-
1Academic Journal
المؤلفون: A. El-Tantawy, E. M. Abu Elgoud, S. E. A. Sharaf El-Deen
المصدر: BMC Chemistry, Vol 19, Iss 1, Pp 1-11 (2025)
مصطلحات موضوعية: Amberlite IRA-400 Cl−, Se(IV), Sorption, Isotherm and kinetics, Desorption and regeneration, Chemistry, QD1-999
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2661-801X
-
2Academic Journal
المؤلفون: Adewumi O. Dada, Adejumoke A. Inyinbor, Bukola T. Atunwa, Spandana Gonuguntla, Olugbenga S. Bello, Folahan A. Adekola, Ujjwal Pal
المصدر: Biotechnology Reports, Vol 44, Iss , Pp e00860- (2024)
مصطلحات موضوعية: Cationic dyes, Agro-residue carbon, Nanocomposites, Adsorption, Isotherm and kinetics and thermodynamics, Biotechnology, TP248.13-248.65
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: Timoth Mkilima, Yerkebulan Zharkenov, Aisulu Abduova, Nursulu Sarypbekova, Kamilya Kirgizbayeva, Iliyas Zhumadilov, Farida Kenzhekulova, Mukhtarov Abilkhas, Shyngys Zharassov
المصدر: Case Studies in Chemical and Environmental Engineering, Vol 9, Iss , Pp 100662- (2024)
مصطلحات موضوعية: Adsorption isotherm and kinetics, Pistachio shell, Wastewater treatment, Water quality index, Wheat straw, Environmental engineering, TA170-171, Chemical engineering, TP155-156
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: Sahar Saad Gabr, Mahmoud F. Mubarak, Mohamed Keshawy, Ibrahim El Tantawy El Sayed, Thanaa Abdel Moghny
المصدر: Applied Water Science, Vol 13, Iss 12, Pp 1-19 (2023)
مصطلحات موضوعية: Activated carbon thin film, Adsorption, Isotherm and kinetics, Phenolic pollutants, Thermodynamic, Water supply for domestic and industrial purposes, TD201-500
وصف الملف: electronic resource
-
5Academic Journal
المصدر: Hittite Journal of Science and Engineering, Vol 10, Iss 3, Pp 219-228 (2023)
مصطلحات موضوعية: petroleum, biosorption, heat-killed aspergillus ochraceus, biosorption isotherm and kinetics, Engineering (General). Civil engineering (General), TA1-2040
وصف الملف: electronic resource
-
6Academic Journal
المؤلفون: Georgin, Jordana, Pfingsten Franco, Dison Stracke, Dehmani, Younes, Nguyen-Tri, Phuong, El Messaoudi, Noureddine
مصطلحات موضوعية: Isotherm and kinetics, Mercury, Advanced oxidative processes, Adsorption, Molecular modeling, Remediation
وصف الملف: 25 páginas; application/pdf
Relation: Elsevier; Abbas, K., Znad, H., Awual, M.R., 2018. A ligand anchored conjugate adsorbent for effective mercury(II) detection and removal from aqueous media. Chem. Eng. J. 334, 432–443. https://doi.org/10.1016/j.cej.2017.10.054.; Abraham, A.M., Kumar, S.V., Alhassan, S.M., 2018. Porous sulphur copolymer for gasphase mercury removal and thermal insulation. Chem. Eng. J. 332, 1–7. https://doi. org/10.1016/j.cej.2017.09.069.; Adityosulindro, S., Barthe, L., Gonzalez-Labrada, ´ K., J´ auregui Haza, U.J., Delmas, H., Julcour, C., 2017. Sonolysis and sono-Fenton oxidation for removal of ibuprofen in (waste)water. Ultrason. Sonochem. 39, 889–896. https://doi.org/10.1016/j. ultsonch.2017.06.008.; Aguila, B., Sun, Q., Perman, J.A., Earl, L.D., Abney, C.W., Elzein, R., Schlaf, R., Ma, S., 2017. Efficient mercury capture using functionalized porous organic polymer. Adv. Mater. 29, 1–6. https://doi.org/10.1002/adma.201700665.; Ahmad, T., Manzar, M.S., Khan, S., Al-Sharafi, M.A., Georgin, J., Franco, D.S.P., Ullah, N., 2024. Enhanced adsorption of bisphenol-A from water through the application of isocyanurate based hyper crosslinked resin. J. Mol. Liq. 395, 123861 https://doi.org/10.1016/j.molliq.2023.123861.; Ahmadi, S., Rahdar, S., Igwegbe, C.A., Rahdar, A., Shafighi, N., Sadeghfar, F., 2019. Data on the removal of fluoride from aqueous solutions using synthesized P/γ-Fe 2 O 3 nanoparticles: a novel adsorbent. MethodsX 6, 98–106. https://doi.org/10.1016/j. mex.2018.12.009.; Ahmadi, S., Mohammadi, L., Rahdar, A., Rahdar, S., Dehghani, R., Igwegbe, C.A., Kyzas, G.Z., 2020. Acid dye removal from aqueous solution by using neodymium(III) oxide nanoadsorbents. Nanomaterials 10, 1–26. https://doi.org/10.3390/ nano10030556.; Ahmadi, S., Mesbah, M., Igwegbe, C.A., Ezeliora, C.D., Osagie, C., Khan, N.A., Dotto, G. L., Salari, M., Dehghani, M.H., 2021. Sono electro-chemical synthesis of LaFeO3nanoparticles for the removal of fluoride: optimization and modeling using RSM, ANN and GA tools. J. Environ. Chem. Eng. 9, 105320 https://doi.org/ 10.1016/j.jece.2021.105320.; Ahmadpour, A., Zabihi, M., Bastami, T.R., Tahmasbi, M., Ayati, A., 2016. Rapid removal of mercury ion (II) from aqueous solution by chemically activated eggplant hull adsorbent. J. Appl. Res. Water Wastewater 6, 236–240.; Al-Ghouti, M.A., Da’ana, D.A., 2020. Guidelines for the use and interpretation of adsorption isotherm models: a review. J. Hazard. Mater. 393, 122383 https://doi. org/10.1016/j.jhazmat.2020.122383.; Al-Ghouti, M.A., Da’ana, D., Abu-Dieyeh, M., Khraisheh, M., 2019. Adsorptive removal of mercury from water by adsorbents derived from date pits. Sci. Reports 91 (9), 1–15. https://doi.org/10.1038/s41598-019-51594-y, 2019.; Ali, H., Khan, E., Ilahi, I., 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 6730305 https://doi.org/10.1155/2019/6730305.; Ali, I., Kon’kova, T., Rysev, A., ALOthman, Z.A., Sillanp¨ a¨ a, M., Georgin, J., Mbianda, X. Y., 2023. Removal of dichromate-, molybdate-, and nitrate ions from wastewater using modified natural montmorillonite. J. Mol. Liq. 392 https://doi.org/10.1016/j. molliq.2023.123400.; Alimohammady, M., Jahangiri, M., Kiani, F., Tahermansouri, H., 2018. Design and evaluation of functionalized multi-walled carbon nanotubes by 3-aminopyrazole for the removal of Hg(II) and As(III) ions from aqueous solution. Res. Chem. Intermed. 44, 69–92. https://doi.org/10.1007/s11164-017-3091-4.; Aliprandini, P., Veiga, M.M., Marshall, B.G., Scarazzato, T., Espinosa, D.C.R., 2020. Investigation of mercury cyanide adsorption from synthetic wastewater aqueous solution on granular activated carbon. J. Water Process Eng. 34, 101154 https://doi. org/10.1016/j.jwpe.2020.101154; Ambaye, T.G., Vaccari, M., van Hullebusch, E.D., Amrane, A., Rtimi, S., 2021. Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int. J. Environ. Sci. Technol. 18, 3273–3294. https://doi.org/10.1007/s13762-020-03060-w.; An, D., Zhang, X., Cheng, X., Dong, Y., 2018. Performance of Mn-Fe-Ce/GO-x for Catalytic Oxidation of Hg 0 and Selective Catalytic Reduction of NO x in the Same Temperature Range. https://doi.org/10.3390/catal8090399; Ander, E.L., Johnson, C.C., Cave, M.R., Palumbo-Roe, B., Nathanail, C.P., Lark, R.M., 2013. Methodology for the determination of normal background concentrations of contaminants in English soil. Sci. Total Environ. 454–455, 604–618. https://doi.org/ 10.1016/j.scitotenv.2013.03.005.; Anirudhan, T.S., Shainy, F., 2015. Effective removal of mercury(II) ions from chlor-alkali industrial wastewater using 2-mercaptobenzamide modified itaconic acid-graftedmagnetite nanocellulose composite. J. Colloid Interface Sci. 456, 22–31. https://doi. org/10.1016/j.jcis.2015.05.052.; Arslan, D.S¸ ., Ertap, H., S¸ enol, Z.M., El Messaoudi, N., Mehmeti, V., 2024. Preparation of polyacrylamide titanium dioxide hybrid nanocomposite by direct polymerization and its applicability in removing crystal violet from aqueous solution. J. Polym. Environ. 32, 573–587. https://doi.org/10.1007/S10924-023-03004-8.; Asranudin, Setyo Purnomo, A., Holilah, Didik Prasetyoko, Messaoudi, N.E., Awinatul Rohmah, A., Hidayat, A.R.P., Subagyo, Riki, 2024. Adsorption and biodegradation of the azo dye methyl orange using Ralstonia pickettii immobilized in polyvinyl alcohol (PVA)–alginate–hectorite beads (BHec-RP). RSC Adv. 14, 18277–18290. https://doi. org/10.1039/D3RA08692E.; Awad, F.S., AbouZied, K.M., Abou El-Maaty, W.M., El-Wakil, A.M., Samy El-Shall, M., 2020. Effective removal of mercury(II) from aqueous solutions by chemically modified graphene oxide nanosheets. Arab. J. Chem. 13, 2659–2670. https://doi. org/10.1016/j.arabjc.2018.06.018.; Awual, M.R., 2017. Novel nanocomposite materials for efficient and selective mercury ions capturing from wastewater. Chem. Eng. J. 307, 456–465. https://doi.org/ 10.1016/j.cej.2016.08.108.; Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M.R., Sadeghi, M., 2021. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 12 https://doi.org/10.3389/FPHAR.2021.643972.; Bao, S., Li, K., Ning, P., Peng, J., Jin, X., Tang, L., 2017. Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silicacoated magnetic nano-adsorbents: behaviours and mechanisms. Appl. Surf. Sci. 393, 457–466. https://doi.org/10.1016/j.apsusc.2016.09.098.; Barkay, T., Miller, S.M., Summers, A.O., 2003. Bacterial Mercury Resistance From Atoms to Ecosystems, p. 27. https://doi.org/10.1016/S0168-6445(03)00046-9.; Bernhoft, R.A., 2012. Mercury toxicity and treatment: a review of the literature. J. Environ. Public Health 2012. https://doi.org/10.1155/2012/460508.; Blanco, Graziela Dias, Fern´ andez-Llamazares, A., ´ Blanco, Gabriela Dias, Baker, J., Tagliari, M.S.M., Hayata, M.A., Campos, M.L., Hanazaki, N., 2023. The impacts of mining on the food sovereignty and security of Indigenous Peoples and local communities: a global review. Sci. Total Environ. 855 https://doi.org/10.1016/j. scitotenv.2022.158803.; Boutsika, L.G., Karapanagioti, H.K., Manariotis, I.D., 2014. Aqueous mercury sorption by biochar from malt spent rootlets. Water Air Soil Pollut. 225 https://doi.org/ 10.1007/s11270-013-1805-9.; Buch, A.C., Brown, G.G., Correia, M.E.F., Lourençato, L.F., Silva-Filho, E.V., 2017. Ecotoxicology of mercury in tropical forest soils: impact on earthworms. Sci. Total Environ. 589, 222–231. https://doi.org/10.1016/j.scitotenv.2017.02.150.; Budinova, T., Petrov, N., Parra, J., Baloutzov, V., 2008. Use of an activated carbon from antibiotic waste for the removal of Hg(II) from aqueous solution. J. Environ. Manage. 88, 165–172. https://doi.org/10.1016/j.jenvman.2007.02.005.; Buthiyappan, A., Abdul Aziz, A.R., Wan Daud, W.M.A., 2016. Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents. Rev. Chem. Eng. 32, 1–47. https://doi.org/10.1515/revce-2015-0034.; Calle, I. De, Lavilla, I., Bartolom´e-alonso, H., Bendicho, C., 2019a. Solid-phase extraction of Hg (II) using cellulose filters modified with silver nanoparticles followed by pyrolysis and detection by a direct mercury analyzer. Spectrochim. Acta Part B 161, 105697. https://doi.org/10.1016/j.sab.2019.105697.; Calle, I. De, P´ aez-cabaleiro, J., Lavilla, I., Bendicho, C., 2019b. One-pot synthesis of a magnetic nanocomposite based on ultrasound-assisted co-precipitation for enrichment of Hg (II) prior to detection by a direct mercury analyzer. Talanta 199, 449–456. https://doi.org/10.1016/j.talanta.2019.02.085.; Cao, X., Harris, W., 2010. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour. Technol. 101, 5222–5228. https://doi.org/ 10.1016/j.biortech.2010.02.052.; Carvalho, V.H.V., Rodrigues, J.C.G., Vinagre, L.W.M.S., Pereira, E.E.B., Monte, N., Fernandes, M.R., Ribeiro-dos-Santos, A.M., Guerreiro, J.F., Ribeiro-dos-Santos, A., ˆ dos Santos, S.E.B., dos Santos, N.P.C., 2024. Genomic investigation on genes related to mercury metabolism in Amazonian indigenous populations. Sci. Total Environ. 923 https://doi.org/10.1016/j.scitotenv.2024.171232.; Castelletto, S., Boretti, A., 2021. Advantages, limitations, and future suggestions in studying graphene-based desalination membranes. RSC Adv. 11, 7981–8002. https://doi.org/10.1039/d1ra00278c.; Castrejon-Godínez, ´ M.L., Tovar-S´ anchez, E., Valencia-Cuevas, L., Rosas-Ramírez, M.E., Rodríguez, A., Mussali-Galante, P., 2021. Glyphosate pollution treatment and microbial degradation alternatives, a review. Microorganisms 9, 1–21. https://doi. org/10.3390/microorganisms9112322.; Chakraborty, R., Asthana, A., Singh, A.K., Jain, B., Susan, A.B.H., 2022. Adsorption of heavy metal ions by various low-cost adsorbents: a review. Int. J. Environ. Anal. Chem. 102, 342–379. https://doi.org/10.1080/03067319.2020.1722811.; Chen, Yang, Wu, L., Chen, Yanhua, Bi, N., Zheng, X., Qi, H., Qin, M., Liao, X., Zhang, H., Tian, Y., 2012. Determination of mercury(II) by surface-enhanced Raman scattering spectroscopy based on thiol-functionalized silver nanoparticles. Microchim. Acta 177, 341–348. https://doi.org/10.1007/s00604-012-0777-6.; Chen, C., Liu, H., Chen, T., Chen, D., Frost, R.L., 2015. An insight into the removal of Pb (II), Cu(II), Co(II), Cd(II), Zn(II), Ag(I), Hg(I), Cr(VI) by Na(I)-montmorillonite and Ca(II)-montmorillonite. Appl. Clay Sci. 118, 239–247. https://doi.org/10.1016/j. clay.2015.09.004.; Chen, C., Jia, W., Liu, S., Cao, Y., 2018. The enhancement of CuO modified V 2 O 5-WO 3/TiO 2 based SCR catalyst for Hg ◦ oxidation in simulated flue gas. Appl. Surf. Sci. 436, 1022–1029. https://doi.org/10.1016/j.apsusc.2017.12.123.; Chen, T., Yavuz, B.M., Delgado, A.G., Januszewski, B., Zuo, Y., Westerhoff, P., Krajmalnik-Brown, R., Rittmann, B.E., 2019. Multicycle ozonation+bioremediation for soils containing residual petroleum. Environ. Eng. Sci. 36, 1443–1451. https:// doi.org/10.1089/ees.2019.0195.; Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., Huo, S., Cheng, P., Peng, P., Zhang, R., Wang, L., Liu, H., Liu, Y., Ruan, R., 2020a. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review. J. Clean. Prod. 268, 121725 https://doi.org/10.1016/J.JCLEPRO.2020.121725.; Chen, Jianmin, Ye, Y., Ran, M., Li, Q., Ruan, Z., Jin, N., 2020b. Inhibition of tyrosinase by mercury chloride: spectroscopic and docking studies. Front. Pharmacol. 11, 1–10. https://doi.org/10.3389/fphar.2020.00081.; Chen, Jiamin, Zhu, W., Chang, X., Ding, D., Zhang, T., Zhou, C., Wu, H., Yang, H., Sun, L., 2020c. DFT insights to mercury species mechanism on pure and Mn doped Fe3O4(1 1 1) surfaces. Appl. Surf. Sci. 514, 145876 https://doi.org/10.1016/j. apsusc.2020.145876.; Cheng, J., Li, Y., Li, L., Lu, P., Wang, Q., He, C., 2019. Thiol-/thioether-functionalized porous organic polymers for simultaneous removal of mercury(ii) ion and aromatic pollutants in water. New J. Chem. 43, 7683–7693. https://doi.org/10.1039/ c9nj01111k.; Chiarle, S., Ratto, M., Rovatti, M., 2000. Mercury removal from water by ion exchange resins adsorption. Water Res. 34, 2971–2978. https://doi.org/10.1016/S0043-1354 (00)00044-0.; Chortek, E., 2017. Remediation strategies for mercury contaminated Lakes and reservoirs within the state of California. Master’s Proj. Capstones. 691, 1–58.; Chowdhury, P., Elkamel, A., Ray, A.K., 2014. CHAPTER 2. Photocatalytic processes for the removal of toxic metal ions. In: Heavy Met. Water, pp. 25–43. https://doi.org/ 10.1039/9781782620174-00025.; Cigeroglu, Z., El Messaoudi, N., Senol, Z.M., Baskan, G., Georgin, J., Gubernat, S., 2024. Clay-based nanomaterials and their adsorptive removal efficiency for dyes and antibiotics: a review. Mater. Today Sustain. 26 https://doi.org/10.1016/j. mtsust.2024.100735.; Cincotti, A., Mameli, A., Locci, A.M., Orrù, R., Cao, G., 2006. Heavy metals uptake by Sardinian natural zeolites: experiment and modeling. Ind. Eng. Chem. Res. 45, 1074–1084. https://doi.org/10.1021/ie050375z.; Cuellar, C.M.T.C., 2018. Performance of A Fixed Bed Reactor for Mercury Removal by Biosorption Using Agricultural Residue Performance of a Fixed Bed Reactor for Mercury Removal by Biosorption Using Agricultural, p. 96.; Cuerda-Correa, E.M., Alexandre-Franco, M.F., Fern´ andez-Gonzalez, ´ C., 2020. Advanced oxidation processes for the removal of antibiotics from water. An overview. Water (Switzerland) 12. https://doi.org/10.3390/w12010102.; Cui, S., Liao, Y., Gao, Z., Fu, D., 2021. Dielectric barrier discharge coupling catalytic oxidation for efficient conversion of Hg 0 from flue gas. Fuel 287, 119521. https:// doi.org/10.1016/j.fuel.2020.119521.; Das, S., Samanta, A., Kole, K., Gangopadhyay, G., Jana, S., 2020. MnO2 flowery nanocomposites for efficient and fast removal of mercury(ii) from aqueous solution: a facile strategy and mechanistic interpretation. Dalt. Trans. 49, 6790–6800. https:// doi.org/10.1039/d0dt01054e.; De Gisi, S., Lofrano, G., Grassi, M., Notarnicola, M., 2016. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain. Mater. Technol. 9, 10–40. https://doi.org/10.1016/J.SUSMAT.2016.06.002.; Dehghan, A., Dehghani, M.H., Nabizadeh, R., Ramezanian, N., Alimohammadi, M., Najafpoor, A.A., 2018. Adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride from aqueous solutions using 3D hierarchical mesoporous BiOI: synthesis and characterization, process optimization, adsorption and degradation modeling. Chem. Eng. Res. Des. 129, 217–230. https://doi.org/ 10.1016/j.cherd.2017.11.003.; Dehghani, M.H., Najafpoor, A.A., Azam, K., 2010. Using sonochemical reactor for degradation of LAS from effluent of wastewater treatment plant. Desalination 250, 82–86. https://doi.org/10.1016/j.desal.2009.05.011.; Dehmani, Y., Franco, D.S.P., Georgin, J., Lamhasni, T., Brahmi, Y., Oukhrib, R., Mustapha, B., Moussout, H., Ouallal, H., Sadik, A., 2023. Comparison of Phenol Adsorption Property and Mechanism Onto Different Moroccan Clays.; Dehmani, Y., Ba Mohammed, B., Oukhrib, R., Dehbi, A., Lamhasni, T., Brahmi, Y., ElKordy, A., Franco, D.S.P., Georgin, J., Lima, E.C., Alrashdi, A.A., Tijani, N., Abouarnadasse, S., 2024. Adsorption of various inorganic and organic pollutants by natural and synthetic zeolites: a critical review. Arab. J. Chem. https://doi.org/ 10.1016/j.arabjc.2023.105474.; Deng, R., Huang, D., Wan, J., Xue, W., Wen, X., Liu, X., Chen, S., Lei, L., Zhang, Q., 2020. Recent advances of biochar materials for typical potentially toxic elements management in aquatic environments: a review. J. Clean. Prod. 255, 119523 https:// doi.org/10.1016/j.jclepro.2019.119523.; Dhaouadi, F., Sellaoui, L., Taamalli, S., Louis, F., El, A., Badawi, M., Georgin, J., Franco, D.S.P., Silva, L.F.O., 2022. Enhanced Adsorption of Ketoprofen and 2, 4- Dichlorophenoxyactic Acid on Physalis peruviana Fruit Residue Functionalized With H 2 SO 4: Adsorption Properties and Statistical Physics Modeling Adri a 445. https:// doi.org/10.1016/j.cej.2022.136773.; Ding, L., Luo, X., Shao, P., Yang, J., Sun, D., 2018. Thiol-functionalized Zr-based metalorganic framework for capture of Hg(II) through a proton exchange reaction. ACS Sustain. Chem. Eng. 6, 8494–8502. https://doi.org/10.1021/ acssuschemeng.8b00768.; Dong, Z., Qin, Z., 2018. Experimental study of pathogenic microorganisms inactivated by Venturi-type hydrodynamic cavitation with different throat lengths. J. Civ. Eng. Forum 4, 209. https://doi.org/10.22146/jcef.38756.; Dormant, L.M., Adamson, A.W., 1980. Symmetrical adsorption thermodynamics. The noninert adsorbent. J. Colloid Interface Sci. 75, 23–33. https://doi.org/10.1016/ 0021-9797(80)90345-8.; Drott, A., 2009. Chemical Speciation and Transformation of Mercury in Contaminated Sediments.; Drumm, F.C., Franco, D.S.P., Georgin, J., Grassi, P., Jahn, S.L., Dotto, G.L., 2021. Macrofungal (Agaricus bisporus) wastes as an adsorbent in the removal of the acid red 97 and crystal violet dyes from ideal colored effluents. Environ. Sci. Pollut. Res. 28, 405–415. https://doi.org/10.1007/s11356-020-10521-9.; Du, J., Zhang, B., Li, J., Lai, B., 2020. Decontamination of heavy metal complexes by advanced oxidation processes: a review. Chinese Chem. Lett. 31, 2575–2582. https://doi.org/10.1016/j.cclet.2020.07.050.; Duan, Y., Han, D.S., Batchelor, B., Abdel-Wahab, A., 2016. Synthesis, characterization, and application of pyrite for removal of mercury. Colloids Surf. A Physicochem. Eng. Asp. 490, 326–335. https://doi.org/10.1016/j.colsurfa.2015.11.057.; Dujardin, M.C., Caz´e, C., Vroman, I., 2000. Ion-exchange resins bearing thiol groups to remove mercury. Part 1: synthesis and use of polymers prepared from thioester supported resin. React. Funct. Polym. 43, 123–132. https://doi.org/10.1016/S1381- 5148(99)00011-5.; Ebadian, M.A., Allen, M., Cai, Y., 2001. Final Report Mercury Contaminated Material Decontamination Methods: Investigation and Assessment. World Wide Web Internet Web Inf. Syst., p. 61; Eggleston, D.W., Nylander, M., 1987. Correlation of dental amalgam with mercury in brain tissue. J. Prosthet. Dent. 58, 704–707. https://doi.org/10.1016/0022-3913 (87)90424-0.; El Kaim Billah, R., Zaghloul, A., Ahsaine, H.A., BaQais, A., Khadoudi, I., El Messaoudi, N., Agunaou, M., Soufiane, A., Jugade, R., 2022. Methyl orange adsorption studies on glutaraldehyde cross-linking chitosan/fluorapatite-based natural phosphate composite. Int. J. Environ. Anal. Chem. https://doi.org/10.1080/ 03067319.2022.2130690.; El Khomri, M., El Messaoudi, N., Dbik, A., Bentahar, S., Fernine, Y., Bouich, A., Lacherai, A., Jada, A., 2022a. Modification of low-cost adsorbent prepared from agricultural solid waste for the adsorption and desorption of cationic dye. Emerg. Mater. 5, 1679–1688. https://doi.org/10.1007/S42247-022-00390-Y.; El Khomri, M., El Messaoudi, N., Dbik, A., Bentahar, S., Lacherai, A., Faska, N., Jada, A., 2022b. Regeneration of argan nutshell and almond shell using HNO3 for their reusability to remove cationic dye from aqueous solution. Chem. Eng. Commun. 209, 1304–1315. https://doi.org/10.1080/00986445.2021.1963960.; El Messaoudi, N., El Khomri, M., Dbik, A., Bentahar, S., Lacherai, A., 2016. Selective and competitive removal of dyes from binary and ternary systems in aqueous solutions by pretreated jujube shell (Zizyphus lotus). J. Dispers. Sci. Technol. 