يعرض 1 - 20 نتائج من 121 نتيجة بحث عن '"Insectos Utiles"', وقت الاستعلام: 0.62s تنقيح النتائج
  1. 1
    Conference

    المصدر: X Congreso Argentino de Citricultura. Concordia, Entre Ríos, Argentina. 6 - 9 de junio de 2023

    جغرافية الموضوع: South America, Argentina, Corrientes)

    Time: Bella Vista . (inhabited place) (World, South America, Argentina, Corrientes)

    وصف الملف: application/pdf

    Relation: info:eu-repograntAgreement/INTA/2019-43.PL444-001, Difusión de tecnologías disponibles y validadas para el sector Frutícola Correntino a través de estrategias de capacitación, difusión y comunicación; http://hdl.handle.net/20.500.12123/15325

  2. 2
    Academic Journal
  3. 3
  4. 4
  5. 5
    Academic Journal

    المؤلفون: Zenner de Polania, Ingeborg

    المساهمون: Producción Agrícola Sostenible

    مصطلحات موضوعية: OGM, Insectos útiles, Impacto ambiental

    وصف الملف: application/pdf

    Relation: Agrosavia; 26; 15; Revista Colombiana de Ciencias Hortícolas; Zenner-de-Polanía, I. (2021). Transgenic Bt maize in South-and Central America: the pros and cons. Revista Colombiana De Ciencias Hortícolas, 15(3), e12687. https://doi.org/10.17584/rcch.2021v15i3.12687; https://repository.udca.edu.co/handle/11158/4235; https://doi.org/10.17584/rcch.2021v15i3.12687; Universidad Pedagógica y Tecnológica de Colombia; https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/12687

  6. 6
    Academic Journal
  7. 7
    Dissertation/ Thesis

    المؤلفون: Arias Gómez, Manuela

    المساهمون: Duarte Gómez, Héctor William

    مصطلحات موضوعية: Apidae, Polinizadores, Bombus, Insectos útiles

    وصف الملف: 78 páginas; application/pdf

    Relation: Agrosavia; https://repository.udca.edu.co/handle/11158/5640; Universidad de Ciencias Aplicadas y Ambientales; UDCA; https://repository.udca.edu.co/

  8. 8
    Book
  9. 9
    Book

    المصدر: Instituto de Investigaciones de la Amazonía Peruana ; Repositorio Institucional - IIAP

    وصف الملف: application/pdf; text/plain; charset=utf-8

  10. 10
    Academic Journal

    المصدر: Biotechnology in the Agricultural and Agroindustrial Sector; Vol. 18 No. 2 (2020): July to December; 126-134 ; Biotecnología en el Sector Agropecuario y Agroindustrial; Vol. 18 Núm. 2 (2020): Julio a Diciembre; 126-134 ; 1909-9959 ; 1692-3561

