يعرض 1 - 12 نتائج من 12 نتيجة بحث عن '"Internalización celular"', وقت الاستعلام: 0.41s تنقيح النتائج
  1. 1

    المؤلفون: Ravelo Nieto, Eduardo

    المساهمون: Cruz Jiménez, Juan Carlos, Duarte Ruiz, Alvaro, Javier Cifuentes, Universidad de los Andes, Nuevos Materiales Nano y Supramoleculares, Departamento de Ingeniería Biomédica - Universidad de los Andes

    المصدر: Repositorio UN
    Universidad Nacional de Colombia
    instacron:Universidad Nacional de Colombia

    وصف الملف: 101 páginas; application/pdf

  2. 2
    Academic Journal
  3. 3
    Dissertation/ Thesis

    المؤلفون: Ravelo Nieto, Eduardo

    المساهمون: Cruz Jiménez, Juan Carlos, Duarte Ruiz, Alvaro, Javier Cifuentes, Universidad de los Andes, Nuevos Materiales Nano y Supramoleculares, Departamento de Ingeniería Biomédica - Universidad de los Andes

    وصف الملف: 101 páginas; application/pdf

    Relation: RedCol; LaReferencia; Hossen, S., Hossain, K., Basher, M. K., Mia, M. N. H. & Rahman, M. T. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies : A review. J. Adv. Res. 1, 1–74 (2018).; Gonçalves, M. C. Sol-gel Silica Nanoparticles in Medicine: A Natural Choice. Design, Synthesis and Products. Molecules 23, 2021 (2018).; McNeil, S. E. Unique Benefits of Nanotechnology to Drug Delivery and Diagnostics. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 3–8 (2011). doi:10.1007/978-1-60327-198-1.; Yokoyama, T. Basic Properties and Measuring Methods of Nanoparticles. in Nanoparticle Technology Handbook (eds. Naito, M., Yokoyama, T., Hosokawa, K. & Nogi, K.) 3–48 (2018).; McNeil, S. E. Evaluating Nanomedicines: Obstacles and Advancements. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 3–16 (2018). doi:10.1007/978-1-4939-7352-1.; Barua, S. & Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nanotoday 9, 223–243 (2014).; Degors, I. M. S., Wang, C., Rehman, Z. U. & Zuhorn, I. S. Carriers Break Barriers in Drug Delivery : Endocytosis and Endosomal Escape of Gene Delivery Vectors Published as part of the Accounts of Chemical Research special issue “ Nanomedicine and Beyond ” . Acc. Chem. Res. 52, 1750–1760 (2019).; Ke, P. C., Lin, S., Parak, W. J., Davis, T. P. & Caruso, F. A Decade of the Protein Corona. ACS Nano 11, 11773–11776 (2017).; Monopoli, M. P., Åberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012).; Zhang, R., Qin, X., Kong, F., Chen, P. & Pan, G. Improving cellular uptake of therapeutic entities through interaction with components of cell membrane. Drug Deliv. 26, 328–342 (2019).; Mosquera, J., García, I. & Liz-Marzán, L. M. Cellular Uptake of Nanoparticles versus Small Molecules: A Matter of Size. Acc. Chem. Res. 51, 2305–2313 (2018).; Selby, L. I., Cortez-Jugo, C. M., Such, G. K. & Johnston, A. P. R. Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 9, (2017).; Parenti, G., Pignata, C., Vajro, P. & Salerno, M. New strategies for the treatment of lysosomal storage diseases. Int. J. Mol. Med. 31, 11–20 (2013).; Sun, A. Lysosomal storage disease overview. Ann. Transl. Med. 6, 476.-476. (2018).; Hillaireau, H. & Couvreur, P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci. 66, 2873–2896 (2009).; Behzadi, S. et al. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017).; Stober, W. & Fink, A. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. collod interface Sci. 26, 62–69 (1968).; Shi, S., Chen, F. & Cai, W. Biomedical applications of functionalized hollow mesoporous silica nanoparticles: Focusing on molecular imaging. Nanomedicine 8, 2027–2039 (2013).; Singh, P., Srivastava, S. & Singh, S. K. Nanosilica: Recent Progress in Synthesis, Functionalization, Biocompatibility, and Biomedical Applications. ACS Biomater. Sci. Eng. 5, 4882–4898 (2019).; Hermanson, G. T. Microparticles and Nanoparticles. in Bioconjugate Techniques 549–587 (2013).; Kazemzadeh, H. & Mozafari, M. Fullerene-based delivery systems. Drug Discov. Today 24, 898–905 (2019).; Mi, P., Cabral, H. & Kataoka, K. Ligand-Installed Nanocarriers toward Precision Therapy. Adv. Mater. 32, 1–29 (2020).; Smith, S. A., Selby, L. I., Johnston, A. P. R. & Such, G. K. The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery. Bioconjugate Chemistry vol. 30 263–272 (2019).; Ahmad, A., Khan, J. M. & Haque, S. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles. Biochimie 160, 61–75 (2019).; Chakraborty, S., Dhakshinamurthy, G. S. & Misra, S. K. Tailoring of physicochemical properties of nanocarriers for effective anti-cancer applications. J. Biomed. Mater. Res. - Part A 105, 2906–2928 (2017).; Biffi, S., Voltan, R., Bortot, B., Zauli, G. & Secchiero, P. Actively targeted nanocarriers for drug delivery to cancer cells. Expert Opin. Drug Deliv. 16, 481–496 (2019).; Kanwal, U. et al. Advances in nano-delivery systems for doxorubicin: an updated insight. J. Drug Target. 26, 296–310 (2018).; Cuellar, M. et al. Novel BUF2-magnetite nanobioconjugates with cell-penetrating abilities. Int. J. Nanomedicine 13, 8087–8094 (2018).; Perez, J. et al. Cell-Penetrating And Antibacterial BUF-II Nanobioconjugates: Enhanced Potency Via Immobilization On Polyetheramine-Modified Magnetite Nanoparticles. Int. J. Nanomedicine 14, 8483–8497 (2019).; López-Barbosa, N. et al. Magnetite-OmpA nanobioconjugates as cell- penetrating vehicles with endosomal escape abilities. ACS Biomater. Sci. Eng. 6, 415–424 (2019).; Duarte-Ruiz, Á., Echegoyen, L., Aya, A. & Gómez-Baquero, F. A new method to prepare an e,e,e trisadduct of C60 using a protection-deprotection sequence. J. Mex. Chem. Soc. 53, 169–173 (2009).; Duarte-Ruiz, A., Wurst, K. & Kräutler, B. The orthogonal (e,e,e)-tris-adduct of 9,10-dimethylanthracene with C 60-fullerene: A hidden cornerstone of fullerene chemistry. Preliminary communication. Helv. Chim. Acta 91, 1401–1408 (2008).; Torres Palacio, P., Cano Beníte, C. A. & Duarte Ruiz, Á. Self-assembly of a supramolecular square between [ni(Dppe)(tof)2] and 4,4′-bipyridine. Rev. Colomb. Quim. 42, 48–55 (2013).; Cano-Benítez, C. A., Metta-Magaña, A. J. & Duarte-Ruiz, Á. Crystal structure at 100 K of bis[1,2-bis(diphenylphosphanyl)ethane]nickel(II) bis(trifluoromethanesulfonate): A possible negative thermal expansion molecular material. Acta Crystallogr. Sect. E Crystallogr. Commun. 74, 1678–1681 (2018).; Duarte-Ruiz, A., Iuele, H., Torres-Cortés, S., Meléndez, A. & Chaur, M. N. Physical and Inorganic Chemistry Synthesis and characterization of C60 and C70 acetylacetone monoadducts and study of their photochemical properties for potential application in solar cells Síntesis y caracterización de monoaductos de C60 y C70. Revista 50, 86–97 (2021).; Neti, V. S. P. K. et al. High-yield, regiospecific bis-functionalization of C70 using a diels–alder reaction in molten anthracene. Chem. Commun. 