38, 1168–1174. https://doi.org/10.1080/01932691.2016.1228070.; El Messaoudi, N., Dbik, A., El Khomri, M., Sabour, A., Bentahar, S., Lacherai, A., 2017. Date stones of Phoenix dactylifera and jujube shells of Ziziphus lotus as potential biosorbents for anionic dye removal. Int. J. Phytoremediat. 19, 1047–1052. https:// doi.org/10.1080/15226514.2017.1319331.; El Messaoudi, N., El Khomri, M., Chegini, Z.G., Bouich, A., Dbik, A., Bentahar, S., Labjar, N., Iqbal, M., Jada, A., Lacherai, A., 2022a. Dye removal from aqueous solution using nanocomposite synthesized from oxalic acid-modified agricultural solid waste and ZnFe2O4 nanoparticles. Nanotechnol. Environ. Eng. 7, 797–811. https://doi.org/10.1007/S41204-021-00173-6.; El Messaoudi, N., El Khomri, M., Chegini, Z.G., Dbik, A., Bentahar, S., Iqbal, M., Jada, A., Lacherai, A., 2022b. Desorption of crystal violet from alkali-treated agricultural material waste: an experimental study, kinetic, equilibrium and thermodynamic modeling. Pigm. Resin Technol. 51, 309–319. https://doi.org/10.1108/prt-02-2021- 0019.; El Messaoudi, N., Cigero ˘ glu, ˘ Z., S¸ enol, Z.M., Bouich, A., Kazan-Kaya, E.S., Noureen, L., Am´erico-Pinheiro, J.H.P., 2024a. Green synthesis of nanoparticles for remediation organic pollutants in wastewater by adsorption. Adv. Chem. Pollut. Environ. Manag. Prot. 10, 305–345. https://doi.org/10.1016/BS.APMP.2023.06.016.; El Messaoudi, N., Cigero ˘ glu, ˘ Z., S¸ enol, Z.M., Kazan-Kaya, E.S., Fernine, Y., Gubernat, S., Lopicic, Z., 2024b. Green synthesis of CuFe2O4 nanoparticles from bioresource extracts and their applications in different areas: a review. Biomass Convers. Biorefinery 2024, 1–22. https://doi.org/10.1007/S13399-023-05264-9.; El Messaoudi, N., Franco, D.S.P., Gubernat, S., Georgin, J., S¸ enol, Z.M., Cigero ˘ glu, ˘ Z., Allouss, D., El Hajam, M., 2024c. Advances and future perspectives of water defluoridation by adsorption technology: a review. Environ. Res. 252, 118857 https://doi.org/10.1016/J.ENVRES.2024.118857.; El Messaoudi, N., Miyah, Y., S¸ enol, Z.M., Cigero ˘ glu, ˘ Z., Kazan-Kaya, E.S., Gubernat, S., Georgin, J., Franco, D.S.P., 2024d. Comprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocomposites. NanoStruct. Nano-Obj. 38, 101220 https://doi.org/10.1016/J.NANOSO.2024.101220.; El Mouden, A., El Guerraf, A., El Messaoudi, N., Haounati, R., Ait El Fakir, A., Lacherai, A., 2022. Date stone functionalized with 3-aminopropyltriethoxysilane as a potential biosorbent for heavy metal ions removal from aqueous solution. Chem. Africa 5, 745–759. https://doi.org/10.1007/S42250-022-00350-3.; Ellwanger, J.H., Chies, J.A.B., 2023. Brazil’s heavy metal pollution harms humans and ecosystems. Sci. One Heal. 2, 100019 https://doi.org/10.1016/j.soh.2023.100019.; El-Shafey, E.I., 2010. Removal of Zn(II) and Hg(II) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk. J. Hazard. Mater. 175, 319–327. https://doi.org/10.1016/j.jhazmat.2009.10.006.; Erhayem, M., Al-Tohami, F., Mohamed, R., Ahmida, K., 2015. Isotherm, kinetic and thermodynamic studies for the sorption of mercury (II) onto activated carbon from Rosmarinus officinalis leaves. Am. J. Anal. Chem. 06, 1–10. https://doi.org/ 10.4236/ajac.2015.61001.; Esdaile, L.J., Chalker, J.M., 2018. The mercury problem in artisanal and small-scale gold mining. Chem. A Eur. J. 24, 6905–6916. https://doi.org/10.1002/chem.201704840.; Faheem, Bao, J., Zheng, H., Tufail, H., Irshad, S., Du, J., 2018. Adsorption-assisted decontamination of Hg(ii) from aqueous solution by multi-functionalized corncobderived biochar. RSC Adv. 8, 38425–38435. https://doi.org/10.1039/c8ra06622a.; Fakhri, A., 2015. Investigation of mercury (II) adsorption from aqueous solution onto copper oxide nanoparticles: optimization using response surface methodology. Process. Saf. Environ. Prot. 93, 1–8. https://doi.org/10.1016/j.psep.2014.06.003.; Fan, L., Ling, L., Wang, B., Zhang, R., 2016. The adsorption of mercury species and catalytic oxidation of Hg0 on the metal-loaded activated carbon. Appl. Catal. Gen. 520, 13–23. https://doi.org/10.1016/j.apcata.2016.03.036.; Feng, Q., Lin, Q., Gong, F., Sugita, S., Shoya, M., 2004. Adsorption of lead and mercury by rice husk ash. J. Colloid Interface Sci. 278, 1–8. https://doi.org/10.1016/j. jcis.2004.05.030.; Feng, Y., Yang, L., Liu, J., Logan, B.E., 2016. Electrochemical technologies for wastewater treatment and resource reclamation. Environ. Sci.: Water Res. Technol. 2, 800–831. https://doi.org/10.1039/c5ew00289c.; Franco, Dison S.P., Georgin, J., Lima, E.C., Silva, L.F.O., 2022a. Journal of water process engineering advances made in removing paraquat herbicide by adsorption technology: a review. J. Water Process Eng. 49, 102988 https://doi.org/10.1016/j. jwpe.2022.102988.; Franco, Dison S.P., Georgin, J., Netto, M.S., da Boit Martinello, K., Silva, L.F.O., 2022b. Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): analytical interpretation via statistical physical model. J. Mol. Liq. 356, 119021 https://doi.org/10.1016/j.molliq.2022.119021.; Franco, Dison S.P., Georgin, J., Ramos, C.G., Netto, M.S., Ojeda, N.J., Vega, N.A., Meili, L., Lima, E.C., Naushad, M., 2023. The production of activated biochar using Calophyllum inophyllum waste biomass and use as an adsorbent for removal of diuron from the water in batch and fixed bed column. Environ. Sci. Pollut. Res. 52498–52513. https://doi.org/10.1007/s11356-023-26048-8.; Franco, Dison Stracke Pfingsten, Georgin, J., Ramos, C.G., Eljaiek, S.M., Badillo, D.R., de Oliveira, A.H.P., Allasia, D., Meili, L., 2023a. The synthesis and evaluation of porous carbon material from Corozo fruit (Bactris guineensis) for efficient propranolol hydrochloride adsorption. Molecules 28. https://doi.org/10.3390/ molecules28135232.; Franco, Dison Stracke Pfingsten, Georgin, J., Ramos, C.G., Netto, M.S., Lobo, B., Jimenez, G., Lima, E.C., Sher, F., 2023b. Production of adsorbent for removal of propranolol hydrochloride: use of residues from Bactris guineensis fruit palm with economically exploitable potential from the Colombian Caribbean. J. Mol. Liq. 380, 121677 https://doi.org/10.1016/j.molliq.2023.121677.; Freundlich, H.M.F., 1906. Over the adsorption in solution. J. Phys. Chem. 57, 358–471.; Fu, X., Feng, X., Sommar, J., Wang, S., 2012. A review of studies on atmospheric mercury in China. Sci. Total Environ. 421–422, 73–81. https://doi.org/10.1016/j. scitotenv.2011.09.089.; Gajdosechova, Z., Boskamp, M.S., Lopez-linares, F., Feldmann, J., Krupp, E.M., 2015. Hg Speciation in Petroleum Hydrocarbons With Emphasis on the Reactivity of Hg Particles. https://doi.org/10.1021/acs.energyfuels.5b02080.; Gan, S., Kiat, H., 2012. Current status and prospects of Fenton oxidation for the decontamination of persistent organic pollutants (POPs) in soils. Chem. Eng. J. 213, 295–317. https://doi.org/10.1016/j.cej.2012.10.005.; Gao, Y., Li, Z., Hao, Y., 2017. Effect of M - Doped (M = Cr, Fe, Co, and Nb) V 2 O 5/TiO 2 (001) on Mercury Oxidation: The Insights From DFT Calculation 2. https://doi.org/ 10.1021/acs.jpcc.7b08151.; Gao, L., Li, C., Li, S., Zhang, W., Du, X., Huang, L., Zhu, Y., 2019. Superior performance and resistance to SO 2 and H 2 O over CoO x-modified MnO x/biomass activated carbons for simultaneous Hg 0 and NO removal. Chem. Eng. J. 371, 781–795. https://doi.org/10.1016/j.cej.2019.04.104; Garrido-Cardenas, J.A., Esteban-García, B., Agüera, A., S´ anchez-P´erez, J.A., ManzanoAgugliaro, F., 2020. Wastewater treatment by advanced oxidation process and their worldwide research trends. Int. J. Environ. Res. Public Health 17. https://doi.org/ 10.3390/ijerph17010170.; Geng, X., Liu, X., Ding, X., Zhou, Q., Huang, T., Duan, Y., 2022. Mechanochemical bromination of unburned carbon in fly ash and its mercury removal mechanism: DFT study. J. Hazard. Mater. 423, 127198 https://doi.org/10.1016/j. jhazmat.2021.127198.; Georgin, J., Franco, D.S.P., da Boit Martinello, K., Lima, E.C., Silva, L.F.O., Dison, S.P.F., da Boit Martinello, K., Lima, E.C., Silva Oliveira, L.F., Georgin, J., Franco, D.S.P., da Boit Martinello, K., Lima, E.C., Silva, L.F.O., 2022a. A review of the toxicology presence and removal of ketoprofen through adsorption technology. J. Environ. Chem. Eng. 10, 107798 https://doi.org/10.1016/j.jece.2022.107798.; Georgin, J., Franco, D.S.P., Netto, M.S., Gama, B.M.V., Fernandes, D.P., Sepúlveda, P., Silva, L.F.O., Meili, L., 2022b. Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis. Colloids Surf. A Physicochem. Eng. Asp. 654, 129900 https://doi.org/10.1016/j.colsurfa.2022.129900.; Georgin, J., Franco, D.S.P.P., Netto, M.S., Manzar, M.S., Zubair, M., Meili, L., Piccilli, D. G.A.A., Silva, L.F.O.O., 2022c. Adsorption of the first-line Covid treatment analgesic onto activated carbon from residual pods of Erythrina Speciosa. Environ. Manag. 2019 https://doi.org/10.1007/s00267-022-01716-6.; Georgin, J., Franco, D.S.P., Meili, L., Dehmani, Y., dos Reis, G.S., Lima, E.C., 2023a. Main advances and future prospects in the remediation of the antibiotic amoxicillin with a focus on adsorption technology: a critical review. J. Water Process Eng. https://doi. org/10.1016/j.jwpe.2023.104407.; Georgin, J., Franco, D.S.P., Ramos, C.G., Piccilli, D.G.A., Lima, E.C., Sher, F., Stracke, D., Franco, P., Sher, F., 2023b. A review of the antibiotic ofloxacin: current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology. Chem. Eng. Res. Des. 193, 99–120. https://doi.org/10.1016/ j.cherd.2023.03.025.; Georgin, J., Franco, D.S.P., Manzar, M.S., Meili, L., El Messaoudi, N., 2024a. A critical and comprehensive review of the current status of 17β-estradiol hormone remediation through adsorption technology. Environ. Sci. Pollut. Res. 3117 (31), 24679–24712. https://doi.org/10.1007/S11356-024-32876-Z, 2024.; Georgin, J., Franco, D.S.P., Meili, L., Bonilla-Petriciolet, A., Kurniawan, T.A., Imanova, G., Demir, E., Ali, I., 2024b. Environmental remediation of the norfloxacin in water by adsorption: advances, current status and prospects. Adv. Colloid Interface Sci. 324 https://doi.org/10.1016/j.cis.2024.103096.; Ghauch, A., Tuqan, A.M., Kibbi, N., 2015. Naproxen abatement by thermally activated persulfate in aqueous systems. Chem. Eng. J. 279, 861–873. https://doi.org/ 10.1016/j.cej.2015.05.067.; Ghodbane, I., Hamdaoui, O., 2008. Removal of mercury(II) from aqueous media using eucalyptus bark: kinetic and equilibrium studies. J. Hazard. Mater. 