    وصف الملف: application/pdf

    Relation: https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1549/1169; RODRÍGUEZ, A., PINO, J., ÁNGELES, S., GARCÍA, BARRÓN, A. y CALLEJAS, J. Valor nutritivo de larvas y pupas de gusano de seda (Bombyx mori L.) (Lepidoptera: Bombycidae). Revista Colombiana de Entomología, 42(1), 2016, p. 69–74.; ITALIA. ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA AGRICULTURA Y LA ALIMENTACIÓN (FAO). La contribución de los insectos a la seguridad alimentaria, los medios de vida y el medio ambiente ¿Qué es La entomología?. Roma (Italia): I, 2016.; ITALIA. ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA AGRICULTURA Y LA ALIMENTACIÓN (FAO). Insectos para alimentación y piensos. 2018. Disponible: http://www.fao.org/edible-insects/en/. [citado 9 octubre de 2018].; HENRY, M., GASCO, L., PICCOLO, G. and FOUNTOULAKI, E. Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Sciences & Technologies, 203(1), 2016, p. 1–22. doi:10.1016/j.anifeedsci.2015.03.001; MAKKAR, H., TRAN, G., HEUZÉ, V. y ANKERS, P. Uso de insectos como alimento para animales. Animal Feed Sciences & Technologies, 197, 2014, p. 1–33. doi:10.1016/j.anifeedsci.2014.07.008; RODRÍGUEZ, A., MONTER, A., MAZA, A., MARTÍNEZ, J., EHSAN, M. y LARA, F. Manual de Sericultura en Hidalgo: Principios básicos. Hidalgo (México): UPFIM, CONACYT, FOMIX, COCYTEH, 2012.; ANIMANATURALIS. Seda: historia, producción, y alternativas. Anima Naturalis Internacional. 2018. Disponible: https://www.animanaturalis.org/p/seda historia-produccion-y-alternativas [citado 9 octubre de 2018].; LETERME, P. y ESTRADA, F. Análisis de alimentos y forrajes: protocolos de laboratorio. Palmira (Colombia): 2016.; AIRAHUACHO, F. y VERGARA, V. Evaluación de dos niveles de energía digestible en base a los estándares nutricionales del NRC (1995) en dietas de crecimiento para cuyes (Cavia porcellus L.). Revista de investigación Veterinaria, 28(2), 2017, p. 255 – 264. doi: http://dx.doi.org/10.15381/rivep.v28i2.13079; PEREIRA, N., FERRARESE, M., MATSUSHITA, O. and DE SOUZA, N. Proximate composition and fatty acid profile of Bombyx mori L. chrysalis toast. Journal of Food Compositionals Analysis, 16(4), 2003, p. 451–457. doi: https://doi.org/10.1016/S0889-1575(03)00016-4; ROSTRO, B., QUINTERO, B., RAMOS, J., PINO, J.M., ÁNGELES, S., GARCÍA, A. y BARRERA, D. Análisis químico y nutricional de tres insectos comestibles de interés comercial en la zona arqueológica del municipio de San Juan Teotihuacán y en Otumba, en el estado de México. Interciencia, 37(12), 2012, p. 914–920.; MORALES, W., RODRÍGUEZ, V. y VERJAN, N. Parámetros productivos y económicos de gallinas ponedoras ISA Brown en segundo ciclo de producción suplementadas con aminoácidos no esenciales. Revista de Investigaciones Veterinarias del Perú, 29(2), 2018, p. 533. doi: http://dx.doi.org/10.15381/rivep.v29i2.14481; CHAVEZ, M., BERNAL, J., TÁMBARA, Y., PÉREZ, E. and SÁNCHEZ, A. Essential aminoacid contents of protein hydrolized supplements used in the diet of laying hens. Revista de Producción Animal, 29(2), 2017, p. 73-76.; ROSTAGNO, H., TEIXEIRA, L.F., LOPES, J., GOMES, P.C., FLÁVIA DE OLIVEIRA, R., CLEMENTINO, D., SOARES, A. e DE TOLEDO, S.L. Tablas brasileñas para aves y cerdos: composición de alimentos y requerimientos nutricionales. 3 ed. Vicosa (Brasil): Universidade Federal de Viçosa, 2011, 259 p.; PEREA, C., GARCÉS, Y., MUÑOZ, L., HOYOS, J. y GÓMEZ, J. Valoración económica del uso de ensilaje de residuos piscícolas en la alimentación de Oreochromis spp. Biotecnología en el Sector Agropecuario y Agroindustrial, 16(1), 2018, p. 43–51. doi: http://dx.doi.org/10.18684/bsaa.v16n1.623; GÓMEZ, G., ORTIZ, M., PEREA, C. and LOPEZ, F. Evaluación del ensilaje de vísceras de tilapia roja (Oreochromis spp) en alimentación de pollos de engorde. Biotecnología en el Sector Agropecuario y Agroindustrial, 12(1), 2014, p. 106–114.; PINO, M., RAMOS-ELORDUY, J. y MEDEIROS, C. Los insectos comestibles comercializados en los mercados de Cuautitlán de Romero Rubio, Estado de México, México. Sitientibus Serie. Ciencias Biológicas (Etnobiología), 6, 2006, p. 58–64.; VAN HUIS, A., VAN ITTERBEECK, J., KLUNDER, H., MERTENS, E., HALLORAN, A., MUIR, G. and VANTOMME, P. Edible insects future prospects for food and feed security. Rome (Italy): Wageningen UR FAO Forestry Paper, FAO, 2013, 171, ISSN 0258-6150.; CHEN, H., TIAN, J., WANG, Y, YANG, K., JI, H. and LI, J. Effects of dietary soybean oil replacement by silkworm, (Bombyx mori L.), chrysalis oil on growth performance, tissue fatty acid composition, and health status of juvenile jian carp, (Cyprinus carpio) var. Jian. Journal of the World Aquaculture Society, 48(3), 2017, p. 453–466. doi: https://doi.org/10.1111/jwas.12373; SANTURINO, C., GARCÍA, J., SIERRA, P., CASTRO, M., CALVO, M. y FONTECHA, J. Los insectos como complemento nutricional de la dieta: fuente de lípidos potencialmente bioactivos. Revista Alimentación, Nutrición y Salud, 23(2), 2016, p. 50-56.; JI, H., ZHANG, J.L., HUANG, J.Q., CHENG, X.F. and LIU, C. Effect of replacement of dietary fish meal with silkworm pupae meal on growth performance, body composition, intestinal protease activity and health status in juvenile Jian carp (Cyprinus carpio var. Jian). Journal of the Aquaculture Research, 46(5), 2015, p. 1209–1221. doi. https://doi.org/10.1111/are.12276; MONTER, J., TIRADO, J., ZAMUDIO, P., RÍOS, C., ORNELAS, J., SALGADO, R., ESPINOSA, V. y HERNÁNDEZ, F. Extracción y caracterización de propiedades fisicoquímicas, morfológicas y estructurales de quitina y quitosoano de Brachystola magna (Girard). Revista Mexicana de Ingeniería Química, 15(3), 2016, p.749-761.; LÓPEZ, M., GIRALDO, G. y MEJÍA-DORIA, C. Evaluación de la capacidad de la quitina, para atrapar grasa. Agronomía Colombiana, 34(1), 2016, p. 2–4. Doi:10.15446/agron.colomb; SALCEDO, L., NÚÑEZ, E., TORRES, O., ARAGADVAY, M. and YUNGAN, G. Effects physiopathological of secondary compounds in monogastric: A Review. Journal Selva Andina Animal Science, 4(1), 2017, p. 82–92.; NUÑEZ, O. Los costos de la alimentación en la producción pecuaria. Journal Selva Andina Animal Science, 4(2), 2017, p. 93–94.; ANANKWARE, J., PAARECHUGA, K., OSECKRE, E. and OBENGH, D. Insects as Food and Feed: A Review. International Journal of Agricultural Research and Review, 3(1), 2015, p. 143–151.; CARTAY, R. Between shock and disgust: the consumption of insects in the amazon basin. the case of Rhynchophorus palmarum (Coleoptera Curculionidae). Revista Colombiana de Antropología, 54(2), 2018, p. 143–159. doi: http://dx.doi.org/10.22380/2539472x.465; MARISCAL, G. y RAMIREZ, E. Determinación de la digestibilidad de la proteína, aminoácidos y energía de canola integral en cerdos en crecimiento. Revista Mexicana de Ciencias Pecuarias, 8(3), 2017, p. 297–304. doi: http://dx.doi.org/10.22319/rmcp.v8i3.4505.; FUNDACIÓN ESPAÑOLA PARA EL DESARROLLO DE LA NUTRICIÓN ANIMAL (FEDNA). Tablas de composición y valor nutritivo de alimentos para la fabricación de piensos compuestos. 2010. Disponible https://www.fundacionfedna.org/ingredientes-para-piensos [citado 10, septiembre de 2018]. [30] CALDERON, V., CHURACUTIPA, M., SALAS, A., BARRIGA, M. and ARANIBAR, M. Effect of the inclusion of silage of trout residues in pigs feed and its effect on the productive performance and the taste of meat. Revista de Investigaciones Veterinarias del Perú, 28(2), 2017, p. 265–274. doi:10.15381/rivep.v28i2.13055; https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1549

  11. 11
    Academic Journal

    المصدر: Revista Agronómica del Noroeste Argentino 40 (1) : 9-12. (junio 2020)

    جغرافية الموضوع: South America, Argentina)

    Time: Entre Ríos . (province) (World, South America, Argentina)