50, 10584–10587 (2014).; Duarte-Ruiz, Á. et al. Synthesis and structure of [Na4(DMSO)15][(I 3)3(I)]. Self-assembly of hexacoordinated sodium. Chem. Commun. 47, 7110–7112 (2011).; Yokoyama, T. Basic Properties and Measuring Methods of Nanoparticles. in Nanoparticle Technology Handbook 3–8 (2018).; Kamyshny, A. & Magdassi, S. Aqueous Dispersions of Metallic Nanoparticles. in Nanoscience 747–778 (2010).; Hosokawa, M., Nogi, K., Naito, M. & Yokoyama, T. Basic Properties And Measuring Methods Of Nanoparticles. in Nanoparticle Technology Handbook 5–9 (2007).; Hermanson, G. T. Silane Coupling Agents. in Bioconjugate Techniques 535–548 (2013).; Deetz, J. D. et al. Reactive Molecular Dynamics Simulations of the Silanization of Silica Substrates by Methoxy- and Hydroxysilanes. Langmuir 1, 1–24 (2016).; Hermanson, G. T. Homobifunctional Crosslinkers. in Bioconjugate Techniques 275–298 (2013).; Hermanson, G. T. Zero-Length Crosslinkers. in Bioconjugate Techniques 259–274 (2013).; Voet, D. & Voet, I. Lipids and Membranes. in Biochemistry 386–466 (2011).; Mayor, S., Parton, R. G. & Donaldson, J. G. Clathrin-independent pathways of endocytosis. Cold Spring Harb. Perspect. Biol. 6, (2014).; Podinovskaia, M. & Spang, A. The Endosomal Network: Mediators and Regulators of Endosome Maturation. in Endocytosis and Signaling 1–38 (2018). doi:https://doi.org/10.1007/978-3-319-96704-2.; Cupic, K. I., Rennick, J. J., Johnston, A. P. R. & Such, G. K. Controlling endosomal escape using nanoparticle composition : current progress and future perspectives. Nanomedicine 14, 215–223 (2019).; Hermanson, G. T. Introduction to Bioconjugation. in Bioconjugate Techniques 1–125 (2013).; Camargo, M. & Groot, H. El secreto antimicrobiano de las histonas. Hipótesis, Apunt. científicos uniandinos 16, 14–16 (2014).; Park, C. B., Kim, M. S. & Kim, S. C. A Novel Antimicrobial Peptide from Bufo bufo gargarizans. Biochem. Biophys. Res. Commun. 218, 408–413 (1996).; Park, C. B., Yi, K., Matsuzaki, K., Kim, M. S. & Kim, S. C. Structure – activity analysis of buforin II , a histone H2A-derived antimicrobial peptide : The proline hinge is responsible for the cell-penetrating ability of buforin II. PNAS 97, 8245–8250 (2000).; Smith, S. G. J., Mahon, V., Lambert, M. A. & Fagan, R. P. A molecular Swiss army knife : OmpA structure , function and expression. FEMS Microbiol Lett 273, 1–11 (2007).; Pautsch, A. & Schulz, G. E. Structure of the outer membrane protein A transmembrane domain. Nat. Struct. Biol. 5, 1013–1017 (1998).; Shukla, T., Upmanyu, N., Pandey, S. P. & Sudheesh, M. S. Site-specific drug delivery, targeting, and gene therapy. in Nanoarchitectonics in Biomedicine 473–505 (2019).; Kim, W. et al. A reliable approach for assessing size-dependent effects of silica nanoparticles on cellular internalization behavior and cytotoxic mechanisms. Int. J. Nanomedicine 14, 7375–7387 (2019).; Goodarzi, S., Da Ros, T., Conde, J., Sefat, F. & Mozafari, M. Fullerene: biomedical engineers get to revisit an old friend. Mater. Today 20, 460–480 (2017).; Semenov, K. N. et al. Fullerenols: Physicochemical properties and applications. Prog. Solid State Chem. 44, 59–74 (2016).; Chiang, L. Y., Wang, L. Y., Swirczewski, J. W., Soled, S. & Cameron, S. Efficient Synthesis of Polyhydroxylated Fullerene Derivatives via Hydrolysis of Polycyclosulfated Precursors. J. Org. Chem. 59, 3960–3968 (1994).; Li, J. et al. C60 fullerol formation catalysed by quaternary ammonium hydroxides. J. Chem. Soc. Chem. Commun. 