-
1
المؤلفون: Ravelo Nieto, Eduardo
المساهمون: Cruz Jiménez, Juan Carlos, Duarte Ruiz, Alvaro, Javier Cifuentes, Universidad de los Andes, Nuevos Materiales Nano y Supramoleculares, Departamento de Ingeniería Biomédica - Universidad de los Andes
المصدر: Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombiaمصطلحات موضوعية: Nanobioconjugado, Buforina II, Nanopartículas de sílice, Cellular uptake, Escape endosomal, 572 - Bioquímica [570 - Biología], Proteína OmpA, Endosomal escape, Fullerenol, nanobioconjugates, Silica nanoparticles, Internalización celular
وصف الملف: 101 páginas; application/pdf
-
2Academic JournalNanotubo de carbono-chitosan en células HOS y THP-1 Carbon nanotubes-chitosan in HOS and THP-1 cells
المؤلفون: John Jairo Castillo León, Leidy Viviana Novoa, Fernando Martínez Ortega, Patricia Escobar Rivero
المصدر: Salud UIS, Vol 43, Iss 1, Pp 21-26 (2011)
مصطلحات موضوعية: Nanotubos de carbono, quitosan, internalización celular, Carbon nanotubes, chitosan, cell internalization cells, macrophages, Medicine
وصف الملف: electronic resource
-
3Dissertation/ Thesis
المؤلفون: Ravelo Nieto, Eduardo
المساهمون: Cruz Jiménez, Juan Carlos, Duarte Ruiz, Alvaro, Javier Cifuentes, Universidad de los Andes, Nuevos Materiales Nano y Supramoleculares, Departamento de Ingeniería Biomédica - Universidad de los Andes
مصطلحات موضوعية: 570 - Biología::572 - Bioquímica, Nanobioconjugado, Buforina II, Proteína OmpA, Nanopartículas de sílice, Fullerenol, Internalización celular, Escape endosomal, nanobioconjugates, Silica nanoparticles, Cellular uptake, Endosomal escape
وصف الملف: 101 páginas; application/pdf
Relation: RedCol; LaReferencia; Hossen, S., Hossain, K., Basher, M. K., Mia, M. N. H. & Rahman, M. T. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies : A review. J. Adv. Res. 1, 1–74 (2018).; Gonçalves, M. C. Sol-gel Silica Nanoparticles in Medicine: A Natural Choice. Design, Synthesis and Products. Molecules 23, 2021 (2018).; McNeil, S. E. Unique Benefits of Nanotechnology to Drug Delivery and Diagnostics. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 3–8 (2011). doi:10.1007/978-1-60327-198-1.; Yokoyama, T. Basic Properties and Measuring Methods of Nanoparticles. in Nanoparticle Technology Handbook (eds. Naito, M., Yokoyama, T., Hosokawa, K. & Nogi, K.) 3–48 (2018).; McNeil, S. E. Evaluating Nanomedicines: Obstacles and Advancements. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 3–16 (2018). doi:10.1007/978-1-4939-7352-1.; Barua, S. & Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nanotoday 9, 223–243 (2014).; Degors, I. M. S., Wang, C., Rehman, Z. U. & Zuhorn, I. S. Carriers Break Barriers in Drug Delivery : Endocytosis and Endosomal Escape of Gene Delivery Vectors Published as part of the Accounts of Chemical Research special issue “ Nanomedicine and Beyond ” . Acc. Chem. Res. 52, 1750–1760 (2019).; Ke, P. C., Lin, S., Parak, W. J., Davis, T. P. & Caruso, F. A Decade of the Protein Corona. ACS Nano 11, 11773–11776 (2017).; Monopoli, M. P., Åberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012).; Zhang, R., Qin, X., Kong, F., Chen, P. & Pan, G. Improving cellular uptake of therapeutic entities through interaction with components of cell membrane. Drug Deliv. 26, 328–342 (2019).; Mosquera, J., García, I. & Liz-Marzán, L. M. Cellular Uptake of Nanoparticles versus Small Molecules: A Matter of Size. Acc. Chem. Res. 51, 2305–2313 (2018).; Selby, L. I., Cortez-Jugo, C. M., Such, G. K. & Johnston, A. P. R. Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 9, (2017).; Parenti, G., Pignata, C., Vajro, P. & Salerno, M. New strategies for the treatment of lysosomal storage diseases. Int. J. Mol. Med. 31, 11–20 (2013).; Sun, A. Lysosomal storage disease overview. Ann. Transl. Med. 6, 476.-476. (2018).; Hillaireau, H. & Couvreur, P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci. 66, 2873–2896 (2009).; Behzadi, S. et al. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017).; Stober, W. & Fink, A. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. collod interface Sci. 26, 62–69 (1968).; Shi, S., Chen, F. & Cai, W. Biomedical applications of functionalized hollow mesoporous silica nanoparticles: Focusing on molecular imaging. Nanomedicine 8, 2027–2039 (2013).; Singh, P., Srivastava, S. & Singh, S. K. Nanosilica: Recent Progress in Synthesis, Functionalization, Biocompatibility, and Biomedical Applications. ACS Biomater. Sci. Eng. 5, 4882–4898 (2019).; Hermanson, G. T. Microparticles and Nanoparticles. in Bioconjugate Techniques 549–587 (2013).; Kazemzadeh, H. & Mozafari, M. Fullerene-based delivery systems. Drug Discov. Today 24, 898–905 (2019).; Mi, P., Cabral, H. & Kataoka, K. Ligand-Installed Nanocarriers toward Precision Therapy. Adv. Mater. 32, 1–29 (2020).; Smith, S. A., Selby, L. I., Johnston, A. P. R. & Such, G. K. The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery. Bioconjugate Chemistry vol. 30 263–272 (2019).; Ahmad, A., Khan, J. M. & Haque, S. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles. Biochimie 160, 61–75 (2019).; Chakraborty, S., Dhakshinamurthy, G. S. & Misra, S. K. Tailoring of physicochemical properties of nanocarriers for effective anti-cancer applications. J. Biomed. Mater. Res. - Part A 105, 2906–2928 (2017).; Biffi, S., Voltan, R., Bortot, B., Zauli, G. & Secchiero, P. Actively targeted nanocarriers for drug delivery to cancer cells. Expert Opin. Drug Deliv. 16, 481–496 (2019).; Kanwal, U. et al. Advances in nano-delivery systems for doxorubicin: an updated insight. J. Drug Target. 26, 296–310 (2018).; Cuellar, M. et al. Novel BUF2-magnetite nanobioconjugates with cell-penetrating abilities. Int. J. Nanomedicine 13, 8087–8094 (2018).; Perez, J. et al. Cell-Penetrating And Antibacterial BUF-II Nanobioconjugates: Enhanced Potency Via Immobilization On Polyetheramine-Modified Magnetite Nanoparticles. Int. J. Nanomedicine 14, 8483–8497 (2019).; López-Barbosa, N. et al. Magnetite-OmpA nanobioconjugates as cell- penetrating vehicles with endosomal escape abilities. ACS Biomater. Sci. Eng. 6, 415–424 (2019).; Duarte-Ruiz, Á., Echegoyen, L., Aya, A. & Gómez-Baquero, F. A new method to prepare an e,e,e trisadduct of C60 using a protection-deprotection sequence. J. Mex. Chem. Soc. 53, 169–173 (2009).; Duarte-Ruiz, A., Wurst, K. & Kräutler, B. The orthogonal (e,e,e)-tris-adduct of 9,10-dimethylanthracene with C 60-fullerene: A hidden cornerstone of fullerene chemistry. Preliminary communication. Helv. Chim. Acta 91, 1401–1408 (2008).; Torres Palacio, P., Cano Beníte, C. A. & Duarte Ruiz, Á. Self-assembly of a supramolecular square between [ni(Dppe)(tof)2] and 4,4′-bipyridine. Rev. Colomb. Quim. 42, 48–55 (2013).; Cano-Benítez, C. A., Metta-Magaña, A. J. & Duarte-Ruiz, Á. Crystal structure at 100 K of bis[1,2-bis(diphenylphosphanyl)ethane]nickel(II) bis(trifluoromethanesulfonate): A possible negative thermal expansion molecular material. Acta Crystallogr. Sect. E Crystallogr. Commun. 