    وصف الملف: application/pdf

    Relation: info:eu-repograntAgreement/INTA/PNHFA-1106082/AR./Tecnología apropiada para la sustentabilidad de sistemas hortíflorícolas con énfasis en cultivos protegidos.; info:eu-repograntAgreement/INTA/ERIOS-1263305/AR./Contribuir al desarrollo socio económico del noreste de Entre Ríos, en un marco de competitividad, salud ambiental y equidad social.; http://hdl.handle.net/20.500.12123/10510; https://ranar.faz.unt.edu.ar/index.php/ranar/article/view/24

  12. 12
    Academic Journal
  13. 13
    Book
  14. 14
    Book
  15. 15
    Academic Journal
  16. 16
  17. 17
    Academic Journal
  18. 18
    Book
  19. 19
    Dissertation/ Thesis

    المؤلفون: Pineda Galindo, Lina María

    المساهمون: Cadavid Restrepo, Gloria Ester, Saldamando Benjumea, Clara Ines, Microbiodiversidad y Bioprospección

    وصف الملف: 126 páginas; application/pdf

    Relation: LaReferencia; Abdelkader, A. A., Khalil, M. S., & Mohamed, M. S. M. (2022). Simultaneous biodegradation of λ-cyhalothrin pesticide and Vicia faba growth promotion under greenhouse conditions. AMB Express, 12(1). https://doi.org/10.1186/s13568-022-01383-0; Acevedo, F. E., Peiffer, M., Tan, C. W., Stanley, B. A., Stanley, A., Wang, J., Jones, A. G., Hoover, K., Rosa, C., Luthe, D., & Felton, G. (2017). Fall armyworm-associated gut bacteria modulate plant defense responses. Molecular Plant-Microbe Interactions, 30(2), 127–137. https://doi.org/10.1094/MPMI-11-16-0240-R; Álvarez Yepes, D. A. (2019). Controladores de los biotipos de arroz y maíz de Spodoptera frugiperda en especies de Meliaceae. Universidad Nacional de Colombia; Ayres, J. S., & Schneider, D. S. (2012). Tolerance of infections. In Annual Review of Immunology (Vol. 30, pp. 271–294). https://doi.org/10.1146/annurev-immunol-020711-075030; Badii, M. H., & Garza-Almanza, V. (2015). Resistencia en Insectos, Plantas y Microorganismos. Cultura Científica Y Tecnológica, (18). Recuperado a partir de https://erevistas.uacj.mx/ojs/index.php/culcyt/article/view/460; Bajkul, M. M., & Mahavidyalaya, M. (2019). Effect of Lambda-cyhalothrin (LCT) and toxicity on human with preventive measure. In Article in International Journal of Scientific and Engineering Research. https://www.researchgate.net/publication/342145139; Berasategui, A., Shukla, S., Salem, H., & Kaltenpoth, M. (2016). Potential applications of insect symbionts in biotechnology. In Applied Microbiology and Biotechnology (Vol. 100, Issue 4, pp. 1567–1577). Springer Verlag. https://doi.org/10.1007/s00253-015-7186-9; Bezerra, A., Gonzales Rodrigues, J., Kanno, R., Amaral, F., Malaquias, J., Silva-Brandão, K., Consoli, F., & Omoto, C. (2021). Susceptibility monitoring and the molecular characterization of resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to lambda-cyhalothrin and chlorpyrifos. https://doi.org/10.1101/2021.11.17.469006; Bhatt, P., Bhatt, K., Huang, Y., Lin, Z., & Chen, S. (2020). Esterase is a powerful tool for the biodegradation of pyrethroid insecticides. In Chemosphere (Vol. 244). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2019.125507; Bhatt, P., Bhatt, K., Sharma, A., Zhang, W., Mishra, S., & Chen, S. (2021). Biotechnological basis of microbial consortia for the removal of pesticides from the environment. In Critical Reviews in Biotechnology (Vol. 41, Issue 3, pp. 317–338). Taylor and Francis Ltd. https://doi.org/10.1080/07388551.2020.1853032; Birolli, W. G., Dos Santos, A., Pilau, E., & Rodrigues-Filho, E. (2021). New Role for a Commercially Available Bioinsecticide: Bacillus thuringiensis Berliner Biodegrades the Pyrethroid Cypermethrin. Environmental Science and Technology, 55(8), 4792–4803. https://doi.org/10.1021/acs.est.0c06907; Birolli, W. G., Arai, M. S., Nitschke, M., & Porto, A. L. M. (2019). The pyrethroid (±)-lambda-cyhalothrin enantioselective biodegradation by a bacterial consortium. Pesticide Biochemistry and Physiology, 156, 129–137. https://doi.org/10.1016/j.pestbp.2019.02.014; Birolli, W. G., Borges, E. M., Nitschke, M., Romão, L. P. C., & Porto, A. L. M. (2016). Biodegradation Pathway of the Pyrethroid Pesticide Esfenvalerate by Bacteria from Different Biomes. Water, Air, and Soil Pollution, 227(8). https://doi.org/10.1007/s11270-016-2968-y; Birolli, W. G., Vacondio, B., Alvarenga, N., Seleghim, M. H. R., & Porto, A. L. M. (2018). Enantioselective biodegradation of the pyrethroid (±)-lambda-cyhalothrin by marine-derived fungi. Chemosphere, 197, 651–660. https://doi.org/10.1016/j.chemosphere.2018.01.054; Blanton, A. G., & Peterson, B. F. (2020). Symbiont-Mediated Insecticide Detoxification as an Emerging Problem in Insect Pests. In Frontiers in Microbiology (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2020.547108; Breckenridge, C. B., Holden, L., Sturgess, N., Weiner, M., Sheets, L., Sargent, D., Soderlund, D. M., Choi, J. S., Symington, S., Clark, J. M., Burr, S., & Ray, D. (2009). Evidence for a separate mechanism of toxicity for the Type I and the Type II pyrethroid insecticides. NeuroToxicology, 30(SUPPL.). https://doi.org/10.1016/j.neuro.2009.09.002; Calonge, M., Pérez Pertejo, Y., Ordóñez, C., Reguera, R., Balaña Fouce, R., & Ordóñez, D. (2002). Determinación de residuos de siete insecticidas organofosforados en frutas mediante cromatografía de gases con detector de nitrógeno fósforo y confirmación por espectrometría de masas. Revista de Toxicología.; Cano-Calle, D. (2020). Caracterización Molecular de trips (Thysanoptera: Thripidae) procedentes de cultivos comerciales de aguacate (Persea americana Mill) del oriente antioqueño y estudio de la diversidad microbiana asociada. Universidad Nacional de Colombia.; Cano-Calle, D., R. E. Arango-Isaza, and C. I. Saldamando-Benjumea. (2015). Molecular identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Colombia by using a PCR-RFLP of the mitochondrial gene cytochrome oxydase I (COI) and a PCR of the gene FR (For Rice). Ann. Entomol. Soc. Am. 108: 172-180. https://doi.org/10.1093/aesa/sav001.; Cañas-Hoyos, N., Lobo-Echeverri, T. & Saldamando-Benjumea, C.I. (2017). Chemical composition of female sexual glands of Spodoptera frugiperda corn and rice strains from Tolima, Colombia. Southwestern Entomologist 42: 375–394. https://doi.org/10.3958/059.042.0207.; Castañeda Molina, Y. del P. (2021). Evaluación de la microbiota del tracto gastrointestinal del biotipo de maíz de Spodoptera frugiperda en presencia de endotoxinas del Bacillus thuringiensis.; Castañeda-Molina Y, Marulanda-Moreno SM, Saldamando-Benjumea C, Junca H, Moreno-Herrera CX,Cadavid- Restrepo G. (2023). Microbiome analysis of Spodoptera frugiperda (Lepidoptera, Noctuidae) larvae exposed to Bacillus thuringiensis (Bt) endotoxins. PeerJ 11:e15916. https://doi.org/10.7717/peerj.15916; Cavichiolli De Oliveira, N. (2021). Gut microbiota of the rice and corn strains of Spodoptera frugiperda: diversity and function.Escuela superior de agricultura Luiz de Queiroz. https://doi.org/10.11606/T.11.2021.tde-09092021-151537; Chen, S., Deng, Y., Chang, C., Lee, J., Cheng, Y., Cui, Z., Zhou, J., He, F., Hu, M., & Zhang, L. H. (2015). Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19. Scientific Reports, 5. https://doi.org/10.1038/srep08784; Cheng, D., Chen, S., Huang, Y., Pierce, N. E., Riegler, M., Yang, F., Zeng, L., Lu, Y., Liang, G., & Xu, Y. (2019). Symbiotic microbiota may reflect host adaptation by resident to invasive ant species. PLoS Pathogens, 15(7). https://doi.org/10.1371/journal.ppat.1007942; Claus, S. P., Guillou, H., & Ellero-Simatos, S. (2016). The gut microbiota: A major player in the toxicity of environmental pollutants? In npj Biofilms and Microbiomes (Vol. 2). Nature Publishing Group. https://doi.org/10.1038/npjbiofilms.2016.3; Colman, D. R., Toolson, E. C., & Takacs-Vesbach, C. D. (2012). Do diet and taxonomy influence insect gut bacterial communities? Molecular Ecology, 21(20), 5124–5137. https://doi.org/10.1111/j.1365-294X.2012.05752.x; da Silva, D. M., Bueno, A. de F., Andrade, K., Stecca, C. dos S., Neves, P. M. O. J., & de Oliveira, M. C. N. (2017). Biology and nutrition of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on different food sources. Scientia Agricola, 74(1), 18–31. https://doi.org/10.1590/1678-992x-2015-0160; Dantán González, E., & Salgado-Morales, R. (2021). El Hologenoma, una herramienta para el estudio de los problemas ambientales ocasionados por xenobióticos. Revista Del Centro de Investigación de La Universidad La Salle, 14(56), 17–36. https://doi.org/10.26457/recein.v14i56.2862; de Almeida, L. G., De Moraes, L. A. B., Trigo, J. R., Omoto, C., & Cônsoli, F. L. (2017). The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation. PLoS ONE, 12(3). https://doi.org/10.1371/journal.pone.0174754; Deshmukh, S., Pavithra, H. B., Kalleshwaraswamy, C. M., Shivanna, B. K., & Mota-Sanchez, D. (2020). Field efficacy of insecticides for management of invasive fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) on maize in India. Floria Entomologist. https://doi.org/10.1653/024.103.0211; Devine, G. J., Eza, D., Ogusuku, E., & Furlong, M. J. (2008). Uso de insecticidas: Contexto y consecuencias ecológicas. In Rev Peru Med Exp Salud Publica (Vol. 25, Issue 1).; Dillon, R. J., & Dillon, V. M. (2004). The Gut Bacteria of Insects: Nonpathogenic Interactions. In Annual Review of Entomology (Vol. 49, pp. 71–92). https://doi.org/10.1146/annurev.ento.49.061802.123416; dos Santos, K. B., Neves, P., Meneguim, A. M., dos Santos, R. B., dos Santos, W. J., Boas, G. V., Dumas, V., Martins, E., Praça, L. B., Queiroz, P., Berry, C., & Monnerat, R. (2009). Selection and characterization of the Bacillus thuringiensis strains toxic to Spodoptera eridania (Cramer), Spodoptera cosmioides (Walker) and Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). Biological Control, 50(2), 157–163. https://doi.org/10.1016/j.biocontrol.2009.03.014; Dowd, P. F., & Shen, S. K. (1990). The contribution of symbiotic yeast to toxin resistance of the cigarette beetle (Lasioderma serricorne). Entomologia Experimentalis et Applicata, 56(3), 241–248. https://doi.org/10.1111/j.1570-7458.1990.tb01402.x; ElKraly, O. A., Awad, M., El-Saadany, H. M., Hassanein, S. E., Elrahman, T. A., & Elnagdy, S. M. (2023). Impact of gut microbiota composition on black cutworm, Agrotis ipsilon (hufnagel) metabolic indices and pesticide degradation. Animal Microbiome, 5(1). https://doi.org/10.1186/s42523-023-00264-6; Engel, P., & Moran, N. A. (2013). The gut microbiota of insects - diversity in structure and function. In FEMS Microbiology Reviews (Vol. 37, Issue 5, pp. 699–735). https://doi.org/10.1111/1574-6976.12025; FAO. (2021) Mapa de la propagación mundial del gusano cogollero del maíz desde 2016. https://www.ippc.int/es/news/preparing-countries-to-keep-fall-armyworm-away-from-their-territories/; FAO, & CABI. (n.d.). Community-Based Fall Armyworm (Spodoptera frugiperda) Monitoring, Early Warning and Management. 