snyder, A.N. & Miocinovic, S. ( 2004 ) Deep brain stimulation creates an informational lesion of the stimulated nucleus. NeuroReport, 15, 1137 – 1140.; Gubellini, P., Salin, P., Kerkerian‐Le Goff, L. & Baunez, C. ( 2009 ) Deep brain stimulation in neurological diseases and experimental models: from molecule to complex behavior. Prog. Neurobiol., 89, 79 – 123.; Haber, S.N. & Brucker, J.L. ( 2009 ) Cognitive and limbic circuits that are affected by deep brain stimulation. Front Biosci., 14, 1823 – 1834.; Hajnal, A., Sandor, P., Jando, G., Vida, I., Czurko, A., Karadi, Z. & Lenard, L. ( 1992 ) Feeding disturbances and EEG activity changes after amygdaloid kainate lesions in the rat. Brain Res. Bull., 29, 909 – 916.; Halpern, C.H., Samadani, U., Litt, B., Jaggi, J.L. & Baltuch, G.H. ( 2008 ) Deep brain stimulation for epilepsy. Neurotherapeutics, 5, 59 – 67.; Hashimoto, T., Elder, C.M., Okun, M.S., Patrick, S.K. & Vitek, J.L. ( 2003 ) Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J. Neurosci., 23, 1916 – 1923.; Heldmann, M., Berding, G., Voges, J., Bogerts, B., Galazky, I., Muller, U., Baillot, G., Heinze, H.J. et al. ( 2012 ) Deep brain stimulation of nucleus accumbens region in alcoholism affects reward processing. PLoS One, 7, 1 – 7.; Howland, J.G., Taepavarapruk, P. & Phillips, A.G. ( 2002 ) Glutamate receptor‐dependent modulation of dopamine efflux in the nucleus accumbens by basolateral, but not central, nucleus of the amygdala in rats. J. Neurosci., 22, 1137 – 1145.; Johnson, M.D. & McIntyre, C.C. ( 2008 ) Quantifying the neural elements activated and inhibited by globus pallidus deep brain stimulation. J. Neurophysiol., 100, 2549 – 2563.; Kemble, E.D., Studelska, D.R. & Schmidt, M.K. ( 1979 ) Effects of central amygdaloid nucleus lesions on ingestion, taste reactivity, exploration and taste aversion. Physiol. Behav., 22, 789 – 793.; Kringelbach, M.L., Jenkinson, N., Owen, S.L. & Aziz, T.Z. ( 2007 ) Translational principles of deep brain stimulation. Nat. Rev. Neurosci., 8, 623 – 635.; Kuncel, A.M., Cooper, S.E., Wolgamuth, B.R. & Grill, W.M. ( 2007 ) Amplitude‐ and frequency‐dependent changes in neuronal regularity parallel changes in tremor with thalamic deep brain stimulation. IEEE T Neur. Sys. Reh., 15, 190 – 197.; Li, J., Yan, J., Chen, K., Lu, B., Wang, Q., Yan, W. & Zhao, X. ( 2012 ) Lesions of the central nucleus of the amygdala decrease taste threshold for sodium chloride in rats. Brain Res. Bull., 89, 8 – 15.; Liu, L.D., Prescott, I.A., Dostrovsky, J.O., Hodaie, M., Lozano, A.M. & Hutchison, W.D. ( 2012 ) Frequency‐dependent effects of electrical stimulation in the globus pallidus of dystonia patients. J. Neurophysiol., 108, 5 – 17.; Lozano, A.M., Mayberg, H.S., Giacobbe, P., Hamani, C., Craddock, R.C. & Kennedy, S.H. ( 2008 ) Subcallosal cingulate gyrus deep brain stimulation for treatment‐resistant depression. Biol. Psychiat., 64, 461 – 467.; Mahler, S.V. & Berridge, K.C. ( 2009 ) Which cue to “want?” central amygdala opioid activation enhances and focuses incentive salience on a prepotent reward cue. J. Neurosci., 29, 6500 – 6513.; Mahler, S.V. & Berridge, K.C. ( 2011 ) What and when to “want”? Amygdala‐based focusing of incentive salience upon sugar and sex. Psychopharmacology, 221, 407 – 426.; Maltete, D., Jodoin, N., Karachi, C., Houeto, J.L., Navarro, S., Cornu, P., Agid, Y. & Welter, M.L. ( 2007 ) Subthalamic stimulation and neuronal activity in the substantia nigra in Parkinson’s disease. J. Neurophysiol., 97, 4017 – 4022.; Maren, S. & Fanselow, M.S. ( 1996 ) The amygdala and fear conditioning: has the nut been cracked? Neuron, 16, 237 – 240.; Martina, M., Royer, S. & Pare, D. ( 1999 ) Physiological properties of central medial and central lateral amygdala neurons. J. Neurophysiol., 82, 1843 – 1854.; Mayberg, H., Lozano, A., Voon, V., McNeely, H., Seminowicz, D., Hamani, C., Schwalb, J. & Kennedy, S. ( 2005 ) Deep brain stimulation for treatment‐resistant depression. Neuron, 45, 651 – 660.; McCairn, K.W. & Turner, R.S. ( 2009 ) Deep brain stimulation of the globus pallidus internus in the parkinsonian primate: local entrainment and suppression of low‐frequency oscillations. J. Neurophysiol., 101, 1941 – 1960.; McDonald, A.J. & Augustine, J.R. ( 1993 ) Localization of GABA‐like immunoreactivity in the monkey amygdala. Neuroscience, 52, 281 – 294.; McIntyre, C.C., Grill, W.M., Sherman, D.L. & Thakor, N.V. ( 2004 ) Cellular effects of deep brain stimulation: model‐based analysis of activation and inhibition. J. Neurophysiol., 91, 1457 – 1469.; Melega, W.P., Lacan, G., Gorgulho, A.A., Behnke, E.J. & De Salles, A.A. ( 2012 ) Hypothalamic deep brain stimulation reduces weight gain in an obesity‐animal model. PLoS One, 7, 1 – 9.; Moro, E., Esselink, R., Xie, J., Hommel, M., Benabid, A. & Pollak, P. ( 2002 ) The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology, 59, 706 – 713.; Nowak, L.G. & Bullier, J. ( 1998 ) Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements. Exp. Brain Res., 118, 477 – 488.; Okun, M.S. ( 2012 ) Deep‐brain stimulation for Parkinson’s disease. New Engl. J. Med., 367, 1529 – 1538.; Paxinos, G. & Watson, C. ( 2007 ) The Rat Brain in Stereotaxic Coordinates. Elsevier Inc., Amsterdam, the Netherlands.; Pitkanen, A., Savander, V. & LeDoux, J. ( 1997 ) Organization of intra‐amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci., 20, 517 – 523.; Plonsey, R. & Barr, R. C. ( 2007 ) Bioelectricity A Quantitative Approach. Springer Science+Business Media, LLC, New York, NY, pp. 28 – 29.; Price, J.L. & Amaral, D.G. ( 1981 ) An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J. Neurosci., 1, 1242 – 1259.

  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Book
  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
    Academic Journal

    المؤلفون: Itoga, Christy A.1 itogac@gmail.com, Berridge, Kent C.2, Aldridge, J. Wayne2

    المصدر: Behavioural Brain Research. Mar2016, Vol. 300, p175-183. 9p.

  19. 19
    Dissertation/ Thesis

    المؤلفون: Itoga, Christy A.

    المساهمون: Aldridge, J. Wayne, Walters, Judith R., Shore, Susan, Poe, Gina, Berridge, Kent C.

    وصف الملف: application/pdf