74, 1678–1681 (2018).; Duarte-Ruiz, A., Iuele, H., Torres-Cortés, S., Meléndez, A. & Chaur, M. N. Physical and Inorganic Chemistry Synthesis and characterization of C60 and C70 acetylacetone monoadducts and study of their photochemical properties for potential application in solar cells Síntesis y caracterización de monoaductos de C60 y C70. Revista 50, 86–97 (2021).; Neti, V. S. P. K. et al. High-yield, regiospecific bis-functionalization of C70 using a diels–alder reaction in molten anthracene. Chem. Commun. 50, 10584–10587 (2014).; Duarte-Ruiz, Á. et al. Synthesis and structure of [Na4(DMSO)15][(I 3)3(I)]. Self-assembly of hexacoordinated sodium. Chem. Commun. 47, 7110–7112 (2011).; Yokoyama, T. Basic Properties and Measuring Methods of Nanoparticles. in Nanoparticle Technology Handbook 3–8 (2018).; Kamyshny, A. & Magdassi, S. Aqueous Dispersions of Metallic Nanoparticles. in Nanoscience 747–778 (2010).; Hosokawa, M., Nogi, K., Naito, M. & Yokoyama, T. Basic Properties And Measuring Methods Of Nanoparticles. in Nanoparticle Technology Handbook 5–9 (2007).; Hermanson, G. T. Silane Coupling Agents. in Bioconjugate Techniques 535–548 (2013).; Deetz, J. D. et al. Reactive Molecular Dynamics Simulations of the Silanization of Silica Substrates by Methoxy- and Hydroxysilanes. Langmuir 1, 1–24 (2016).; Hermanson, G. T. Homobifunctional Crosslinkers. in Bioconjugate Techniques 275–298 (2013).; Hermanson, G. T. Zero-Length Crosslinkers. in Bioconjugate Techniques 259–274 (2013).; Voet, D. & Voet, I. Lipids and Membranes. in Biochemistry 386–466 (2011).; Mayor, S., Parton, R. G. & Donaldson, J. G. Clathrin-independent pathways of endocytosis. Cold Spring Harb. Perspect. Biol. 6, (2014).; Podinovskaia, M. & Spang, A. The Endosomal Network: Mediators and Regulators of Endosome Maturation. in Endocytosis and Signaling 1–38 (2018). doi:https://doi.org/10.1007/978-3-319-96704-2.; Cupic, K. I., Rennick, J. J., Johnston, A. P. R. & Such, G. K. Controlling endosomal escape using nanoparticle composition : current progress and future perspectives. Nanomedicine 14, 215–223 (2019).; Hermanson, G. T. Introduction to Bioconjugation. in Bioconjugate Techniques 1–125 (2013).; Camargo, M. & Groot, H. El secreto antimicrobiano de las histonas. Hipótesis, Apunt. científicos uniandinos 16, 14–16 (2014).; Park, C. B., Kim, M. S. & Kim, S. C. A Novel Antimicrobial Peptide from Bufo bufo gargarizans. Biochem. Biophys. Res. Commun. 218, 408–413 (1996).; Park, C. B., Yi, K., Matsuzaki, K., Kim, M. S. & Kim, S. C. Structure – activity analysis of buforin II , a histone H2A-derived antimicrobial peptide : The proline hinge is responsible for the cell-penetrating ability of buforin II. PNAS 97, 8245–8250 (2000).; Smith, S. G. J., Mahon, V., Lambert, M. A. & Fagan, R. P. A molecular Swiss army knife : OmpA structure , function and expression. FEMS Microbiol Lett 273, 1–11 (2007).; Pautsch, A. & Schulz, G. E. Structure of the outer membrane protein A transmembrane domain. Nat. Struct. Biol. 5, 1013–1017 (1998).; Shukla, T., Upmanyu, N., Pandey, S. P. & Sudheesh, M. S. Site-specific drug delivery, targeting, and gene therapy. in Nanoarchitectonics in Biomedicine 473–505 (2019).; Kim, W. et al. A reliable approach for assessing size-dependent effects of silica nanoparticles on cellular internalization behavior and cytotoxic mechanisms. Int. J. Nanomedicine 14, 7375–7387 (2019).; Goodarzi, S., Da Ros, T., Conde, J., Sefat, F. & Mozafari, M. Fullerene: biomedical engineers get to revisit an old friend. Mater. Today 20, 460–480 (2017).; Semenov, K. N. et al. Fullerenols: Physicochemical properties and applications. Prog. Solid State Chem. 44, 59–74 (2016).; Chiang, L. Y., Wang, L. Y., Swirczewski, J. W., Soled, S. & Cameron, S. Efficient Synthesis of Polyhydroxylated Fullerene Derivatives via Hydrolysis of Polycyclosulfated Precursors. J. Org. Chem. 59, 3960–3968 (1994).; Li, J. et al. C60 fullerol formation catalysed by quaternary ammonium hydroxides. J. Chem. Soc. Chem. Commun. 