2019.; Fonseca, I., & Quiñones, M. L. (2005). Resistencia a insecticidas en mosquitos Mecanismos, detección y vigilancia en salud pública. Revista Colombiana de Entomología, 107–115. https://doi.org/10.25100/socolen.v31i2.9429; Frago, E., Dicke, M., & Godfray, H. C. J. (2012). Insect symbionts as hidden players in insect-plant interactions. In Trends in Ecology and Evolution https://doi.org/10.1016/j.tree.2012.08.013; Gao L, Qiao H, Wei P, Moussian B, Wang Y. Xenobiotic responses in insects. Arch Insect Biochem Physiol. (2022) Mar;109(3):E21869. doi:10.1002/arch.21869. Epub 2022 Jan 28. PMID: 35088911.; Gavrilescu, M. (2005). Fate of pesticides in the environment and its bioremediation. In Engineering in Life Sciences (Vol. 5, Issue 6, pp. 497–526). Wiley-VCH Verlag. https://doi.org/10.1002/elsc.200520098; Giambó, F., Teodoro, M., Costa, C., & Fenga, C. (2021). Toxicology and microbiota: How do pesticides influence gut microbiota? a review. In International Journal of Environmental Research and Public Health (Vol. 18, Issue 11). MDPI. https://doi.org/10.3390/ijerph18115510; Gichuhi, J., Sevgan, S., Khamis, F., Van Den Berg, J., Du Plessis, H., Ekesi, S., & Herren, J. K. (2020). Diversity of fall armyworm, Spodoptera frugiperda and their gut bacterial community in Kenya. PeerJ, 2020(3). https://doi.org/10.7717/peerj.8701; Gimenez, S., Abdelgaffar, H., Goff, G. Le, Hilliou, F., Blanco, C. A., Hänniger, S. Nam, K. (2020). Adaptation by copy number variation increases insecticide resistance in the fall armyworm. Communications Biology, 3, 664.; Gomes, S.I.F., Kielak, A.M., Hannula, S.E. et al. (2020a). Microbiomes of a specialist caterpillar are consistent across different habitats but also resemble the local soil microbial communities. anim microbiome 2, 37. https://doi.org/10.1186/s42523-020-00055-3; Gomes, A. F. F., Omoto, C., & Cônsoli, F. L. (2020b). Gut bacteria of field-collected larvae of Spodoptera frugiperda undergo selection and are more diverse and active in metabolizing multiple insecticides than laboratory-selected resistant strains. Journal of Pest Science, 93(2), 833–851. https://doi.org/10.1007/s10340-020-01202-0; González Maldonado, M. B., Gurrola Reyes, J. N., & Chaírez Hernández, I. (2015). Productos biológicos para el control de Spodoptera frugiperda. Revista Colombiana de Entomología, 200–204.; Gutiérrez, M. C., Droguet, M., Carmen, M., Bouzán, G., & En Química, D. (2002). La cromatografía de gases y la espectrometría de masas: Identificación de compuestos causantes de mal olor. Universitat Politecnica de Catalunya. Boletín Intexter No 122.; Hafeez, M., Li, X., Zhang, Z., Huang, J., Wang, L., Zhang, J., Shah, S., Khan, M. M., Xu, F., Fernández-Grandon, G. M., Zaluchi, M. P., & Lu, Y. (2021). De novo transcriptomic analyses revealed some detoxification genes and related pathways responsive to Noposion Yihaogong® 5% ec (Lambda-cyhalothrin 5%) exposure in Spodoptera frugiperda third-instar larvae. Insects, 12(2), 1–16. https://doi.org/10.3390/insects12020132; Haine, E. R., Moret, Y., Siva-jothy, M. T., & Rolff, J. (2008). Antimicrobial defense and persistent infection in insects. In Science (Vol. 322, Issue 5905, pp. 1198–1199). https://doi.org/10.1126/science.1166844; Hammer, D. A. T., Ryan, P. D., Hammer, Ø., & Harper, D. A. T. (2001). Past: Paleontological Statistics Software Package for Education and Data Analysis. In Palaeontologia Electronica (Vol. 4, Issue 1). http://palaeo-electronica.orghttp://palaeo-electronica.org/2001_1/past/issue1_01.htm.; Hammer, T. J., & Bowers, M. D. (2015). Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia, 179(1), 1–14. https://doi.org/10.1007/s00442-015-3327-1; He, L.-M., Troiano, J., Wang, A., & Goh, K. (2008). Environmental Chemistry, Ecotoxicity, and Fate of Lambda-Cyhalothrin. https://doi.org/10.1007/978-0-387-77030-7_3; Higuita Palacio MF, Montoya OI, Saldamando CI, García-Bonilla E, Junca H, Cadavid- Restrepo GE, Moreno-Herrera CX. (2021). Dry and rainy seasons significantly alter the gut microbiome composition and reveal a key enterococcus sp. (Lactobacillales: Enterococcaceae) core component in Spodoptera frugiperda (Lepidoptera: Noctuidae) corn strain from Northwestern Colombia. Journal of Insect Science 21:10.111. https://doi.org/10.1093/jisesa/ieab076; Hladik, M. L., Smalling, K. L., & Kuivila, K. M. (2009). Methods of Analysis-Determination of Pyrethroid Insecticides in Water and Sediment Using Gas Chromatography/Mass Spectrometry. https://doi.org/10.1016/j.talanta.2009.11.050; Hou, J., Yu, J., Qin, Z., Liu, X., Zhao, X., Hu, X., Yu, R., Wang, Q., Yang, J., Shi, Y., & Chen, L. (2021). Guadipyr, a new insecticide, induces microbiota dysbiosis and immune disorders in the midgut of silkworms (Bombyx mori). Environmental Pollution, 286. https://doi.org/10.1016/j.envpol.2021.117531; Hu, W., Lu, Q., Zhong, G., Hu, M., & Yi, X. (2019). Biodegradation of pyrethroids by a hydrolyzing carboxylesterase EstA from Bacillus cereus BCC01. Applied Sciences (Switzerland), 9(3). https://doi.org/10.3390/app9030477; Huang, Y., Chen, S. F., Chen, W. J., Zhu, X., Mishra, S., Bhatt, P., & Chen, S. (2023). Efficient biodegradation of multiple pyrethroid pesticides by Rhodococcus pyridinivorans strain Y6 and its degradation mechanism. Chemical Engineering Journal, 469. https://doi.org/10.1016/j.cej.2023.143863; Huang, Y., Xiao, L., Li, F., Xiao, M., Lin, D., Long, X., & Wu, Z. (2018). Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: A review. In Molecules (Vol. 23, Issue 9). MDPI AG. https://doi.org/10.3390/molecules23092313; Huttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J. H., Chinwalla, A. T., Creasy, H. H., Earl, A. M., Fitzgerald, M. G., Fulton, R. S., Giglio, M. G., Hallsworth-Pepin, K., Lobos, E. A., Madupu, R., Magrini, V., Martin, J. C., Mitreva, M., Muzny, D. M., Sodergren, E. J., … White, O. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207–214. https://doi.org/10.1038/nature11234; ICA. (2024). Productos Nacionales de Plaguicidas. Plaguicidas Químicos. https://www.ica.gov.co/areas/agricola/servicios/regulacion-y-control-de-plaguicidas-quimicos.aspx; Jaenike, J. (2010). Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science, 329(5988), 210–212. https://doi.org/10.1126/science.1187115; Jaramillo-Barrios, C. I., Varón-Devia, E. H., & Monje-Andrade, B. (2020). Economic injury level and action thresholds for Spodoptera frugiperda (J.e. smith) (Lepidoptera: Noctuidae) in maize crops. Revista Facultad Nacional de Agronomia Medellin, 73(1), 9065–9076. https://doi.org/10.15446/rfnam.v73n1.78824; Jiang, B., Zhang, N., Xing, Y., Lian, L., Chen, Y., Zhang, D., Li, G., Sun, G., & Song, Y. (2019). Microbial degradation of organophosphorus pesticides: novel degraders, kinetics, functional genes, and genotoxicity assessment. Environmental Science and Pollution Research, 26(21), 21668–21681. https://doi.org/10.1007/s11356-019-05135-9; Jilani, S., Khan, M. A., & Altaf Khan, M. (2006). Biodegradation of Cypermethrin by pseudomonas in a batch activated sludge process 1*. J. Environ. Sci. Tech, 3(4), 371–380. https://doi.org/10.1007/bf03325946; Jing, T. Z., Qi, F. H., & Wang, Z. Y. (2020). Most dominant roles of insect gut bacteria: Digestion, detoxification, or essential nutrient provision? Microbiome, 8(1). https://doi.org/10.1186/s40168-020-00823-y; Jones, A. G., Mason, C. J., Felton, G. W., & Hoover, K. (2019). Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-39163-9; Khan, M. M., Khan, A. H., Ali, M. W., Hafeez, M., Ali, S., Du, C., Fan, Z., Sattar, M., & Hua, H. (2021). Emamectin benzoate induced enzymatic and transcriptional alternation in detoxification mechanism of predatory beetle Paederus fuscipes (Coleoptera: Staphylinidae) at the sublethal concentration. Ecotoxicology, 30(6), 1227–1241. https://doi.org/10.1007/s10646-021-02426-1.; Kim, D. H., Han, S. A., Kim, H. N., Shin, B. C., & Park, Y. (2016). A Case of Methomyl-induced Acute Allergic Tubulointerstitial Nephritis (Vol. 27, Issue 4).; Kong, L., Zhu, S., Zhu, L., Xie, H., Su, K., Yan, T., Wang, J., Wang, J., Wang, F., & Sun, F. (2013). Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4. Journal of Environmental Sciences (China), 25(11), 2257–2264. https://doi.org/10.1016/S1001-0742(12)60288-5; Kulkarni, A. G., & Kaliwal, B. B. (2018). Bioremediation of methomyl by Escherichia coli. In Methods in Pharmacology and Toxicology (Issue 9781493974245, pp. 75–86). Humana Press Inc. https://doi.org/10.1007/978-1-4939-7425-2_4; León García, I., Rodríguez Leyva, E., Ortega Arenas, L. D., & Solís Aguilar, J. F. (2012). Susceptibilidad de Spodoptera frugiperda a insecticidas asociada a césped en quintana roo, Mexico. Red de revistas científicas de América Latina. Agrociencias, vol. 46.; Li, W., Jin, D., Shi, C., & Li, F. (2017). Midgut bacteria in deltamethrin-resistant, deltamethrin-susceptible, and field-caught populations of Plutella xylostella, and phenomics of the predominant midgut bacterium Enterococcus mundtii. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-02138-9; Liang, W. Q., Wang, Z. Y., Li, H., Wu, P. C., Hu, J. M., Luo, N., Cao, L. X., & Liu, Y. H. (2005). Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11. Journal of Agricultural and Food Chemistry, 53(19), 7415–7420. https://doi.org/10.1021/jf051460k; Lin, Z., Pang, S., Zhou, Z., Wu, X., Li, J., Huang, Y., Zhang, W., Lei, Q., Bhatt, P., Mishra, S., & Chen, S. (2022). Novel pathway of acephate degradation by the microbial consortium ZQ01 and its potential for environmental bioremediation. Journal of Hazardous Materials, 426. https://doi.org/10.1016/j.jhazmat.2021.127841; Lin, Z., Zhang, W., Pang, S., Huang, Y., Mishra, S., Bhatt, P., & Chen, S. (2020). Current approaches to and future perspectives on methomyl degradation in contaminated soil/water environments. In Molecules (Vol. 25, Issue 3). MDPI AG. https://doi.org/10.3390/molecules25030738; Liu, J., Hao, Z., Yang, S., Lin, Y., Zhong, H., & Jin, T. (2022). Insecticide resistance and its underlying synergism in field populations of Spodoptera frugiperda (J. E. Smith) from Hainan Island, China. Phytoparasitica, 50(4), 933–945. https://doi.org/10.1007/s12600-022-01004-3; Liu, S., Yao, K., Jia, D., Zhao, N., Lai, W., & Yuan, H. (2012). A pretreatment method for HPLC analysis of cypermethrin in microbial degradation systems. Journal of Chromatographic Science, 50(6), 469–476. https://doi.org/10.1093/chromsci/bms030; M. T. Madigan, J. M. Martinko, J. Parker. Brock. Biología de los Microorganismos. 