1784–1785 (1993) doi:10.1039/C39930001784.; Wang, S., He, P., Zhang, J. M., Jiang, H. & Zhu, S. Z. Novel and efficient synthesis of water-soluble [60]fullerenol by solvent-free reaction. Synth. Commun. 35, 1803–1808 (2005).; Gomez, S. & Duarte, A. Síntesis de fulleroles a partir de un derivado bromado de C60. Revista Colombiana de Quimica vol. 38 83–95 (2009).; Afreen, S., Kokubo, K., Muthoosamy, K. & Manickam, S. Hydration or hydroxylation: Direct synthesis of fullerenol from pristine fullerene [C60] via acoustic cavitation in the presence of hydrogen peroxide. RSC Adv. 7, 31930–31939 (2017).; Kokubo, K., Shirakawa, S., Kobayashi, N., Aoshima, H. & Oshima, T. Facile and scalable synthesis of a highly hydroxylated water-soluble fullerenol as a single nanoparticle. Nano Res. 4, 204–215 (2011).; Kokubo, K., Matsubayashi, K., Tategaki, H., Takada, H. & Oshima, T. Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano 2, 327–333 (2008).; Planque, M. R. R. De, Aghdaei, S., Roose, T. & Morgan, H. Electrophysiological Characterization of Membrane Disruption by Nanoparticles. ACS Nano 5, 3599–3606 (2011).; Chithrani, B. D., Ghazani, A. A. & Chan, W. C. W. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett. 6, 662–668 (2006).; Jiang, W. E. N., Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008).; Chaudhuri, A., Battaglia, G. & Golestanian, R. The effect of interactions on the cellular uptake of nanoparticles. Phys. Biol. 8, 1–9 (2011).; Soenen, S. et al. Cytotoxic Effects of Gold Nanoparticles: A Multiparametric Study. ACS Nano 6, 5767–5783 (2012).; Edrissi, M., Soleymani, M. & Adinehnia, M. Synthesis of Silica Nanoparticles by Ultrasound-Assisted Sol-Gel Method : Optimized by Taguchi Robust Design. Chem. Eng. Technol. 34, 1813–1819 (2011).; Kovač, T., Borišev, I., Crevar, B., Kenjerić, F. Č. & Ko, M. Fullerol C60(OH)24 nanoparticles modulate aflatoxin B 1 biosynthesis in Aspergillus flavus. Sci. Rep. 60, 1–8 (2018).; Kinnear, C., Moore, T. L., Rodriguez-lorenzo, L., Rothen-rutishauser, B. & Petri-fink, A. Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chem. Rev. 117, 11476–11521 (2017).; Li, Y. & Gu, N. Thermodynamics of Charged Nanoparticle Adsorption on Charge-Neutral Membranes : A Simulation Study. J. Phys. Chem. 114, 2749–2754 (2010).; Cho, E. C., Xie, J., Wurm, P. A. & Xia, Y. Understanding the Role of Surface Charges in Cellular Adsorption versus Internalization by Selectively Removing Gold Nanoparticles on the Cell Surface with a I 2 / KI Etchant 2009. Nano Lett. 9, 1080–1084 (2009).; Mahmoudi, M. et al. Interaction of stable colloidal nanoparticles with cellular membranes. Biotechnol. Adv. 1, 1–14 (2014).; Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–51 (2015).; Adijanto, J. & Naash, M. I. Nanoparticle-based technologies for retinal gene therapy. Eur. J. Pharm. Biopharm. 1, 1–15 (2015).; Rüter, C., Buss, C., Scharnert, J., Heusipp, G. & Schmidt, M. A. A newly identified bacterial cell-penetrating peptide that reduces the transcription of pro-inflammatory cytokines. J. Cell Sci. 123, 2190–2198 (2010).; Akishiba, M. et al. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide. Nat. Chem. 9, 751–761 (2017).; Sun, T. et al. Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angew. Rev. 53, 2–47 (2014).; Lin, G. et al. Non-viral gene therapy using multifunctional nanoparticles : Status, challenges, and opportunities. Coord. Chem. Rev. J. 374, 133–152 (2018).; Kim, I., Joachim, E., Choi, H. & Kevin, K. K. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine Nanotechnology, Biol. Med. 1–10 (2015) doi:10.1016/j.nano.2015.03.004.; Schuh, R. S., Baldo, G. & Teixeira, H. F. Nanotechnology applied to treatment of mucopolysaccharidoses. Expert Opin. Drug Deliv. 13, 1709–1718 (2016).; Aguilera-Segura, S. M. et al. Advances in Computational Biology Proceedings of the 2nd Colombian Congress on Computational Biology and Bioinformatics (CCBCOL). in Escherichia coli´s OmpA as Biosurfactant for Cosmetic Industry: Stability Analysis and Experimental Validation Based on Molecular Simulations 265–272 (2014). doi:10.1007/978-3-319-01568-2.; Shafqat, S. S. et al. Development of amino-functionalized silica nanoparticles for efficient and rapid removal of COD from pre-treated palm oil effluent. J. Mater. Res. Technol. 8, 385–395 (2019).; Hermanson, G. T. Immobilization of Ligands on Chromatography Supports. in Bioconjugate Techniques 734 (2013).; Hermanson, G. T. PEGylation and Synthetic Polymer Modification. in Bioconjugate Techniques 786–838 (2013).; Levi-Polyachenko, N. H., Carroll, D. L. & Stewart, J. H. Applications of Carbon-Based Nanomaterials for Drug Delivery in Oncology. in Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes (eds. Cataldo, F. & Milani, P.) 225 (2008).; Pautsch, A. & Schulz, G. E. High-resolution structure of the OmpA membrane domain. J. Mol. Biol. 298, 273–282 (2000).; Ravelo-Nieto, E., Duarte-Ruiz, A., Reyes, L. H. & Cruz, J. C. Synthesis and Characterization of a Fullerenol Derivative for Potential Biological Applications. Mater. Proc. 4, 15 (2020).; De Santiago, H. A., Gupta, S. K. & Mao, Y. On high purity fullerenol obtained by combined dialysis and freeze-drying method with its morphostructural transition and photoluminescence. Sep. Purif. Technol. 210, 927–934 (2019).; Potter, T. M., Neun, B. W., Ilinskaya, A. N. & Obrovolskaia, M. A. Detection of Bacterial Contamination in Nanoparticle Formulations by Agar Plate Test. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 19–22 (2018). doi:10.1007/978-1-4939-7352-1.; Muñoz-Camargo, C. et al. Unveiling the multifaceted mechanisms of antibacterial activity of buforin II and frenatin 2.3S peptides from skin micro-organs of the orinoco lime treefrog (Sphaenorhynchus lacteus). Int. J. Mol. Sci. 19, (2018).; Potter, T. M. et al. In Vitro Assessment of Nanoparticle Effects on Blood Coagulation. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 103–124 (2018). doi:10.1007/978-1-4939-7352-1.; Lopez-barbosa, N. et al. Multifunctional magnetite nanoparticles to enable delivery of siRNA for the potential treatment of Alzheimer ’ s. Drug Deliv. 27, 864–875 (2020).; Meerloo, J. van., Kaspers, G. J. L. & Jacqueline, C. Cell Sensitivity Assays: The MTT Assay. in Cancer Cell Culture: Methods and Protocols (ed. Cree, I. A.) 237–245 (Humana Press, 2011). doi:10.1007/978-1-61779-080-5.; Balakrishnan, V., Ab Wab, H. A., Abdul Razak, K. & Shamsuddin, S. In vitro evaluation of cytotoxicity of colloidal amorphous silica nanoparticles designed for drug delivery on human cell lines. J. Nanomater. 2013, (2013).; Rahman, I. A., Vejayakumaran, P., Sipaut, C. S., Ismail, J. & Chee, C. K. Size-dependent physicochemical and optical properties of silica nanoparticles. Mater. Chem. Phys. 114, 328–332 (2009).; Azarshin, S., Moghadasi, J. & A Aboosadi, Z. Surface functionalization of silica nanoparticles to improve the performance of water flooding in oil wet reservoirs. Energy Explor. Exploit. 