1784–1785 (1993) doi:10.1039/C39930001784.; Wang, S., He, P., Zhang, J. M., Jiang, H. & Zhu, S. Z. Novel and efficient synthesis of water-soluble [60]fullerenol by solvent-free reaction. Synth. Commun. 35, 1803–1808 (2005).; Gomez, S. & Duarte, A. Síntesis de fulleroles a partir de un derivado bromado de C60. Revista Colombiana de Quimica vol. 38 83–95 (2009).; Afreen, S., Kokubo, K., Muthoosamy, K. & Manickam, S. Hydration or hydroxylation: Direct synthesis of fullerenol from pristine fullerene [C60] via acoustic cavitation in the presence of hydrogen peroxide. RSC Adv. 7, 31930–31939 (2017).; Kokubo, K., Shirakawa, S., Kobayashi, N., Aoshima, H. & Oshima, T. Facile and scalable synthesis of a highly hydroxylated water-soluble fullerenol as a single nanoparticle. Nano Res. 4, 204–215 (2011).; Kokubo, K., Matsubayashi, K., Tategaki, H., Takada, H. & Oshima, T. Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano 2, 327–333 (2008).; Planque, M. R. R. De, Aghdaei, S., Roose, T. & Morgan, H. Electrophysiological Characterization of Membrane Disruption by Nanoparticles. ACS Nano 5, 3599–3606 (2011).; Chithrani, B. D., Ghazani, A. A. & Chan, W. C. W. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett. 6, 662–668 (2006).; Jiang, W. E. N., Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008).; Chaudhuri, A., Battaglia, G. & Golestanian, R. The effect of interactions on the cellular uptake of nanoparticles. Phys. Biol. 8, 1–9 (2011).; Soenen, S. et al. Cytotoxic Effects of Gold Nanoparticles: A Multiparametric Study. ACS Nano 6, 5767–5783 (2012).; Edrissi, M., Soleymani, M. & Adinehnia, M. Synthesis of Silica Nanoparticles by Ultrasound-Assisted Sol-Gel Method : Optimized by Taguchi Robust Design. Chem. Eng. Technol. 34, 1813–1819 (2011).; Kovač, T., Borišev, I., Crevar, B., Kenjerić, F. Č. & Ko, M. Fullerol C60(OH)24 nanoparticles modulate aflatoxin B 1 biosynthesis in Aspergillus flavus. Sci. Rep. 60, 1–8 (2018).; Kinnear, C., Moore, T. L., Rodriguez-lorenzo, L., Rothen-rutishauser, B. & Petri-fink, A. Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chem. Rev. 117, 11476–11521 (2017).; Li, Y. & Gu, N. Thermodynamics of Charged Nanoparticle Adsorption on Charge-Neutral Membranes : A Simulation Study. J. Phys. Chem. 114, 2749–2754 (2010).; Cho, E. C., Xie, J., Wurm, P. A. & Xia, Y. Understanding the Role of Surface Charges in Cellular Adsorption versus Internalization by Selectively Removing Gold Nanoparticles on the Cell Surface with a I 2 / KI Etchant 2009. Nano Lett. 9, 1080–1084 (2009).; Mahmoudi, M. et al. Interaction of stable colloidal nanoparticles with cellular membranes. Biotechnol. Adv. 1, 1–14 (2014).; Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–51 (2015).; Adijanto, J. & Naash, M. I. Nanoparticle-based technologies for retinal gene therapy. Eur. J. Pharm. Biopharm. 1, 1–15 (2015).; Rüter, C., Buss, C., Scharnert, J., Heusipp, G. & Schmidt, M. A. A newly identified bacterial cell-penetrating peptide that reduces the transcription of pro-inflammatory cytokines. J. Cell Sci. 123, 2190–2198 (2010).; Akishiba, M. et al. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide. Nat. Chem. 9, 751–761 (2017).; Sun, T. et al. Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angew. Rev. 53, 2–47 (2014).; Lin, G. et al. Non-viral gene therapy using multifunctional nanoparticles : Status, challenges, and opportunities. Coord. Chem. Rev. J. 374, 133–152 (2018).; Kim, I., Joachim, E., Choi, H. & Kevin, K. K. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine Nanotechnology, Biol. Med. 1–10 (2015) doi:10.1016/j.nano.2015.03.004.; Schuh, R. S., Baldo, G. & Teixeira, H. F. Nanotechnology applied to treatment of mucopolysaccharidoses. Expert Opin. Drug Deliv. 13, 1709–1718 (2016).; Aguilera-Segura, S. M. et al. Advances in Computational Biology Proceedings of the 2nd Colombian Congress on Computational Biology and Bioinformatics (CCBCOL). in Escherichia coli´s OmpA as Biosurfactant for Cosmetic Industry: Stability Analysis and Experimental Validation Based on Molecular Simulations 265–272 (2014). doi:10.1007/978-3-319-01568-2.; Shafqat, S. S. et al. Development of amino-functionalized silica nanoparticles for efficient and rapid removal of COD from pre-treated palm oil effluent. J. Mater. Res. Technol. 8, 385–395 (2019).; Hermanson, G. T. Immobilization of Ligands on Chromatography Supports. in Bioconjugate Techniques 734 (2013).; Hermanson, G. T. PEGylation and Synthetic Polymer Modification. in Bioconjugate Techniques 786–838 (2013).; Levi-Polyachenko, N. H., Carroll, D. L. & Stewart, J. H. Applications of Carbon-Based Nanomaterials for Drug Delivery in Oncology. in Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes (eds. Cataldo, F. & Milani, P.) 225 (2008).; Pautsch, A. & Schulz, G. E. High-resolution structure of the OmpA membrane domain. J. Mol. Biol. 298, 273–282 (2000).; Ravelo-Nieto, E., Duarte-Ruiz, A., Reyes, L. H. & Cruz, J. C. Synthesis and Characterization of a Fullerenol Derivative for Potential Biological Applications. Mater. Proc. 4, 15 (2020).; De Santiago, H. A., Gupta, S. K. & Mao, Y. On high purity fullerenol obtained by combined dialysis and freeze-drying method with its morphostructural transition and photoluminescence. Sep. Purif. Technol. 210, 927–934 (2019).; Potter, T. M., Neun, B. W., Ilinskaya, A. N. & Obrovolskaia, M. A. Detection of Bacterial Contamination in Nanoparticle Formulations by Agar Plate Test. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 19–22 (2018). doi:10.1007/978-1-4939-7352-1.; Muñoz-Camargo, C. et al. Unveiling the multifaceted mechanisms of antibacterial activity of buforin II and frenatin 2.3S peptides from skin micro-organs of the orinoco lime treefrog (Sphaenorhynchus lacteus). Int. J. Mol. Sci. 19, (2018).; Potter, T. M. et al. In Vitro Assessment of Nanoparticle Effects on Blood Coagulation. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 103–124 (2018). doi:10.1007/978-1-4939-7352-1.; Lopez-barbosa, N. et al. Multifunctional magnetite nanoparticles to enable delivery of siRNA for the potential treatment of Alzheimer ’ s. Drug Deliv. 27, 864–875 (2020).; Meerloo, J. van., Kaspers, G. J. L. & Jacqueline, C. Cell Sensitivity Assays: The MTT Assay. in Cancer Cell Culture: Methods and Protocols (ed. Cree, I. A.) 237–245 (Humana Press, 2011). doi:10.1007/978-1-61779-080-5.; Balakrishnan, V., Ab Wab, H. A., Abdul Razak, K. & Shamsuddin, S. In vitro evaluation of cytotoxicity of colloidal amorphous silica nanoparticles designed for drug delivery on human cell lines. J. Nanomater. 2013, (2013).; Rahman, I. A., Vejayakumaran, P., Sipaut, C. S., Ismail, J. & Chee, C. K. Size-dependent physicochemical and optical properties of silica nanoparticles. Mater. Chem. Phys. 114, 328–332 (2009).; Azarshin, S., Moghadasi, J. & A Aboosadi, Z. Surface functionalization of silica nanoparticles to improve the performance of water flooding in oil wet reservoirs. Energy Explor. Exploit. 