160, 301–309. https://doi.org/10.1016/j.jhazmat.2008.02.116.; Gier, S., Johns, W.D., 2000. Heavy metal-adsorption on micas and clay minerals studied by X-ray photoelectron spectroscopy. Appl. Clay Sci. 16, 289–299. https://doi.org/ 10.1016/S0169-1317(00)00004-1.; Giraldo, S., Robles, I., Ramirez, A., Florez, ´ E., Acelas, N., 2020. Mercury removal from wastewater using agroindustrial waste adsorbents. SN Appl. Sci. 2, 1–17. https://doi. org/10.1007/s42452-020-2736-x; Goel, J., Kadirvelu, K., Rajagopal, C., Garg, V.K., 2005. Investigation of adsorption of lead, mercury and nickel from aqueous solutions onto carbon aerogel. J. Chem. Technol. Biotechnol. 80, 469–476. https://doi.org/10.1002/jctb.1212.; Gokkus ¨ ¸, O., ¨ Yildiz, Y.S¸ ., 2014. Investigation of the effect of process parameters on the coagulation-flocculation treatment of textile wastewater using the Taguchi experimental method. Fresen. Environ. Bull. 23, 463–470.; Grassi, P., Georgin, J., Franco, D.S.P., Sa, ´ ´I.M.G.L., Lins, P.V.S., Foletto, E.L., Jahn, S.L., Meili, L., Lins, P.V.S., Foletto, E.L., Jahn, S.L., Meili, L., Rangabhashiyam, S., 2023. Removal of dyes from water using Citrullus lanatus seed powder in continuous and discontinuous systems. Int. J. Phytoremediation 0, 1–16. https://doi.org/10.1080/ 15226514.2023.2225615.; Gu, D., Guo, C., Lv, J., Hou, S., Zhang, Yan, Feng, Q., Zhang, Yuan, Xu, J., 2019a. Removal of methamphetamine by UV-activated persulfate: kinetics and mechanisms. J. Photochem. Photobiol. A Chem. 379, 32–38. https://doi.org/10.1016/j. jphotochem.2019.05.009.; Gu, L., Zheng, T., Xu, Z., Song, Y., Li, H., Xia, S., Shen, L., 2019b. A novel bifunctional fl uorescent and colorimetric probe for detection of mercury and fl uoride ions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 207, 88–95. https://doi.org/ 10.1016/j.saa.2018.08.060.; Guo, Y., Deng, J., Zhu, J., Zhou, X., Bai, R., 2016. Removal of mercury(II) and methylene blue from a wastewater environment with magnetic graphene oxide: adsorption kinetics, isotherms and mechanism. RSC Adv. 6, 82523–82536. https://doi.org/ 10.1039/c6ra14651a.; Guo, Z., Kang, Y., Liang, S., Zhang, J., 2020. Detection of Hg(II) in adsorption experiment by a lateral flow biosensor based on streptavidin-biotinylated DNA probes modified gold nanoparticles and smartphone reader. Environ. Pollut. 266, 115389 https://doi. org/10.1016/j.envpol.2020.115389.; Hameed, B.H., 2007. Equilibrium and kinetics studies of 2,4,6-trichlorophenol adsorption onto activated clay. Colloids Surf. A Physicochem. Eng. Asp. 307, 45–52. https://doi.org/10.1016/j.colsurfa.2007.05.002.; Hasan, A., Mustafa, N., Nanakali, Q., Salihi, A., Rasti, B., Ziyad, S., Falahati, M., 2020. Talanta Nanozyme-based sensing platforms for detection of toxic mercury ions: an alternative approach to conventional methods. Talanta 215, 120939. https://doi. org/10.1016/j.talanta.2020.120939.; He, F., Gao, J., Pierce, E., Strong, P.J., Wang, H., Liang, L., 2015. In situ remediation technologies for mercury-contaminated soil. Environ. Sci. Pollut. Res. 22, 8124–8147. https://doi.org/10.1007/s11356-015-4316-y.; Henriques, B., Rocha, L.S., Lopes, C.B., Figueira, P., Monteiro, R.J.R., Duarte, A.C., Pardal, M.A., Pereira, E., 2015. Study on bioaccumulation and biosorption of mercury by living marine macroalgae: prospecting for a new remediation biotechnology applied to saline waters. Chem. Eng. J. 281, 759–770. https://doi. org/10.1016/j.cej.2015.07.013.; Hikmat, K., Aziz, H., Omer, K.M., 2019. Lowering the Detection Limit Towards Nanomolar Mercury Ion Detection Via Surface Modification of N-doped Carbon Quantum Dots, pp. 8677–8683. https://doi.org/10.1039/c9nj01333d.; Hikmat, K., Aziz, H., Mustafa, F.S., Omer, K.M., Shafiq, I., 2023. Recent advances in water falling film reactor designs for the removal of organic pollutants by advanced oxidation processes: a review. Water Resour. Ind. 30, 100227 https://doi.org/ 10.1016/j.wri.2023.100227.; Hikmat, K., Aziz, H., Fatah, N.M., 2024. Advancements in Application of Modified Biochar as a Green and Low-cost Adsorbent for Wastewater Remediation From Organic Dyes.; Hill, T.L., 1952. Theory of physical adsorption. Adv. Catal. 4, 211–258. https://doi.org/ 10.1016/S0360-0564(08)60615-X.; Ho, Y.S., 2006. Review of second-order models for adsorption systems. J. Hazard. Mater. 136, 681–689. https://doi.org/10.1016/j.jhazmat.2005.12.043.; Houston, M.C., 2011. Role of mercury toxicity in hypertension, cardiovascular disease, and stroke. J. Clin. Hypertens. 13, 621–627. https://doi.org/10.1111/j.1751- 7176.2011.00489.x.; Hua, K., Xu, X., Luo, Z., Fang, D., Bao, R., Yi, J., 2019. Effective removal of mercury ions in aqueous solutions: a review. Curr. Nanosci. 16, 363–375. https://doi.org/ 10.2174/1573413715666190112110659.; Huang, S., Ma, C., Liao, Y., Min, C., Du, P., Jiang, Y., 2016. Removal of mercury(II) from aqueous solutions by adsorption on poly(1-amino-5-chloroanthraquinone) nanofibrils: equilibrium, kinetics, and mechanism studies. J. Nanomater. 2016 https://doi.org/10.1155/2016/7245829.; Huang, Y., Gong, Y., Tang, J., Xia, S., 2019a. Effective removal of inorganic mercury and methylmercury from aqueous solution using novel thiol-functionalized graphene oxide/Fe-Mn composite. J. Hazard. Mater. 366, 130–139. https://doi.org/10.1016/j. jhazmat.2018.11.074.; Huang, Y., Xia, S., Lyu, J., Tang, J., 2019b. Highly efficient removal of aqueous Hg 2+ and CH 3 Hg + by selective modification of biochar with 3- mercaptopropyltrimethoxysilane. Chem. Eng. J. 360, 1646–1655. https://doi.org/ 10.1016/j.cej.2018.10.231.; Ighalo, J.O., Ajala, O.J., Umenweke, G., Ogunniyi, S., Adeyanju, C.A., Igwegbe, C.A., Adeniyi, A.G., 2020. Mitigation of clofibric acid pollution by adsorption: a review of recent developments. J. Environ. Chem. Eng. 8, 104264 https://doi.org/10.1016/j. jece.2020.104264.; Igwegbe, C.A., Mohmmadi, L., Ahmadi, S., Rahdar, A., Khadkhodaiy, D., Dehghani, R., Rahdar, S., 2019. Modeling of adsorption of methylene blue dye on Ho-CaWO4 nanoparticles using response surface methodology (RSM) and artificial neural network (ANN) techniques. MethodsX 6, 1779–1797. https://doi.org/10.1016/j. mex.2019.07.016.; Inbaraj, B.S., Wang, J.S., Lu, J.F., Siao, F.Y., Chen, B.H., 2009. Adsorption of toxic mercury(II) by an extracellular biopolymer poly(γ-glutamic acid). Bioresour. Technol. 100, 200–207. https://doi.org/10.1016/j.biortech.2008.05.014.; Ioan, I., Wilson, S., Lundanes, E., Neculai, A., 2007. Comparison of Fenton and sonoFenton bisphenol A degradation. J. Hazard. Mater. 142, 559–563. https://doi.org/ 10.1016/j.jhazmat.2006.08.015.; Iqbal, K., Asmat, M., 2012. Uses and effects of mercury in medicine and dentistry. J. Ayub Med. Coll. Abbottabad 24, 204–207.; Jagadeesan, G., Pillai, S.S., 2007. Hepatoprotective effects of taurine against mercury induced toxicity in rats. J. Environ. Biol. 28, 753–756.; Jeon, C., 2005. Mercury ion removal using a packed-bed column with granular aminated chitosan. J. Microbiol. Biotechnol.; Ji, Y., Ferronato, C., Salvador, A., Yang, X., Chovelon, J.M., 2014. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics. Sci. Total Environ. 472, 800–808. https://doi.org/10.1016/j.scitotenv.2013.11.008.; Ji, W., Shen, Z., Fan, M., Su, P., Tang, Q., Zou, C., 2016. Adsorption mechanism of elemental mercury (Hg0) on the surface of MnCl2 (110) studied by Density Functional Theory. Chem. Eng. J. 283, 58–64. https://doi.org/10.1016/j. cej.2015.06.033.; Jia, X., O’Connor, D., Hou, D., Jin, Y., Li, G., Zheng, C., Ok, Y.S., Tsang, D.C.W., Luo, J., 2019. Groundwater depletion and contamination: spatial distribution of groundwater resources sustainability in China. Sci. Total Environ. 672, 551–562. https://doi.org/10.1016/j.scitotenv.2019.03.457.; Johari, K., Saman, N., Song, S.T., Chin, C.S., Kong, H., Mat, H., 2016. Adsorption enhancement of elemental mercury by various surface modified coconut husk as ecofriendly low-cost adsorbents. Int. Biodeterior. Biodegrad. 109, 45–52. https://doi. org/10.1016/j.ibiod.2016.01.004.; Jusoh, A., Hartini, W.J.H., Ali, N., Endut, A., 2011. Study on the removal of pesticide in agricultural run off by granular activated carbon. Bioresour. Technol. 102, 5312–5318. https://doi.org/10.1016/j.biortech.2010.12.074.; Kabir, K.M.M., Jampaiah, D., Esmaielzadeh, A., Mullett, M., Tardio, J., Sabri, Y.M., Bhargava, S.K., 2019. Cold vapor integrated quartz crystal microbalance (CV-QCM) based detection of mercury ions with gold nanostructures. Sens. Actuators B 290, 453–458. https://doi.org/10.1016/j.snb.2019.04.022.; Kadirvelu, K., Kavipriya, M., Karthika, C., Vennilamani, N., Pattabhi, S., 2004. Mercury (II) adsorption by activated carbon made from sago waste. Carbon N. Y. 42, 745–752. https://doi.org/10.1016/j.carbon.2003.12.089.; Kandjani, A.E., Sabri, Y.M., Mohammad-Taheri, M., Bansal, V., Bhargava, S.K., 2015. Detect, remove and reuse: a new paradigm in sensing and removal of Hg (II) from wastewater via SERS-active ZnO/Ag nanoarrays. Environ. Sci. Technol. 49, 1578–1584. https://doi.org/10.1021/es503527e.; Karmakar, M., Mondal, H., Mahapatra, M., Chattopadhyay, P.K., Chatterjee, S., Singha, N.R., 2019. Pectin-grafted terpolymer superadsorbent via N–H activated strategic protrusion of monomer for removals of Cd(II), Hg(II), and Pb(II). Carbohydr. Polym. 206, 778–791. https://doi.org/10.1016/j.carbpol.2018.11.032; Kenawy, I.M.M., Abou El-Reash, Y.G., Hassanien, M.M., Alnagar, N.R., Mortada, W.I., 2018. Use of microwave irradiation for modification of mesoporous silica nanoparticles by thioglycolic acid for removal of cadmium and mercury. Microporous Mesoporous Mater. 258, 217–227. https://doi.org/10.1016/j. micromeso.2017.09.021.; Khaloo, S.S., Matin, A.H., Sharifi, S., Fadaeinia, M., Kazempour, N., Mirzadeh, S., 2012. Equilibrium, kinetic and thermodynamic studies of mercury adsorption on almond shell. Water Sci. Technol. 65, 1341–1349. https://doi.org/10.2166/wst.2012.767.; Khazaei, M., Nasseri, S., Ganjali, M.R., Khoobi, M., Nabizadeh, R., Gholibegloo, E., Nazmara, S., 2018. Selective removal of mercury(II) from water using a 2,2-dithiodisalicylic acid-functionalized graphene oxide nanocomposite: kinetic, thermodynamic, and reusability studies. J. Mol. Liq. 265, 189–198. https://doi.org/ 10.1016/j.molliq.2018.05.048.; Khoramzadeh, E., Nasernejad, B., Halladj, R., 2013. Mercury biosorption from aqueous solutions by sugarcane bagasse. J. Taiwan Inst. Chem. Eng. 44, 266–269. https://doi. org/10.1016/j.jtice.2012.09.004.; Kim, K.H., Brown, R.J.C., Kwon, E., Kim, I.S., Sohn, J.R., 2016. Atmospheric mercury at an urban station in Korea across three decades. Atmos. Environ. 