12a (2009) Ed. Prentice Hall-Pearson Education.; Majchrzak, T., Wojnowski, W., Lubinska-Szczygeł, M., Różańska, A., Namieśnik, J., & Dymerski, T. (2018). PTR-MS and GC-MS as complementary techniques for analysis of volatiles: A tutorial review. In Analytica Chimica Acta (Vol. 1035, pp. 1–13). Elsevier B.V. https://doi.org/10.1016/j.aca.2018.06.056; Marulanda-Moreno, S. M. (2022). Caracterización de la microbiota asociada a los biotipos de Spodoptera frugiperda SMITH (Lepidoptera: Noctuidae). Universidad Nacional de Colombia, Sede Medellín.; Marulanda-Moreno, S. M., Saldamando-Benjumea, C. I., Vivero Gomez, R., Cadavid-Restrepo, G., & Moreno-Herrera, C. X. (2024). Comparative analysis of Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae) corn and rice strains microbiota revealed minor changes across life cycle and strain endosymbiont association. PeerJ, 12, e17087. https://doi.org/10.7717/peerj.17087; Mason, C. J., St Clair, A., Peiffer, M., Gomez, E., Jones, A. G., Felton, G. W., & Hoover, K. (2020). Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PloS One, 15(3), e0229848. https://doi.org/10.1371/journal.pone.0229848; McCarthy, C. B., Cabrera, N. A., & Virla, E. G. (2015). Metatranscriptomic analysis of larval guts from field-collected and laboratory-reared Spodoptera frugiperda from the South American subtropical region. Genome Announcements, 3(4). https://doi.org/10.1128/genomeA.00777-15; McCoy, M. R., Yang, Z., Fu, X., Ahn, K. C., Gee, S. J., Bom, D. C., Zhong, P., Chang, D., & Hammock, B. D. (2012). Monitoring of total type II pyrethroid pesticides in citrus oils and water by converting to a common product 3-phenoxybenzoic acid. Journal of Agricultural and Food Chemistry, 60(20), 5065–5070. https://doi.org/10.1021/jf2051653; Montllor, C. B., Maxmen, A., & Purcell, A. H. (2002). Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress.; Moreno-García, M., Condé, R., Bello-Bedoy, R., & Lanz-Mendoza, H. (2014). The damage threshold hypothesis and the immune strategies of insects. In Infection, Genetics and Evolution (Vol. 24, pp. 25–33). https://doi.org/10.1016/j.meegid.2014.02.010; Morgan, J., Salcedo-Sora, J. E., Triana-Chavez, O., & Strode, C. (2022). Expansive and Diverse Phenotypic Landscape of Field Aedes aegypti (Diptera: Culicidae) Larvae with Differential Susceptibility to Temephos: Beyond Metabolic Detoxification. Journal of Medical Entomology, 59(1), 192–212. https://doi.org/10.1093/jme/tjab179; Morillo, F., & Notz, A. (2001). Resistencia de Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) a lambdacihalotrina y metomil. 16(2), 79–87.; Morillo, F., & Notz, A. (2004). Efecto de lambdacihalotrina y metomil sobre la biología de Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). 19(1), 7–14.; Muthabathula, P., & Biruduganti, S. (2022). Analysis of Biodegradation of the Synthetic Pyrethroid Cypermethrin by Beauveria bassiana. Current Microbiology, 79(2). https://doi.org/10.1007/s00284-021-02744-x; Muturi, E. J., Dunlap, C., Smartt, C. T., & Shin, D. (2021). Resistance to permethrin alters the gut microbiota of Aedes aegypti. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-93725-4; Nagoshi, R. N., & Meagher, R. (2003). Fall armyworm FR sequences map to sex chromosomes and their distribution in the wild indicate limitations in interstrain mating. In Insect Molecular Biology (Vol. 12, Issue 5).; Nagoshi, R. N., Meagher, & Robert L. (n.d.). Behavior and distribution of the two fall armyworm host strains in Florida. 2004. https://doi.org/10.1653/0015; Nagoshi RN, Htain NN, Boughton D, Zhang L, Xiao Y, NagoshiB Y, Mota-Sanchez D. (2020). Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Science Reports 0:1421 DOI 10.1038/s41598-020-58249-3.; Navarro, S., Barba, A., & Camara, M. A. (1978). Determinación de insecticidas por cromatografía líquida de alta resolución (CLAR).; Nayyar N, Gracy RG, Ashika TR, Mohan G, Swathi RS, Mohan M, Chaudhary M,Bakthavatsalam N, Venkatesan T. (2021). Population structure and genetic diversity of invasive Fall Armyworm after 2 years of introduction in India. Scientifc Reports 11:7760; NIST/EPA/NIH Mass Spectral Database, S.R.D., 2011. SRD Program, National Institute of Standards and Technology, Gaithersburg, MD.; Oliver, K. M., Moran, N. A., & Hunter, M. S. (2005). Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proceedings of the National Academy of Sciences of the United States of America, 102(36), 12795–12800. https://doi.org/10.1073/pnas.0506131102; OMS. (2019). Clasificación recomendada por la OMS de los plaguicidas por el peligro que presentan y directrices para la clasificación 2019. http://apps.who.int/bookorders.; Overton, K., Maino, J. L., Day, R., Umina, P. A., Bett, B., Carnovale, D., Ekesi, S., Meagher, R., & Reynolds, O. L. (2021). Global crop impacts, yield losses and action thresholds for fall armyworm (Spodoptera frugiperda): A review. In Crop Protection (Vol. 145). Elsevier Ltd. https://doi.org/10.1016/j.cropro.2021.105641; Pais, P., Moyano, E., Puignou, L., & Galceran, M. T. (1997). Liquid chromatography-atmospheric-pressure chemical ionization mass spectrometry as a routine method for the analysis of mutagenic amines in beef extracts. In Journal of Chromatography A (Vol. 778).; Palmer-Brown, W., de Melo Souza, P. L., & Murphy, C. D. (2019). Cyhalothrin biodegradation in Cunninghamella elegans. Environmental Science and Pollution Research, 26(2), 1414–1421. https://doi.org/10.1007/s11356-018-3689-0; Pang, S., Lin, Z., Chen, W. J., Chen, S. F., Huang, Y., Lei, Q., Bhatt, P., Mishra, S., Chen, S., & Wang, H. (2023). High-efficiency degradation of methomyl by the novel bacterial consortium MF0904: Performance, structural analysis, metabolic pathways, and environmental bioremediation. Journal of Hazardous Materials, 