35, 685–697 (2017).; Holder, C. F. & Schaak, R. E. Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. ACS Nano 13, 7359–7365 (2019).; Cullity, B. . & Stock, S. . Diffraction III: Real Samples. in Elements of X-ray diffraction 171–189 (2014).; Pretsch, E., Bühlmann, P. & Badertscher, M. Structure determination of organic compounds: Tables of spectral data. Structure Determination of Organic Compounds: Tables of Spectral Data (2009). doi:10.1007/978-3-540-93810-1.; Tatulian, S. A. Structural Characterization of Membrane Proteins and Peptides by FTIR and ATR-FTIR Spectroscopy. in Lipid-Protein Interactions: Methods and Protocols, Methods in Molecular Biology 177–2018 (2013). doi:10.1007/978-1-62703-275-9_9.; Guleria, A. et al. PEGylated Silicon oxide nanocomposites with blue photoluminescence prepared by a rapid electron-beam irradiation approach: applications in IFE-based Cr (VI) sensing and cell-imaging. Colloids Surfaces A Physicochem. Eng. Asp. 640, 128483 (2022).; Alizadeh, L. et al. AS1411 aptamer-functionalized chitosan-silica nanoparticles for targeted delivery of epigallocatechin gallate to the SKOV-3 ovarian cancer cell lines. J. Nanoparticle Res. 22, (2020).; Rangel-Muñoz, N., González-Barrios, A. F., Pradilla, D., Osma, J. F. & Cruz, J. C. Novel bionanocompounds: Outer membrane protein a and lacasse co-immobilized on magnetite nanoparticles for produced water treatment. Nanomaterials 10, 1–22 (2020).; Lin, Z., Wu, Y. & Bi, Y. Rapid synthesis of SiO2 by ultrasonic-assisted Stober method as controlled and pH-sensitive drug delivery. J Nanopart Res 20, 304 (2018).; Ren, G., Su, H. & Wang, S. The combined method to synthesis silica nanoparticle by Stöber process. J. Sol-Gel Sci. Technol. (2020) doi:10.1007/s10971-020-05322-y.; Li, L. et al. Unexpected Size Effect: The Interplay between Different- Sized Nanoparticles in Their Cellular Uptake. Small 15, 1–8 (2019).; Chenthamara, D. et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 23, 1–29 (2019).; Price, G. & Patel., D. A. Drug Bioavailability. StatPearls https://www.ncbi.nlm.nih.gov/books/NBK557852/ (2020).; Shnoudeh, A. J. et al. Synthesis, Characterization, and Applications of Metal Nanoparticles. in Biomaterials and Bionanotechnology (ed. Inc, E.) 527–611 (2019). doi:https://doi.org/10.1016/B978-0-12-814427-5.00015-9.; Kunc, F. et al. Quantification of surface functional groups on silica nanoparticles: Comparison of thermogravimetric analysis and quantitative NMR. Analyst 144, 5589–5599 (2019).; Alan, B. O., Barisik, M. & Ozcelik, H. G. Roughness Effects on the Surface Charge Properties of Silica Nanoparticles. J. Phys. Chem. C 124, 7274–7286 (2020).; Niu, Y. et al. Synthesis of silica nanoparticles with controllable surface roughness for therapeutic protein delivery. J. Mater. Chem. B 3, (2015).; Martínez Bonilla, C. A., Torres Flóres, M.-H., Molina Velasco, D. R. & Kouznetsov, V. V. Surface characterization of thiol ligands on CdTe quantum dots analysis by 1H NMR and DOSY. New J. Chem. 43, 8452 (2019).; Potter, T. M., Neun, B. W., Ilinskaya, A. N. & Marina A, D. Detection of Bacterial Contamination in Nanoparticle Formulations by Agar Plate Test. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 19–22 (2018). doi:10.1007/978-1-4939-7352-1.; Soares, S., Sousa, J., Pais, A. & Vitorino, C. Nanomedicine: Principles, properties, and regulatory issues. Front. Chem. 6, 1–15 (2018).; International Organization for Standardization. ISO10993-5:2009(E) Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. 