35, 685–697 (2017).; Holder, C. F. & Schaak, R. E. Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. ACS Nano 13, 7359–7365 (2019).; Cullity, B. . & Stock, S. . Diffraction III: Real Samples. in Elements of X-ray diffraction 171–189 (2014).; Pretsch, E., Bühlmann, P. & Badertscher, M. Structure determination of organic compounds: Tables of spectral data. Structure Determination of Organic Compounds: Tables of Spectral Data (2009). doi:10.1007/978-3-540-93810-1.; Tatulian, S. A. Structural Characterization of Membrane Proteins and Peptides by FTIR and ATR-FTIR Spectroscopy. in Lipid-Protein Interactions: Methods and Protocols, Methods in Molecular Biology 177–2018 (2013). doi:10.1007/978-1-62703-275-9_9.; Guleria, A. et al. PEGylated Silicon oxide nanocomposites with blue photoluminescence prepared by a rapid electron-beam irradiation approach: applications in IFE-based Cr (VI) sensing and cell-imaging. Colloids Surfaces A Physicochem. Eng. Asp. 640, 128483 (2022).; Alizadeh, L. et al. AS1411 aptamer-functionalized chitosan-silica nanoparticles for targeted delivery of epigallocatechin gallate to the SKOV-3 ovarian cancer cell lines. J. Nanoparticle Res. 22, (2020).; Rangel-Muñoz, N., González-Barrios, A. F., Pradilla, D., Osma, J. F. & Cruz, J. C. Novel bionanocompounds: Outer membrane protein a and lacasse co-immobilized on magnetite nanoparticles for produced water treatment. Nanomaterials 10, 1–22 (2020).; Lin, Z., Wu, Y. & Bi, Y. Rapid synthesis of SiO2 by ultrasonic-assisted Stober method as controlled and pH-sensitive drug delivery. J Nanopart Res 20, 304 (2018).; Ren, G., Su, H. & Wang, S. The combined method to synthesis silica nanoparticle by Stöber process. J. Sol-Gel Sci. Technol. (2020) doi:10.1007/s10971-020-05322-y.; Li, L. et al. Unexpected Size Effect: The Interplay between Different- Sized Nanoparticles in Their Cellular Uptake. Small 15, 1–8 (2019).; Chenthamara, D. et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 23, 1–29 (2019).; Price, G. & Patel., D. A. Drug Bioavailability. StatPearls https://www.ncbi.nlm.nih.gov/books/NBK557852/ (2020).; Shnoudeh, A. J. et al. Synthesis, Characterization, and Applications of Metal Nanoparticles. in Biomaterials and Bionanotechnology (ed. Inc, E.) 527–611 (2019). doi:https://doi.org/10.1016/B978-0-12-814427-5.00015-9.; Kunc, F. et al. Quantification of surface functional groups on silica nanoparticles: Comparison of thermogravimetric analysis and quantitative NMR. Analyst 144, 5589–5599 (2019).; Alan, B. O., Barisik, M. & Ozcelik, H. G. Roughness Effects on the Surface Charge Properties of Silica Nanoparticles. J. Phys. Chem. C 124, 7274–7286 (2020).; Niu, Y. et al. Synthesis of silica nanoparticles with controllable surface roughness for therapeutic protein delivery. J. Mater. Chem. B 3, (2015).; Martínez Bonilla, C. A., Torres Flóres, M.-H., Molina Velasco, D. R. & Kouznetsov, V. V. Surface characterization of thiol ligands on CdTe quantum dots analysis by 1H NMR and DOSY. New J. Chem. 43, 8452 (2019).; Potter, T. M., Neun, B. W., Ilinskaya, A. N. & Marina A, D. Detection of Bacterial Contamination in Nanoparticle Formulations by Agar Plate Test. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 19–22 (2018). doi:10.1007/978-1-4939-7352-1.; Soares, S., Sousa, J., Pais, A. & Vitorino, C. Nanomedicine: Principles, properties, and regulatory issues. Front. Chem. 6, 1–15 (2018).; International Organization for Standardization. ISO10993-5:2009(E) Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. 1–34 (2009).; Neun, B. W., Ilinskaya, A. N. & Dobrovolskaia, M. A. Updated Method for In Vitro Analysis of Nanoparticle Hemolytic Properties. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 91–102 (2018). doi:10.1007/978-1-4939-7352.; Dunn, K. W., Kamocka, M. M. & McDonald, J. H. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. - Cell Physiol. 300, 723–742 (2011).; Adler, J. & Parmryd, I. Quantifying colocalization by correlation: The pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytom. Part A 77, 733–742 (2010).; Ajie, H. et al. Characterization of the soluble all-carbon molecules C60 and C70. J. Phys. Chem. 94, 8630–8633 (1990).; W. Krätschmer, Lowell D. Lamb, K. F. & D. R. H. Solid C60: A new form of carbon. Nature 347, 354–358 (1990).; Brant, J. A., Labille, J., Robichaud, C. O. & Wiesner, M. Fullerol cluster formation in aqueous solutions: Implications for environmental release. J. Colloid Interface Sci. 314, 281–288 (2007).; Goswami, T. H., Singh, R., Alam, S. & Mathur, G. N. Thermal analysis: A unique method to estimate the number of substituents in fullerene derivatives. Thermochim. Acta 419, 97–104 (2004).; Hermanson, G. T. Antibody Modification and Conjugation. in Bioconjugate Techniques 879 (2013).; Podolsky, N. E. et al. Physico-chemical properties of C 60 (OH) 22–24 water solutions: Density, viscosity, refraction index, isobaric heat capacity and antioxidant activity. J. Mol. Liq. 278, 342–355 (2019).; Zhuravlev, L. . Concentration of hydroxyl groups on the surface of amorphous silicas. Langmuir 3, 316–318 (1987).; Babij, N. R. et al. NMR Chemical Shifts of Trace Impurities: Industrially Preferred Solvents Used in Process and Green Chemistry. Org. Process Res. Dev. 20, 661–667 (2016).; Kunc, F. et al. Quantification and Stability Determination of Surface Amine Groups on Silica Nanoparticles Using Solution NMR. Anal. Chem. 90, 13322–13330 (2018).; https://repositorio.unal.edu.co/handle/unal/82059; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  4. 4
  5. 5
    Dissertation/ Thesis
  6. 6

    المؤلفون: Gallego Gómez, Iván

    المساهمون: Granja Guillán, Juan R. (dir.), Montenegro García, Javier, Universidade de Santiago de Compostela. Departamento de Química Orgánica, Universidade de Santiago de Compostela: Facultade de Química

    وصف الملف: application/pdf

  7. 7
  8. 8
    Dissertation/ Thesis

    المؤلفون: Gallego Gómez, Iván

    المساهمون: Granja Guillán, Juan R. (dir.), Montenegro García, Javier, Universidade de Santiago de Compostela. Departamento de Química Orgánica, Universidade de Santiago de Compostela: Facultade de Química

    وصف الملف: application/pdf

  9. 9
    Dissertation/ Thesis

    المؤلفون: Priegue Caamaño, Juan Manuel

    المساهمون: Granja Guillán, Juan Ramón, Montenegro García, Javier, Universidade de Santiago de Compostela. Centro Internacional de Estudos de Doutoramento e Avanzados (CIEDUS), Universidade de Santiago de Compostela. Escola de Doutoramento Internacional en Ciencias e Tecnoloxía, Universidade de Santiago de Compostela. Programa de Doutoramento en Ciencia e Tecnoloxía Química

  10. 10
  11. 11
  12. 12