131, 124–132. https://doi.org/10.1016/j.atmosenv.2016.01.051.; Koe, W.S., Lee, J.W., Chong, W.C., 2019. An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Colloid Interface Sci. J.; Kurtulbas¸, E., Cigero ˘ glu, ˘ Z., S¸ ahin, S., El Messaoudi, N., Mehmeti, V., 2024. Monte Carlo, molecular dynamic, and experimental studies of the removal of malachite green using g-C3N4/ZnO/chitosan nanocomposite in the presence of a deep eutectic solvent. Int. J. Biol. Macromol. 274, 133378 https://doi.org/10.1016/J. IJBIOMAC.2024.133378.; Kyzas, G.Z., Kostoglou, M., 2015. Swelling-adsorption interactions during mercury and nickel ions removal by chitosan derivatives. Sep. Purif. Technol. 149, 92–102. https://doi.org/10.1016/j.seppur.2015.05.024.; Langmuir, I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403. https://doi.org/10.1021/ JA02242A004.; Lee, H., Kim, Y., Sim, C.S., Ham, J.O., Kim, N.S., Lee, B.K., 2014. Associations between blood mercury levels and subclinical changes in liver enzymes among South Korean general adults: analysis of 2008–2012 Korean national health and nutrition examination survey data. Environ. Res. 130, 14–19. https://doi.org/10.1016/j. envres.2014.01.005.; Li, S.X., Feng-Ying, Z., Yang, H., Jian-Cong, N., 2011. Thorough removal of inorganic and organic mercury from aqueous solutions by adsorption on Lemna minor powder. J. Hazard. Mater. 186, 423–429. https://doi.org/10.1016/j.jhazmat.2010.11.009.; Li, X., Liu, Z., Kim, J., Lee, J.Y., 2013a. Heterogeneous catalytic reaction of elemental mercury vapor over cupric chloride for mercury emissions control. Appl. Catal. Environ. 132–133, 401–407. https://doi.org/10.1016/j.apcatb.2012.11.031.; Li, Z., Wu, L., Liu, H., Lan, H., Qu, J., 2013b. Improvement of aqueous mercury adsorption on activated coke by thiol-functionalization. Chem. Eng. J. 228, 925–934. https://doi.org/10.1016/j.cej.2013.05.063.; Li, Y., Ma, C., Zhu, C., Huang, R., Zheng, C., 2016. Historical anthropogenic contributions to mercury accumulation recorded by a peat core from Dajiuhu montane mire, central China. Environ. Pollut. 216, 332–339. https://doi.org/10.1016/j. envpol.2016.05.083.; Li, S., Porcel, E., Remita, H., Marco, S., R´efr´egiers, M., Dutertre, M., Confalonieri, F., Lacombe, S., 2017. Platinum nanoparticles: an exquisite tool to overcome radioresistance. Cancer Nanotechnol. 8 https://doi.org/10.1186/s12645-017-0028- y.; Li, J., He, Q., Wu, L., Sun, J., Zheng, F., Li, L., Liu, W., 2020a. Ultrasensitive Speciation Analysis of Mercury in Waters by Headspace Solid-phase Microextraction Coupled With Gas Chromatography-triple Quadrupole Mass Spectrometry, 153, pp. 1–6. https://doi.org/10.1016/j.microc.2019.104459.; Li, H., Liu, S., Yang, J., Liu, Y., Hu, Y., Feng, S., Yang, Z., Zhao, J., Qu, W., 2020b. Role of SO2 and H2O in the mercury adsorption on ceria surface: a DFT study. Fuel 260, 116289. https://doi.org/10.1016/j.fuel.2019.116289; Li, G., Wu, Q., Wang, S., Li, J., You, X., Shao, S., Wen, M., Xu, L., Tang, Y., Wang, F., Wang, Y., Liu, K., 2020c. Oxidation via Adjusting the Basicity and Acidity Sites Using a CuO Doping Method, p. 2. https://doi.org/10.1021/acs.est.9b04465.; Li, G., Shao, S., Wang, S., You, X., Li, J., Wu, Q., Xu, L., Wen, M., Wang, Y., Liu, K., 2021. Flame synthesized nanoscale catalyst (CuCeWTi) with excellent Hg 0 oxidation activity and hydrothermal resistance. J. Hazard. Mater. 408, 124427 https://doi. org/10.1016/j.jhazmat.2020.124427.; Lima, E.C., Hosseini-Bandegharaei, A., Moreno-Pirajan, ´ J.C., Anastopoulos, I., 2019. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J. Mol. Liq. 273, 425–434. https://doi.org/10.1016/j.molliq.2018.10.048.; Lin, G., Wang, C., Li, X., Xi, Y., Wang, W., Zhang, L., Chang, J., 2020. Synthesis of coordination polymer by 2,2′-dithiodipropionic acid and selective removal of Hg(ii)/ Pb(ii) in wastewater. J. Taiwan Inst. Chem. Eng. 113, 315–324. https://doi.org/ 10.1016/j.jtice.2020.08.037.; Ling, Y., Tan, S., Wang, D., Wu, J., Luo, F., Liu, Q., Zhang, Y. an, Wang, F., Zhang, Z., Cao, Y., 2021. An experimental and DFT study on enhanced elemental mercury removal performance via cerium chloride modified carbon aerogel: a synergistic effect between chemical adsorption and thermal catalysis. Chem. Eng. J. 425, 127344 https://doi.org/10.1016/j.cej.2020.127344.; Liu, X., Gao, Z., 2019. Applied Surface Science based bimetallic catalyst ((Fe, Co)@ NGN): a DFT study. Appl. Surf. Sci. 496, 143686 https://doi.org/10.1016/j. apsusc.2019.143686.; Liu, M., Hou, L.A., Xi, B., Zhao, Y., Xia, X., 2013. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash. Appl. Surf. Sci. 273, 706–716. https://doi.org/10.1016/j. apsusc.2013.02.116.; Liu, T., Xue, L., Guo, X., Zheng, C.G., 2014. DFT study of mercury adsorption on α-Fe2O3 surface: role of oxygen. Fuel 115, 179–185. https://doi.org/10.1016/j. fuel.2013.07.021.; Liu, Y., Wang, Y., Wang, Q., Pan, J., Zhang, Y., Zhou, J., Zhang, J., 2015a. A study on removal of elemental mercury in flue gas using Fenton solution. J. Hazard. Mater. 292, 164–172. https://doi.org/10.1016/j.jhazmat.2015.03.027.; Liu, L., Zhu, B., Wang, G.X., 2015b. Azoxystrobin-induced excessive reactive oxygen species (ROS) production and inhibition of photosynthesis in the unicellular green algae Chlorella vulgaris. Environ. Sci. Pollut. Res. 22, 7766–7775. https://doi.org/ 10.1007/s11356-015-4121-7.; Liu, Ziyang, Yang, W., Xu, W., Liu, Y., 2018a. Removal of elemental mercury by bio-chars derived from seaweed impregnated with potassium iodine. Chem. Eng. J. 339, 468–478. https://doi.org/10.1016/J.CEJ.2018.01.148.; Liu, Zhong, Zhang, Y., Wang, B., Cheng, H., Cheng, X., Huang, Z., 2018b. DFT study on Al-doped defective graphene towards adsorption of elemental mercury. Appl. Surf. Sci. 427, 547–553. https://doi.org/10.1016/j.apsusc.2017.07.293.; Liu, X., Gao, Z., Huang, H., Yan, G., Huang, T., Chen, C., 2020. Simultaneous catalytic oxidation of nitric oxide and elemental mercury by single-atom Pd/g-C 3 N 4 catalyst: a DFT study. Mol. Catal. 488, 110901 https://doi.org/10.1016/j. mcat.2020.110901.; Liu, H., Li, J., Xiang, K., He, S., Shen, F., 2021. DFT and experimental studies on the mechanism of mercury adsorption on O2-/NO-Codoped porous carbon. ACS Omega 6, 12343–12350. https://doi.org/10.1021/acsomega.1c01391.; Lutze, H.V., Bakkour, R., Kerlin, N., von Sonntag, C., Schmidt, T.C., 2014. Formation of bromate in sulfate radical based oxidation: mechanistic aspects and suppression bydissolved organic matter. Water Res. 53, 370–377. https://doi.org/10.1016/j. watres.2014.01.001; Lutze, H.V., Kerlin, N., Schmidt, T.C., 2015. Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate. Water Res. 72, 349–360. https://doi. org/10.1016/j.watres.2014.10.006.; M. Nahiun, K., Sarker, B., N. Keya, K., I. MNahir, F., Shahida, S., A. Khan, R., 2021. A review on the methods of industrial waste water treatment. Guigoz. Sci. Rev. 20–31 https://doi.org/10.32861/sr.73.20.31.; Ma, Y., Wang, J., Gu, W., Zhang, X., Xu, H., Huang, W., Guo, Y., Wang, S., 2022. New insights into elemental mercury removal from flue gas by a MoS2 heterogeneous system. Chem. Eng. J. 433, 134590 https://doi.org/10.1016/j.cej.2022.134590.; Mahamuni, N.N., Adewuyi, Y.G., 2010. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason. Sonochem. 17, 990–1003. https://doi.org/10.1016/j. ultsonch.2009.09.005.; Maia, L.F.O., Hott, R.C., Ladeira, P.C.C., Batista, B.L., Andrade, T.G., Santos, M.S., Faria, M.C.S., Oliveira, L.C.A., Monteiro, D.S., Pereira, M.C., Rodrigues, J.L., 2019. Simple synthesis and characterization of L-Cystine functionalized Δ-FeOOH for highly efficient Hg(II) removal from contamined water and mining waste. Chemosphere 215, 422–431. https://doi.org/10.1016/j.chemosphere.2018.10.072.; Matlock, M.M., Howerton, B.S., Atwood, D.A., 2002. Chemical precipitation of heavy metals from acid mine drainage. Water Res. 36, 4757–4764. https://doi.org/ 10.1016/S0043-1354(02)00149-5.; Mbarki, F., Othmani, A., Kesraoui, A., Seffen, M., 2021. Coupling alternating current and biosorption for the removal of hexavalent chromium. Chem. Eng. Technol. 44, 339–348. https://doi.org/10.1002/ceat.202000398.; Miklos, D.B., Remy, C., Jekel, M., Linden, K.G., Drewes, J.E., Hübner, U., 2018. Evaluation of advanced oxidation processes for water and wastewater treatment – a critical review. Water Res. 139, 118–131. https://doi.org/10.1016/j. watres.2018.03.042.; Miranda-andrades, J.R., Khan, S., Pedrozo-pen˜ afiel, M.J., Cassia, K. De, Alexandre, B., Maciel, R.M., Escalfoni, R., Luiza, M., Tristao, ˜ B., Aucelio, R.Q., 2019. Combination of ultrasonic extraction in a surfactant-rich medium and distillation for mercury speciation in offshore petroleum produced waters by gas chromatography cold vapor atomic fluorescence spectrometry. Spectrochim. Acta Part B 158, 105641. https:// doi.org/10.1016/j.sab.2019.105641.; Mishra, S., Tripathi, R.M., Bhalke, S., Shukla, V.K., Puranik, V.D., 2005. Determination of methylmercury and mercury(II) in a marine ecosystem using solid-phase microextraction gas chromatography-mass spectrometry. Anal. Chim. Acta 551, 192–198. https://doi.org/10.1016/j.aca.2005.07.026.; Mistar, E.M., Hasmita, I., Alfatah, T., Muslim, A., Supardan, M.D., 2019. Adsorption of mercury(II) using activated carbon produced from bambusa vulgaris var. Striata in a fixed-bed column. Sains Malaysiana 48, 719–725. https://doi.org/10.17576/jsm2019-4804-03.; Miyah, Y., El Messaoudi, N., Benjelloun, M., Acikbas, Y., S¸ enol, Z.M., Cigero ˘ glu, ˘ Z., Lopez-Maldonado, E.A., 2024. Advanced applications of hydroxyapatite nanocomposite materials for heavy metals and organic pollutants removal by adsorption and photocatalytic degradation: a review. Chemosphere 358, 142236. https://doi.org/10.1016/J.CHEMOSPHERE.2024.142236.; Mondal, D.K., Nandi, B.K., Purkait, M.K., 2013. Removal of mercury (II) from aqueous solution using bamboo leaf powder: equilibrium, thermodynamic and kinetic studies. J. Environ. Chem. Eng. 1, 891–898. https://doi.org/10.1016/j. jece.2013.07.034.; Mondal, Sujan, Chatterjee, S., Mondal, Saptarsi, Bhaumik, A., 2019. Thioetherfunctionalized covalent triazine nanospheres: a robust adsorbent for mercury removal. ACS Sustain. Chem. Eng. 7, 7353–7361. https://doi.org/10.1021/ acssuschemeng.9b00567.; Monteiro, D.A., Rantin, F.T., Kalinin, A.L., 2010. Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinxa, ˜ Brycon amazonicus (Spix and Agassiz, 1829). Ecotoxicology 19, 105–123. https://doi.org/10.1007/s10646-009-0395-1.; Moreira, F.C., Boaventura, R.A.R., Brillas, E., Vilar, V.J.P., 2017. Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl. Catal. Environ. 