1–34 (2009).; Neun, B. W., Ilinskaya, A. N. & Dobrovolskaia, M. A. Updated Method for In Vitro Analysis of Nanoparticle Hemolytic Properties. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 91–102 (2018). doi:10.1007/978-1-4939-7352.; Dunn, K. W., Kamocka, M. M. & McDonald, J. H. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. - Cell Physiol. 300, 723–742 (2011).; Adler, J. & Parmryd, I. Quantifying colocalization by correlation: The pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytom. Part A 77, 733–742 (2010).; Ajie, H. et al. Characterization of the soluble all-carbon molecules C60 and C70. J. Phys. Chem. 94, 8630–8633 (1990).; W. Krätschmer, Lowell D. Lamb, K. F. & D. R. H. Solid C60: A new form of carbon. Nature 347, 354–358 (1990).; Brant, J. A., Labille, J., Robichaud, C. O. & Wiesner, M. Fullerol cluster formation in aqueous solutions: Implications for environmental release. J. Colloid Interface Sci. 314, 281–288 (2007).; Goswami, T. H., Singh, R., Alam, S. & Mathur, G. N. Thermal analysis: A unique method to estimate the number of substituents in fullerene derivatives. Thermochim. Acta 419, 97–104 (2004).; Hermanson, G. T. Antibody Modification and Conjugation. in Bioconjugate Techniques 879 (2013).; Podolsky, N. E. et al. Physico-chemical properties of C 60 (OH) 22–24 water solutions: Density, viscosity, refraction index, isobaric heat capacity and antioxidant activity. J. Mol. Liq. 278, 342–355 (2019).; Zhuravlev, L. . Concentration of hydroxyl groups on the surface of amorphous silicas. Langmuir 3, 316–318 (1987).; Babij, N. R. et al. NMR Chemical Shifts of Trace Impurities: Industrially Preferred Solvents Used in Process and Green Chemistry. Org. Process Res. Dev. 20, 661–667 (2016).; Kunc, F. et al. Quantification and Stability Determination of Surface Amine Groups on Silica Nanoparticles Using Solution NMR. Anal. Chem. 90, 13322–13330 (2018).; https://repositorio.unal.edu.co/handle/unal/82059; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
4
المؤلفون: Fernández Labandeira, Natalia
المساهمون: Rey-Rico, Ana, Martínez-Lage, Andrés, Universidade da Coruña. Facultade de Ciencias
المصدر: RUC. Repositorio da Universidade da Coruña
Universidad de Alicante (UA)مصطلحات موضوعية: Proliferación celular, Cell viability, Inclusion complex, Citotoxicidade, Cytotoxicity, Host-guet, Citotoxicidad, Complejo de inclusión, Liberación controlada de fármacos, Cytocompatibility, Viabilidad celular, Química supramolecular, Citocompatibilidade, Macrocycle, Macrociclo, Cellular internalization, Viabilidade celular, Imines, Supramolecular chemistry, Citocompatibilidad, Iminas, Internalización celular, Cell proliferation, Complexo de inclusión, Controlled drug delivery
-
5Dissertation/ Thesis
المؤلفون: Fernández Labandeira, Natalia
المساهمون: Rey-Rico, Ana, Martínez-Lage, Andrés, Universidade da Coruña. Facultade de Ciencias
مصطلحات موضوعية: Química supramolecular, Complejo de inclusión, Host-guet, Iminas, Macrociclo, Citocompatibilidad, Viabilidad celular, Internalización celular, Proliferación celular, Citotoxicidad, Liberación controlada de fármacos, Complexo de inclusión, Citocompatibilidade, Viabilidade celular, Citotoxicidade, Supramolecular chemistry, Inclusion complex, Imines, Macrocycle, Cytocompatibility, Cell viability, Cellular internalization, Cell proliferation, Cytotoxicity, Controlled drug delivery
Relation: http://hdl.handle.net/2183/29164
الاتاحة: http://hdl.handle.net/2183/29164
-
6
المؤلفون: Gallego Gómez, Iván
المساهمون: Granja Guillán, Juan R. (dir.), Montenegro García, Javier, Universidade de Santiago de Compostela. Departamento de Química Orgánica, Universidade de Santiago de Compostela: Facultade de Química
مصطلحات موضوعية: Enlace peptídico, Membrana, Péptidos penetrantes de membrana, Proteínas, Investigación::23 Química::2306 Química orgánica::230618 Estructuras de las moléculas orgánicas [Materias], Internalización celular
وصف الملف: application/pdf
-
7
المؤلفون: Castillo León, John Jairo, Novoa, Leidy Viviana, Martínez Ortega, Fernando, Escobar Rivero, Patricia
المصدر: Revista de la Universidad Industrial de Santander. Salud, Volume: 43, Issue: 1, Pages: 21-26, Published: APR 2011
مصطلحات موضوعية: Carbon nanotubes, quitosan, internalización celular, chitosan, cell internalization cells, Nanotubos de carbono, macrophages
وصف الملف: text/html
-
8Dissertation/ Thesis
المؤلفون: Gallego Gómez, Iván
المساهمون: Granja Guillán, Juan R. (dir.), Montenegro García, Javier, Universidade de Santiago de Compostela. Departamento de Química Orgánica, Universidade de Santiago de Compostela: Facultade de Química
مصطلحات موضوعية: Péptidos penetrantes de membrana, Proteínas, Membrana, Enlace peptídico, Internalización celular, Materias::Investigación::23 Química::2306 Química orgánica::230618 Estructuras de las moléculas orgánicas
وصف الملف: application/pdf
Relation: http://hdl.handle.net/10347/26425
الاتاحة: http://hdl.handle.net/10347/26425
-
9Dissertation/ Thesis
المؤلفون: Priegue Caamaño, Juan Manuel
المساهمون: Granja Guillán, Juan Ramón, Montenegro García, Javier, Universidade de Santiago de Compostela. Centro Internacional de Estudos de Doutoramento e Avanzados (CIEDUS), Universidade de Santiago de Compostela. Escola de Doutoramento Internacional en Ciencias e Tecnoloxía, Universidade de Santiago de Compostela. Programa de Doutoramento en Ciencia e Tecnoloxía Química
مصطلحات موضوعية: Química supramolecular, Péptidos anfifílicos, Química covalente dinámica, Internalización celular, Materias::Investigación::23 Química::2302 Bioquímica::230224-1 Síntesis de péptidos, Materias::Investigación::23 Química::2304 Química macromolecular::230403 Polímeros compuestos
Relation: http://hdl.handle.net/10347/18126
الاتاحة: http://hdl.handle.net/10347/18126
-
10Electronic Resource
المؤلفون: Martínez-Lage, Andrés, Universidade da Coruña. Facultade de Ciencias, Fernández Labandeira, Natalia
مصطلحات الفهرس: Química supramolecular, Complejo de inclusión, Host-guet, Iminas, Macrociclo, Citocompatibilidad, Viabilidad celular, Internalización celular, Proliferación celular, Citotoxicidad, Liberación controlada de fármacos, Complexo de inclusión, Citocompatibilidade, Viabilidade celular, Citotoxicidade, Supramolecular chemistry, Inclusion complex, Imines, Macrocycle, Cytocompatibility, Cell viability, Cellular internalization, Cell proliferation, Cytotoxicity, Controlled drug delivery, info:eu-repo/semantics/bachelorThesis
-
11Electronic Resource
المؤلفون: Granja Guillán, Juan Ramón, Montenegro García, Javier, Universidade de Santiago de Compostela. Centro Internacional de Estudos de Doutoramento e Avanzados (CIEDUS), Universidade de Santiago de Compostela. Escola de Doutoramento Internacional en Ciencias e Tecnoloxía, Universidade de Santiago de Compostela. Programa de Doutoramento en Ciencia e Tecnoloxía Química, Priegue Caamaño, Juan Manuel
-
12Electronic Resource
المؤلفون: Granja Guillán, Juan R. (dir.), Montenegro García, Javier, Universidade de Santiago de Compostela. Departamento de Química Orgánica, Universidade de Santiago de Compostela: Facultade de Química, Gallego Gómez, Iván