202, 217–261. https://doi.org/10.1016/j. apcatb.2016.08.037.; Mouele, E.S.M., Tijani, J.O., Fatoba, O.O., Petrik, L.F., 2015. Degradation of organic pollutants and microorganisms from wastewater using different dielectric barrier discharge configurations—a critical review. Environ. Sci. Pollut. Res. 22, 18345–18362. https://doi.org/10.1007/s11356-015-5386-6.; Moussout, H., Dehmani, Y., Franco, D.S.P., Georgin, J., 2023. Towards an in-depth experimental and theoretical understanding of the cadmium uptake mechanism on a synthesized chitin biopolymer. J. Mol. Liq. 383, 122106 https://doi.org/10.1016/j. molliq.2023.122106.; Mukherjee, A., Zimmerman, A.R., Harris, W., 2011. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163, 247–255. https://doi.org/ 10.1016/j.geoderma.2011.04.021.; Muliwa, A.M., Onyango, M.S., Maity, A., Ochieng, A., 2017. Batch equilibrium and kinetics of mercury removal from aqueous solutions using polythiophene/graphene oxide nanocomposite. Water Sci. Technol. 75, 2841–2851. https://doi.org/10.2166/ wst.2017.165.; Naeemullah, Tuzen, M., Sarı, A., Turkekul, I., 2020. Influential bio-removal of mercury using Lactarius acerrimus macrofungus as novel low-cost biosorbent from aqueous solution: isotherm modeling, kinetic and thermodynamic investigations. Mater. Chem. Phys. 249, 123168 https://doi.org/10.1016/j.matchemphys.2020.123168.; Namasivayam, C., Kadirvelu, K., 1999. Uptake of mercury (II) from wastewater by activated carbon from an unwanted agricultural solid by-product: Coirpith. Carbon N. Y. 37, 79–84. https://doi.org/10.1016/S0008-6223(98)00189-4.; Namasivayam, C., Periasamy, K., 1993. Bicarbonate-treated peanut hull carbon for mercury (II) removal from aqueous solution. Water Res. 27, 1663–1668. https://doi. org/10.1016/0043-1354(93)90130-A.; Narayanan, I., Kumar, P.S., Franco, D.S.P., Georgin, J., Meili, L., 2023. Insight into the biosorptive removal mechanisms of hexavalent chromium using the red macroalgae Gelidium sp. Biomass Convers. Biorefinery. https://doi.org/10.1007/s13399-023- 04390-8.; Natasha, Shahid, M., Khalid, S., Bibi, I., Bundschuh, J., Khan Niazi, N., Dumat, C., 2020. A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: ecotoxicology and health risk assessment. Sci. Total Environ. 711, 134749 https://doi.org/10.1016/j.scitotenv.2019.134749.; Nidheesh, P.V., Gokkus ¨ ¸, O., ¨ 2023. Aerated iron electrocoagulation process as an emerging treatment method for natural water and wastewater. Sep. Sci. Technol. 58, 2041–2063. https://doi.org/10.1080/01496395.2023.2227913.; Noyma, N.P., de Magalhaes, ˜ L., Furtado, L.L., Mucci, M., van Oosterhout, F., Huszar, V.L. M., Marinho, M.M., Lürling, M., 2016. Controlling cyanobacterial blooms through effective flocculation and sedimentation with combined use of flocculants and phosphorus adsorbing natural soil and modified clay. Water Res. 97, 26–38. https:// doi.org/10.1016/j.watres.2015.11.057.; Ojedokun, A.T., Bello, O.S., 2016. Sequestering heavy metals from wastewater using cow dung. Water Resour. Ind. 13, 7–13. https://doi.org/10.1016/j.wri.2016.02.002.; Osagie, C., Othmani, A., Ghosh, S., Malloum, A., Kashitarash Esfahani, Z., Ahmadi, S., 2021. Dyes adsorption from aqueous media through the nanotechnology: a review. J. Mater. Res. Technol. 14, 2195–2218. https://doi.org/10.1016/j. jmrt.2021.07.085.; Othmani, A., Kesraoui, A., Seffen, M., 2017. The alternating and direct current effect on the elimination of cationic and anionic dye from aqueous solutions by electrocoagulation and coagulation flocculation. Euro-Mediterranean J. Environ. Integr. 2, 1–12. https://doi.org/10.1007/s41207-017-0016-y.; Othmani, A., Kesraoui, A., Akrout, H., Elaissaoui, I., Seffen, M., 2020. Coupling anodic oxidation, biosorption and alternating current as alternative for wastewater purification. Chemosphere 249, 126480. https://doi.org/10.1016/j. chemosphere.2020.126480.; Oturan, M.A., Aaron, J.J., 2014. Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit. Rev. Environ. Sci. Technol. 44, 2577–2641. https://doi.org/10.1080/10643389.2013.829765.; Pal, P.B., Pal, S., Das, J., Sil, P.C., 2012. Modulation of mercury-induced mitochondriadependent apoptosis by glycine in hepatocytes. Amino Acids 42, 1669–1683. https://doi.org/10.1007/s00726-011-0869-3.; Patel, H., 2019. Fixed-bed column adsorption study: a comprehensive review. Appl Water Sci 9, 1–17. https://doi.org/10.1007/s13201-019-0927-7.; Peng, R., Chen, G., Zhou, F., Man, R., Huang, J., 2019. Catalyst-free synthesis of triazinebased porous organic polymers for Hg2+ adsorptive removal from aqueous solution. Chem. Eng. J. 371, 260–266. https://doi.org/10.1016/j.cej.2019.04.063; Phares, A.J., Wunderlich, F.J., 2012. Effect of adsorbate-adsorbate interactions of low temperature surface adsorption patterns. Int. J. Mod. Phys. B 15, 3323–3330. https://doi.org/10.1142/S0217979201007701.; Piai, L., Blokland, M., van der Wal, A., Langenhoff, A., 2020. Biodegradation and adsorption of micropollutants by biological activated carbon from a drinking water production plant. J. Hazard. Mater. 388 https://doi.org/10.1016/j. jhazmat.2020.122028.; Pipi, A.R.F., De Andrade, A.R., Brillas, E., Sir´es, I., 2014. Total removal of alachlor from water by electrochemical processes. Sep. Purif. Technol. 132, 674–683. https://doi. org/10.1016/j.seppur.2014.06.022.; Plazinski, W., Rudzinski, W., Plazinska, A., 2009. Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Adv. Colloid Interface Sci. 152, 2–13. https://doi.org/10.1016/j.cis.2009.07.009.; Przyjazny, A., Boczkaj, G., 2018. Wastewater treatment by means of advanced oxidation processes based on cavitation – a review, 338, 599–627. https://doi.org/10.1016/j. cej.2018.01.049.; Qasem, N.A.A., Mohammed, R.H., Lawal, D.U., 2021. Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water 4. https://doi. org/10.1038/s41545-021-00127-0.; Qin, H., Zhang, H., He, P., Wang, X., Wu, J., Jiang, X., 2022. Mechanistic studies of carbocycles on elemental mercury adsorption on carbonaceous surface. Fuel 309, 122101. https://doi.org/10.1016/j.fuel.2021.122101.; Qu, Z., Fang, L., Chen, D., Xu, H., Yan, N., 2017. Effective and regenerable Ag/graphene adsorbent for Hg(II) removal from aqueous solution. Fuel 203, 128–134. https://doi. org/10.1016/j.fuel.2017.04.105.; Rabie, A.M., Abd El-Salam, H.M., Betiha, M.A., El-Maghrabi, H.H., Aman, D., 2019. Mercury removal from aqueous solution via functionalized mesoporous silica nanoparticles with the amine compound. Egypt. J. Pet. 28, 289–296. https://doi. org/10.1016/j.ejpe.2019.07.003.; Rahim Pouran, S., Abdul Aziz, A.R., Wan Daud, W.M.A., 2015. Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. J. Ind. Eng. Chem. 21, 53–69. https://doi.org/10.1016/j.jiec.2014.05.005; Rajab, M., Heim, C., Letzel, T., Drewes, J.E., Helmreich, B., 2015. Electrochemical disinfection using boron-doped diamond electrode - the synergetic effects of in situ ozone and free chlorine generation. Chemosphere 121, 47–53. https://doi.org/ 10.1016/j.chemosphere.2014.10.075; Ranc, B., Faure, P., Croze, V., Simonnot, M.O., 2016. Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): a review. J. Hazard. Mater. 312, 280–297. https://doi.org/10.1016/j. jhazmat.2016.03.068.; Rashtbari, Y., Sher, F., Afshin, S., Hamzezadeh Bahrami, A., Ahmadi, S., Azhar, O., Rastegar, A., Ghosh, S., Poureshgh, Y., 2022. Green synthesis of zero-valent iron nanoparticles and loading effect on activated carbon for furfural adsorption. Chemosphere 287, 132114. https://doi.org/10.1016/j.chemosphere.2021.132114.; Reddy, G.K., He, J., Thiel, S.W., Pinto, N.G., Smirniotis, P.G., 2015. Sulfur-tolerant MnCe-Ti sorbents for elemental mercury removal from flue gas: mechanistic investigation by XPS. J. Phys. Chem. C 119, 8634–8644. https://doi.org/10.1021/ jp512185s.; Reddy, T.V., Chauhan, S., Chakraborty, S., 2017. Adsorption isotherm and kinetics analysis of hexavalent chromium and mercury on mustard oil cake. Environ. Eng. Res. 22, 95–107. https://doi.org/10.4491/eer.2016.094.; Rengaraj, S., Yeon, K.H., Moon, S.H., 2001. Removal of chromium from water and wastewater by ion exchange resins. J. Hazard. Mater. 87, 273–287. https://doi.org/ 10.1016/S0304-3894(01)00291-6.; Rizwan, M., Ali, S., Qayyum, M.F., Ibrahim, M., Zia-ur-Rehman, M., Abbas, T., Ok, Y.S., 2016. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ. Sci. Pollut. Res. 23, 2230–2248. https://doi.org/ 10.1007/s11356-015-5697-7.; Rocha, L.S., Almeida, A., ˆ Nunes, C., Henriques, B., Coimbra, M.A., Lopes, C.B., Silva, C. M., Duarte, A.C., Pereira, E., 2016. Simple and effective chitosan based films for the removal of Hg from waters: equilibrium, kinetic and ionic competition. Chem. Eng. J. 300, 217–229. https://doi.org/10.1016/j.cej.2016.04.054.; Rodrigues, N.R., Nunes, M.E.M., Silva, D.G.C., Zemolin, A.P.P., Meinerz, D.F., Cruz, L.C., Pereira, A.B., Rocha, J.B.T., Posser, T., Franco, J.L., 2013. Is the lobster cockroach Nauphoeta cinerea a valuable model for evaluating mercury induced oxidative stress? Chemosphere 92, 1177–1182. https://doi.org/10.1016/j. chemosphere.2013.01.084; Ru, J., Wang, X., Wang, F., Cui, X., Du, X., Lu, X., 2021. UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: synthesis, applications and adsorption mechanism. Ecotoxicol. Environ. Saf. 208, 111577 https://doi.org/10.1016/j.ecoenv.2020.111577.; Safaei Ardakani, Y., Moradi, M., 2020. Investigating the structural, electronic, adsorption and optical properties of Te-doped g-ZnO monolayer before and after adsorbing Hg0 and HgCl2, using DFT + U, TDDFT and DFT-D2 approaches. Mater. Sci. Eng. B 262, 114710. https://doi.org/10.1016/j.mseb.2020.114710; Sahoo, D.P., Patnaik, S., Parida, K., 2019. Construction of a Z-scheme dictated WO3–X/ Ag/ZnCr LDH synergistically visible light-induced photocatalyst towards tetracycline degradation and H2 evolution. ACS Omega 4, 14721–14741. https:// doi.org/10.1021/acsomega.9b01146.; Sahoo, P.K., Dall’Agnol, R., Simoes ˜ Rolo de Deus, S. do C., Salomao, ˜ G.N., Felix Guimaraes, ˜ J.T., Angelica, R.S., Ramos, S.J., Furtado da Costa, M., Oswaldo de Siqueira, J., 2023. Mercury in multimedia system of Itacaiúnas Basin, Brazilian Amazon: an integrated approach to understand its distribution, origin, and ecological risk. Environ. Res. 232 https://doi.org/10.1016/j.envres.2022.115107.; Sajjadi, S.A., Mohammadzadeh, A., Tran, H.N., Anastopoulos, I., Dotto, G.L., Lopiˇci´c, Z. R., Sivamani, S., Rahmani-Sani, A., Ivanets, A., Hosseini-Bandegharaei, A., 2018. Efficient mercury removal from wastewater by pistachio wood wastes-derived activated carbon prepared by chemical activation using a novel activating agent. J. Environ. Manage. 223, 1001–1009. https://doi.org/10.1016/j. jenvman.2018.06.077.; Saleh, T.A., 2015. Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica-multiwall carbon nanotubes. Environ. Sci. Pollut. Res. 22, 16721–16731. https://doi.org/10.1007/s11356-015-4866-z.; Saleh, A., 2020. Trends in the sample preparation and analysis of nanomaterials as environmental contaminants. Trends in Environmental Analytical Chemistry 28, 1–10. https://doi.org/10.1016/j.teac.2020.e00101.; Saleh, T.A., Sari, A., Tuzen, M., 2017. Optimization of parameters with experimental design for the adsorption of mercury using polyethylenimine modified-activated carbon. J. Environ. Chem. Eng. 5, 1079–1088. https://doi.org/10.1016/j. jece.2017.01.032.; Santana, A.J., dos Santos, W.N.L., Silva, L.O.B., das Virgens, C.F., 2016. Removal of mercury(II) ions in aqueous solution using the peel biomass of Pachira aquatica Aubl: kinetics and adsorption equilibrium studies. Environ. Monit. Assess. 188 https://doi.org/10.1007/s10661-016-5266-7.; Saraydın, D., Yıldırım, E.S¸ ., Karadag, ˘ E., Güven, O., 2018. Radiation-synthesized acrylamide/crotonic acid hydrogels for selective mercury (II) ion adsorption. Adv. Polym. Technol. 37, 822–829. https://doi.org/10.1002/adv.21725.; Sarbu, I., Sebarchievici, C., 2017. Solar thermal-driven cooling systems. Solar Heating and Cooling Systems. https://doi.org/10.1016/b978-0-12-811662-3.00007-4.; Sellaoui, L., Bouzidi, M., Franco, D.S.P., Alshammari, A.S., Gandouzi, M., Georgin, J., Mohamed, N.B.H., Erto, A., Badawi, M., 2023. Exploitation of Bauhinia forficata residual fruit powder for the adsorption of cationic dyes. Chem. Eng. J. 456, 141033 https://doi.org/10.1016/j.cej.2022.141033.; S¸ enol, Z.M., Elma, E., El Messaoudi, N., Mehmeti, V., 2023a. Performance of cross-linked chitosan-zeolite composite adsorbent for removal of Pb2+ ions from aqueous solutions: experimental and Monte Carlo simulations studies. J. Mol. Liq. 391, 123310 https://doi.org/10.1016/J.MOLLIQ.2023.123310.; S¸ enol, Z.M., Messaoudi, N. El, Fernine, Y., Keskin, Z.S., 2023b. Bioremoval of rhodamine B dye from aqueous solution by using agricultural solid waste (almond shell): experimental and DFT modeling studies. Biomass Convers. Biorefinery 1–14. https:// doi.org/10.1007/S13399-023-03781-1.; S¸ enol, Z.M., El Messaoudi, N., Cigeroglu, ˘ Z., Miyah, Y., Arslanoglu, ˘ H., Baglam, ˘ N., Kazan-Kaya, E.S., Kaur, P., Georgin, J., 2024a. Removal of food dyes using biological materials via adsorption: a review. Food Chem. 450, 139398 https://doi.org/ 10.1016/J.FOODCHEM.2024.139398.; S¸ enol, Z.M., Ertap, H., Fernine, Y., El Messaoudi, N., 2024b. Adsorptive removal of synthetic dye from its aqueous solution by using chitosan-bentonite composite: DFT and experimental studies. Polym. Bull. https://doi.org/10.1007/S00289-024-05323- 9.; Shadbad, M.J., Mohebbi, A., Soltani, A., 2011. Mercury(II) removal from aqueous solutions by adsorption on multi-walled carbon nanotubes. Korean J. Chem. Eng. 28, 1029–1034. https://doi.org/10.1007/s11814-010-0463-5.; Shafiabadi, M., Dashti, A., Tayebi, H.A., 2016. Removal of Hg (II) from aqueous solution using polypyrrole/SBA-15 nanocomposite: experimental and modeling. Synth. Met. 212, 154–160. https://doi.org/10.1016/j.synthmet.2015.12.020.; Shah, A., Nisar, A., Khan, K., Nisar, J., Niaz, A., Naeem, M., Salim, M., 2019. Electrochimica Acta amino acid functionalized glassy carbon electrode for the simultaneous detection of thallium and mercuric ions. Electrochim. Acta 321, 134658. https://doi.org/10.1016/j.electacta.2019.134658.; ShamsiJazeyi, H., Kaghazchi, T., 2010. Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal. J. Ind. Eng. Chem. 16, 852–858. https://doi.org/10.1016/j.jiec.2010.03.012.; Shan, C., Ma, Z., Tong, M., Ni, J., 2015. Removal of Hg(II) by poly(1-vinylimidazole)- grafted Fe3O4 at SiO2 magnetic nanoparticles. Water Res. 69, 252–260. https://doi. org/10.1016/j.watres.2014.11.030.; Sharma, S., Bhattacharya, A., 2017. Drinking water contamination and treatment techniques. Appl. Water Sci. 7, 1043–1067. https://doi.org/10.1007/s13201-016- 0455-7.; Singha Deb, A.K., Dwivedi, V., Dasgupta, K., Musharaf Ali, S., Shenoy, K.T., 2017. Novel amidoamine functionalized multi-walled carbon nanotubes for removal of mercury (II) ions from wastewater: combined experimental and density functional theoretical approach. Chem. Eng. J. 313, 899–911. https://doi.org/10.1016/j.cej.2016.10.126.; Sun, X., Hwang, J.Y., Xie, S., 2011. Density functional study of elemental mercury adsorption on surfactants. Fuel 90, 1061–1068. https://doi.org/10.1016/j. fuel.2010.10.043.; Tang, H., Duan, Y., Zhu, C., Cai, T., Li, C., Cai, L., 2017. Theoretical evaluation on selective adsorption characteristics of alkali metal-based sorbents for gaseous oxidized mercury. Chemosphere 184, 711–719. https://doi.org/10.1016/j. chemosphere.2017.06.039.; Tantengco, O.A.G., Ragragio, E.M., 2018. Ethnomycological survey of macrofungi utilized by ayta communities in Bataan, Philippines. Curr. Res. Environ. Appl. Mycol. 8, 104–108. https://doi.org/10.5943/cream/8/1/9.; Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J., 2012. Molecular, clinical and environmental toxicicology volume 3: environmental toxicology. Mol. Clin. Environ. Toxicol. 101, 133–164. https://doi.org/10.1007/978-3-7643-8340-4.; Thiem, L., Badorek, D., O’Connor, J.T., 1976. Removal of mercury from drinking water using activated carbon. J. Am. Water Work. Assoc. 68, 447–451. https://doi.org/ 10.1002/j.1551-8833.1976.tb02454.x.; Touaibia, D., Benayada, B., 2005. Removal of mercury (II) from aqueous solution by adsorption on keratin powder prepared from Algerian sheep hooves. Desalination 186, 75–80. https://doi.org/10.1016/j.desal.2005.02.085.; Tran, L., Wu, P., Zhu, Y., Yang, L., Zhu, N., 2015. Highly enhanced adsorption for the removal of Hg(II) from aqueous solution by Mercaptoethylamine/ Mercaptopropyltrimethoxysilane functionalized vermiculites. J. Colloid Interface Sci. 445, 348–356. https://doi.org/10.1016/j.jcis.2015.01.006.; Tzabar, N., ter Brake, H.J.M., 2016. Adsorption isotherms and sips models of nitrogen, methane, ethane, and propane on commercial activated carbons and polyvinylidene chloride. Adsorption 22, 901–914. https://doi.org/10.1007/s10450-016-9794-9.; Ugwu, E.I., Othmani, A., Nnaji, C.C., 2022. A review on zeolites as cost-effective adsorbents for removal of heavy metals from aqueous environment. Int. J. Environ. Sci. Technol. 19, 8061–8084. https://doi.org/10.1007/s13762-021-03560-3.; Ung, C.Y., Lam, S.H., Hlaing, M.M., Winata, C.L., Korzh, S., Mathavan, S., Gong, Z., 2010. Mercury-induced hepatotoxicity in zebrafish: in vivo mechanistic insights from transcriptome analysis, phenotype anchoring and targeted gene expression validation. BMC Genomics 11. https://doi.org/10.1186/1471-2164-11-212.; Urgun-Demirtas, M., Benda, P.L., Gillenwater, P.S., Negri, M.C., Xiong, H., Snyder, S.W., 2012. Achieving very low mercury levels in refinery wastewater by membrane filtration. J. Hazard. Mater. 215–216, 98–107. https://doi.org/10.1016/j. jhazmat.2012.02.040.; Uzun, I., Güzel, F., 2000. Adsorption of some heavy metal ions from aqueous solution by activated carbon and comparison of percent adsorption results of activated carbon with those of some other adsorbents. Turk. J. Chem. 24, 291–297.; Vieira, J.C.S., Braga, C.P., de Oliveira, G., de Lima Leite, A., de Queiroz, J.V., Cavecci, B., Bittarello, A.C., Buzalaf, M.A.R., Zara, L.F., de Magalh˜ aes Padilha, P., 2017. Identification of protein biomarkers of mercury toxicity in fish. Environ. Chem. Lett. 15, 717–724. https://doi.org/10.1007/s10311-017-0644-0.; Vilhunen, S., Sillanpa¨a, ¨ M., 2010. Recent developments in photochemical and chemical AOPs in water treatment: a mini-review. Rev. Environ. Sci. Biotechnol. 9, 323–330. https://doi.org/10.1007/s11157-010-9216-5.; Wang, J., Guo, X., 2020. Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere 258, 127279. https://doi.org/ 10.1016/j.chemosphere.2020.127279.; Wang, J., Yu, H., Geng, L., Liu, J., Han, L., Chang, L., Feng, G., Ling, L., 2015. DFT study of Hg adsorption on M-substituted Pd(1 1 1) and PdM/γ-Al 2 O 3 (1 1 0) (M = Au, Ag, Cu) surfaces. Appl. Surf. Sci. 355, 902–911. https://doi.org/10.1016/j. apsusc.2015.07.086.; Wang, N., Zheng, T., Zhang, G., Wang, P., 2016. A review on Fenton-like processes for organic wastewater treatment. J. Environ. Chem. Eng. 4, 762–787. https://doi.org/ 10.1016/j.jece.2015.12.016.; Wang, T., Wu, J., Zhang, Y., Liu, J., Sui, Z., Zhang, H., Chen, W.Y., Norris, P., Pan, W.P., 2018. Increasing the chlorine active sites in the micropores of biochar for improved mercury adsorption. Fuel 229, 60–67. https://doi.org/10.1016/j.fuel.2018.05.028.; Wang, Y., O’Connor, D., Shen, Z., Lo, I.M.C., Tsang, D.C.W., Pehkonen, S., Pu, S., Hou, D., 2019. Green synthesis of nanoparticles for the remediation of contaminated waters and soils: constituents, synthesizing methods, and influencing factors. J. Clean. Prod. 226, 540–549. https://doi.org/10.1016/j.jclepro.2019.04.128.; Wang, J., Wang, T., Yan, B., Wang, Q., Zhang, Y., Pan, W.P., 2021a. Removal of ionic mercury from gasoline using zeolite 13X impregnated with KI: adsorption mechanisms and simulation. Chem. Eng. J. 409, 128170 https://doi.org/10.1016/j. cej.2020.128170.; Wang, L., Zhang, K., Luo, J., Ma, J.Y., Ji, W., Hong, Q., Xu, H., Huang, W., Yan, N., Qu, Z., 2021b. Metastable facet-controlled Cu2WS4Single crystals with enhanced adsorption activity for gaseous elemental mercury. Environ. Sci. Technol. 55, 5347–5356. https://doi.org/10.1021/acs.est.0c07275.; Wołowiec, M., Komorowska-Kaufman, M., Pruss, A., Rzepa, G., Bajda, T., 2019. Removal of heavy metals and metalloids from water using drinking water treatment residuals as adsorbents: a review. Minerals 9, 487. https://doi.org/10.3390/min9080487.; Wols, B.A., Hofman-Caris, C.H.M., 2012. Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water. Water Res. 46, 2815–2827. https://doi.org/10.1016/j.watres.2012.03.036.; Wu, H., Chen, H., Wang, Q., Yang, H., 2019. Characteristics and inhibition of mercury reemission from desulfurization slurry by Fenton reagent. Fuel Process. Technol. 188, 89–97. https://doi.org/10.1016/j.fuproc.2019.02.006.; Xie, P., Ma, J., Liu, W., Zou, J., Yue, S., Li, X., Wiesner, M.R., Fang, J., 2015. Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals. Water Res. 69, 223–233. https://doi.org/10.1016/j.watres.2014.11.029.; Xu, X., Schierz, A., Xu, N., Cao, X., 2016. Comparison of the characteristics and mechanisms of Hg(II) sorption by biochars and activated carbon. J. Colloid Interface Sci. 463, 55–60. https://doi.org/10.1016/j.jcis.2015.10.003.; Xu, C., Nasrollahzadeh, M., Selva, M., Issaabadi, Z., Luque, R., 2019. Waste-to-wealth: biowaste valorization into valuable bio(nano)materials. Chem. Soc. Rev. 48, 4791–4822. https://doi.org/10.1039/C8CS00543E.; Yahyazedeh, A., Altunkaynak, B.Z., Akgül, N., Akgül, H.M., 2017. A histopathological and stereological study of liver damage in female rats caused by mercury vapor. Biotech. Histochem. 92, 338–346. https://doi.org/10.1080/ 10520295.2017.1312527.; Yamil, Y.L., Georgin, J., Franco, D.S.P., Netto, M.S., Foletto, E.L., Piccilli, D.G.A., Sellaoui, L., Dotto, G.L., 2021. Transforming pods of the species Capparis flexuosa into effective biosorbent to remove blue methylene and bright blue in discontinuous and continuous systems. Environ. Sci. Pollut. Res. 28, 8036–8049. https://doi.org/ 10.1007/s11356-020-11211-2.; Yan, G., Gao, Z., Zhao, M., Yang, W., Ding, X., 2020. A comprehensive exploration of mercury adsorption sites on the carbonaceous surface: a DFT study. Fuel 282, 118781. https://doi.org/10.1016/j.fuel.2020.118781.; Yang, B., Tang, J., 2018. Electrochemical oxidation treatment of wastewater using activated carbon electrode. Int. J. Electrochem. Sci. 13, 1096–1104. https://doi.org/ 10.20964/2018.01.78.; Yang, Y., Liu, J., Zhang, B., Liu, F., 2017. Mechanistic studies of mercury adsorption and oxidation by oxygen over spinel-type MnFe2O4. J. Hazard. Mater. 321, 154–161. https://doi.org/10.1016/j.jhazmat.2016.09.007.; Yıldız, N., Gokkus ¨ ¸, O., ¨ Koparal, A.S., Yıldız, Y.S¸ ., 2019. Peroxi-coagulation process: a comparison of the effect of oxygen level on color and TOC removals. Desalin. Water Treat. 141, 106–114. https://doi.org/10.5004/dwt.2019.23429.; Zabihi, M., Ahmadpour, A., Haghighi Asl, A., 2009. Removal of mercury from water by carbonaceous sorbents derived from walnut shell. J. Hazard. Mater. 167, 230–236. https://doi.org/10.1016/j.jhazmat.2008.12.108.; Zarei, S., Niad, M., 2017. Cystoseira myricaas for mercury (II) uptake: isotherm, kinetics, thermodynamic, response surface methodology and fuzzy modeling. J. Taiwan Inst. Chem. Eng. 81, 247–257. https://doi.org/10.1016/j.jtice.2017.10.010.; Zazouli, M.A., Azari, A., Dehghan, S., Malekkolae, R.S., 2016. Adsorption of methylene blue from aqueous solution onto activated carbons developed from eucalyptus bark and Crataegus oxyacantha core. Water Sci. Technol. 74, 2021–2035. https://doi.org/ 10.2166/wst.2016.287.; Zeng, B., Wang, W., He, S., Lin, G., Du, W., Chang, J., Ding, Z., 2021. Facile synthesis of zinc-based organic framework for aqueous Hg (II) removal: adsorption performance and mechanism. Nano Mater. Sci. 3, 429–439. https://doi.org/10.1016/j. nanoms.2021.06.005.; Zhan, F., Li, C., Zeng, G., Tao, S., Xiao, Y., Zhang, X., Zhao, L., Zhang, J., Ma, J., 2013. Experimental study on oxidation of elemental mercury by UV/Fenton system. Chem. Eng. J. 232, 81–88. https://doi.org/10.1016/j.cej.2013.07.082.; Zhang, F.S., Nriagu, J.O., Itoh, H., 2005. Mercury removal from water using activated carbons derived from organic sewage sludge. Water Res. 39, 389–395. https://doi. org/10.1016/j.watres.2004.09.027.; Zhang, H., Ma, D., Qiu, R., Tang, Y., Du, C., 2017. Non-thermal plasma technology for organic contaminated soil remediation: a review. Chem. Eng. J. 313, 157–170. https://doi.org/10.1016/j.cej.2016.12.067.; Zhang, Y., Miro, ´ M., Kolev, S.D., 2018. A novel hybrid fl ow platform for on-line simultaneous dynamic fractionation and evaluation of mercury lability in environmental solids. Talanta 178, 622–628. https://doi.org/10.1016/j. talanta.2017.09.084.; Zhang, D., Wang, L., Zeng, H., Yan, P., Nie, J., Sharma, V.K., Wang, C., 2019. A threedimensional macroporous network structured chitosan/cellulose biocomposite sponge for rapid and selective removal of mercury(II) ions from aqueous solution. Chem. Eng. J. 363, 192–202. https://doi.org/10.1016/j.cej.2019.01.127.; Zhang, T., Liu, Y., Zhong, S., Zhang, L., 2020a. Chemosphere AOPs-based remediation of petroleum hydrocarbons-contaminated soils: Efficiency, influencing factors and environmental impacts. Chemosphere 246, 125726. https://doi.org/10.1016/j. chemosphere.2019.125726.; Zhang, Y., Zhao, Y., Yang, Y., Liu, P., Liu, J., Zhang, J., 2020b. DFT study on Hg0 adsorption over graphene oxide decorated by transition metals (Zn, Cu and Ni). Appl. Surf. Sci. 525, 146519 https://doi.org/10.1016/j.apsusc.2020.146519.; Zhao, S., Xu, H., Qu, Z., Liu, P., Cui, Y., Yan, N., 2018. Chemosphere combined effects of Ag and UiO-66 for removal of elemental mercury from flue gas. Chemosphere 197, 65–72. https://doi.org/10.1016/j.chemosphere.2018.01.025.; Zhao, M., Huang, Z., Wang, S., Zhang, L., Zhou, Y., 2019. Design of l-cysteine functionalized UiO-66 MOFs for selective adsorption of hg(II) in aqueous medium. ACS Appl. Mater. Interfaces 11, 46973–46983. https://doi.org/10.1021/ acsami.9b17508.; Zhou, Q., Duan, Y., Zhu, C., Zhang, J., She, M., Wei, H., Hong, Y., 2015. Adsorption equilibrium, kinetics and mechanism studies of mercury on coal-fired fly ash. Kor. J. Chem. Eng. 32, 1405–1413. https://doi.org/10.1007/s11814-014-0336-4.; Zhou, Z., Liu, X., Sun, K., Lin, C., Ma, J., He, M., Ouyang, W., 2019. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: a review. Chem. Eng. J. 372, 836–851. https://doi.org/10.1016/j.cej.2019.04.213.; Zhou, Z., Cao, T., Liu, X., Xu, J., Deng, L., Li, C., Liu, J., Xu, M., 2021. Mechanistic investigation of elemental mercury adsorption over silver-modified vanadium silicate: a DFT study. J. Hazard. Mater. 404, 124108 https://doi.org/10.1016/j. jhazmat.2020.124108.; Zhu, Y., Peng, S., Lu, P., Chen, T., Yang, Y., 2020. Mercury removal from aqueous solutions using modified pyrite: a column experiment. Minerals 10, 1–14. https:// doi.org/10.3390/min10010043.; Zhuo, N., Lan, Y., Yang, W., Yang, Z., Li, X., Zhou, X., Liu, Y., Shen, J., Zhang, X., 2017. Adsorption of three selected pharmaceuticals and personal care products (PPCPs) onto MIL-101(Cr)/natural polymer composite beads. Sep. Purif. Technol. 177, 272–280. https://doi.org/10.1016/j.seppur.2016.12.041.; 25; 174501; Volume 947; https://hdl.handle.net/11323/13447; Corporación Universidad de la Costa; https://repositorio.cuc.edu.co/
-
7Academic Journal
المؤلفون: Uysal, KarataÅŸ, B., Gençer, A., Topel, Ö., Ki̇Raz, N.
مصطلحات موضوعية: absorption isotherm and kinetics, Magnetic mesoporous material, modified MCM-41 absorbent, phosphate ion adsorption
Relation: Turkish Journal of Chemistry; Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı; https://hdl.handle.net/11499/56835; 48; 50; 64; WOS:001179873400002
-
8Academic Journal
المؤلفون: Zahra Ameri, Mehran Hoodaji, Majid Rajaie, Mitra Ataabadi
المصدر: مهندسی منابع آب, Vol 15, Iss 55, Pp 91-104 (2023)
مصطلحات موضوعية: modified natural adsorbents, cr (vi), adsorption isotherm and kinetics, polluted aqueous solutions, Water supply for domestic and industrial purposes, TD201-500
وصف الملف: electronic resource
-
9Academic Journal
المؤلفون: Daad Saad Alobaidi, Abeer I. Alwared
المصدر: Heliyon, Vol 9, Iss 4, Pp e14851- (2023)
مصطلحات موضوعية: Biosorption, Phenol wastewater, Algae/alginate beads, Adsorbent characteristics, Isotherm and kinetics, Science (General), Q1-390, Social sciences (General), H1-99
وصف الملف: electronic resource
-
10Academic Journal
المؤلفون: Usman M. Ismail, Sagheer A. Onaizi, Muhammad S. Vohra
المصدر: Nanomaterials; Volume 13; Issue 8; Pages: 1402
مصطلحات موضوعية: lead removal, adsorption isotherm and kinetics, response surface methodology (RSM), machine learning, water treatment, heavy metals
وصف الملف: application/pdf
Relation: https://dx.doi.org/10.3390/nano13081402
الاتاحة: https://doi.org/10.3390/nano13081402
-
11Academic Journal
المؤلفون: walid morsy
المصدر: Chemical Review and Letters, Vol 3, Iss 2, Pp 86-93 (2020)
مصطلحات موضوعية: moving bed, developed system, air pulsation, equilibrium isotherm and kinetics, Chemistry, QD1-999
وصف الملف: electronic resource
-
12Academic Journal
المصدر: Water; Volume 14; Issue 6; Pages: 976
مصطلحات موضوعية: Saccharomyces cerevisiae biomass, biosorption, metal ions, isotherm and kinetics modeling, mechanism
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: Wastewater Treatment and Reuse; https://dx.doi.org/10.3390/w14060976
الاتاحة: https://doi.org/10.3390/w14060976
-
13Academic Journal
المؤلفون: Ephraim Vunain, Davie Kenneth, Timothy Biswick
المصدر: Applied Water Science, Vol 7, Iss 8, Pp 4301-4319 (2017)
مصطلحات موضوعية: Cu(II) ions, Baobab fruit shell, Activated carbon, Adsorption isotherm and kinetics, Water supply for domestic and industrial purposes, TD201-500
وصف الملف: electronic resource
-
14Academic Journal
المؤلفون: shahin ahmadi, somaye rahdar
المصدر: تحقیقات سلامت در جامعه, Vol 2, Iss 4, Pp 35-45 (2017)
مصطلحات موضوعية: Aniline, Isotherm and Kinetics, Phenol, Pistacia terebinthus, Medicine, Public aspects of medicine, RA1-1270
وصف الملف: electronic resource
-
15Academic Journal
المؤلفون: Jehanzeb Ali Shah, Tayyab Ashfaq Butt, Cyrus Raza Mirza, Ahson Jabbar Shaikh, Muhammad Saqib Khan, Muhammad Arshad, Nadia Riaz, Hajira Haroon, Syed Mubashar Hussain Gardazi, Khurram Yaqoob, Muhammad Bilal
المصدر: Molecules; Volume 25; Issue 9; Pages: 2118
مصطلحات موضوعية: isotherm and kinetics modelling, activated carbon, waste sawdust, error analysis, ortho-phosphoric acid, reactive orange 16
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: Macromolecular Chemistry; https://dx.doi.org/10.3390/molecules25092118
-
16Academic Journal
المؤلفون: Omar Hisham Fadhil, Mohammed Y. Eisa
المصدر: Journal of Engineering, Vol 25, Iss 4 (2019)
مصطلحات موضوعية: adsorption, methyl orange dye, corn leaves, adsorption isotherm, adsorption kinetics, Engineering (General). Civil engineering (General), TA1-2040
وصف الملف: electronic resource
-
17
المصدر: Volume: 35, Issue: 2 421-432
Gazi University Journal of Scienceمصطلحات موضوعية: Multidisciplinary, Chemistry, Mühendislik, General Engineering, Adsorption,Corn Husk,Activation optimization,Response Surface Method,Adsorption Isotherm,Adsorption Kinetics, Husk, Ion, Engineering, Adsorption, Adsorption kinetics, medicine, Sorption isotherm, Activated carbon, medicine.drug, Nuclear chemistry
وصف الملف: application/pdf
-
18
المؤلفون: Bo Han, Anutosh Chakraborty
المساهمون: School of Mechanical and Aerospace Engineering
مصطلحات موضوعية: Water Adsorption, Mechanical engineering [Engineering], Energy Engineering and Power Technology, Isotherm and Kinetics, Industrial and Manufacturing Engineering
-
19Academic Journal
المؤلفون: Xuedan Shi, Wenqian Ruan, Jiwei Hu, Mingyi Fan, Rensheng Cao, Xionghui Wei
المصدر: Nanomaterials; Volume 7; Issue 6; Pages: 134
مصطلحات موضوعية: rhodamine B, nanoscale zero-valent iron, graphene, RSM, ANN-GA, adsorption isotherm and kinetics
وصف الملف: application/pdf
Relation: https://dx.doi.org/10.3390/nano7060134
الاتاحة: https://doi.org/10.3390/nano7060134
-
20