452. https://doi.org/10.1016/j.jhazmat.2023.131287; Paredes-Sánchez, F. A., Rivera, G., Bocanegra-García, V., Martínez-Padrón, H. Y., Berrones-Morales, M., Niño-García, N., & Herrera-Mayorga, V. (2021). Advances in control strategies against Spodoptera frugiperda. A review. In Molecules (Vol. 26, Issue 18). MDPI. https://doi.org/10.3390/molecules26185587; Pashley Prowell, D., Mcmichael, M., & Ois Silvain, J. (2004). Multilocus Genetic Analysis of Host Use, Introgression, and Speciation in Host Strains of Fall Armyworm (Lepidoptera: Noctuidae). In Ann. Entomol. Soc. Am (Vol. 97, Issue 5). https://academic.oup.com/aesa/article/97/5/1034/63036; Peña García, Y. (2016). Degradación microbiana de compuestos xenobióticos.; Pinto Carvajal, L. P. (2017). Alternativas para el tratamiento de aguas contaminadas por plaguicidas utilizadas en los cultivos de arroz en Colombia. Universidad Nacional Abierta y a Distancia.; Podlesky, E., & Alfonso, G. (1994). Determinación de plaguicidas en muestras ambientales, biológicas y de alimentos.; Polenogova, O. V., Noskov, Y. A., Yaroslavtseva, O. N., Kryukova, N. A., Alikina, T., Klementeva, T. N., Andrejeva, J., Khodyrev, V. P., Kabilov, M. R., Kryukov, V. Y., & Glupov, V. V. (2021). Influence of Bacillus thuringiensis and avermectins on gut physiology and microbiota in Colorado potato beetle: Impact of enterobacteria on susceptibility to insecticides. PLoS ONE, 16(3 March). https://doi.org/10.1371/journal.pone.0248704; Poveda Arias, J. (2019). The microorganisms associated with insects and their application in agriculture. Revista Digital Universitaria, 20(1). https://doi.org/10.22201/codeic.16076079e.2019.v20n1.a2; Ravula, A. R., & Yenugu, S. (2021). Pyrethroid based pesticides–chemical and biological aspects. In Critical Reviews in Toxicology (Vol. 51, Issue 2, pp. 117–140). Taylor and Francis Ltd. https://doi.org/10.1080/10408444.2021.1879007; Rigby, L. M., Johnson, B. J., Rašić, G., Peatey, C. L., Hugo, L. E., Beebe, N. W., Hartel, G. F., & Devine, G. J. (2021a). The presence of knockdown resistance mutations reduces male mating competitiveness in the major arbovirus vector, aedes aegypti. PLoS Neglected Tropical Diseases, 15(2), 1–13. https://doi.org/10.1371/journal.pntd.0009121; Rigby, L. M., Johnson, B. J., Rašić, G., Peatey, C. L., Hugo, L. E., Beebe, N. W., Hartel, G. F., & Devine, G. J. (2021b). The presence of knockdown resistance mutations reduces male mating competitiveness in the major arbovirus vector, aedes aegypti. PLoS Neglected Tropical Diseases, 15(2), 1–13. https://doi.org/10.1371/journal.pntd.0009121; Rigolin, F., Leite, C., Birolli, W., Porto, A., & Seleghim, M. (2024). Biodegradation of the Pyrethroid Pesticide Gamma-Cyhalothrin by Fungi from a Brazilian Cave. Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20240026; Ríos-Díez, J. D., & Saldamando-Benjumea, C. I. (2011). Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from central Colombia to two insecticides, methomyl and lambda-cyhalothrin: A study of the genetic basis of resistance. Journal of Economic Entomology, 104(5), 1698–1705. https://doi.org/10.1603/EC11079; Ríos-Díez, J. D., B. Siegfried, and C. I. Saldamando-Benjumea. (2012). Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from Central Colombia to Cry1Ac and Cry1Ab. Southwest Entomol. 7: 281-293.; Rodríguez Martínez, C. & Zhurbenko, R. (2018). Manual de medios de cultivo. www.biocen.cu; Romo Ibáñez, M. (2017). Actividad fenilvalerato esterasa en la buirilcolinesterasa humana. Universidad Miguel Hernández de Elche.; ROTAM. (2020). Ficha técnica Rotam Lash. https://croper.com/products/4957-insecticida-lash-216-sl-x-20-lt-rotam; Roy, T., & Das, N. (2017). Isolation, characterization, and identification of two methomyl-degrading bacteria from a pesticide-treated crop field in West Bengal, India. Microbiology (Russian Federation), 86(6), 753–764. https://doi.org/10.1134/S0026261717060145; Ruiz Benitez, M. L. (2020). Cromatografía líquida de alto rendimiento (HPLC) y cromatografía de gases (CG).; Rupawate, P. S., Roylawar, P., Khandagale, K., Gawande, S., Ade, A. B., Jaiswal, D. K., & Borgave, S. (2023). Role of gut symbionts of insect pests: A novel target for insect-pest control. In Frontiers in Microbiology (Vol. 14). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2023.1146390; SAAT AG. (2022). Ficha técnica Saat Lambada. https://www.saat-ag.com/wp-content/uploads/2023/03/Ficha_Tecnica_Saat_LAMBADA; Saldamando-Benjumea, C. I., K. Estrada-Piedrahíta, M. I. Velásquez-Vélez, and R. I. Bailey. (2014). Assortative mating and lack of temporality between corn and rice strains of Spodoptera frugiperda (Lepidoptera, Noctuidae) from central Colombia. J. Insect Behav. 27: 555-566.; Sampson, T. R., & Mazmanian, S. K. (2015). Control of brain development, function, and behavior by the microbiome. In Cell Host and Microbe (Vol. 17, Issue 5, pp. 565–576). Cell Press. https://doi.org/10.1016/j.chom.2015.04.011; Santos-Amaya, O., Delgado-Restrepo O, Arguelles J, Aguilera-Garramuño E. (2009). Evaluación del comportamiento del complejo Spodoptera con la introducción de algodón transgénico al Tolima, Colombia. Revista Corpoica Ciencia y Tecnología Agropecuaria 10(1):24-32.; Schneider, D. S., & Ayres, J. S. (2008). Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. https://doi.org/10.1038/nri2432; Shu, B., Zou, Y., Yu, H., Zhang, W., Li, X., Cao, L., & Lin, J. (2021). Growth inhibition of Spodoptera frugiperda larvae by camptothecin correlates with alteration of the structures and gene expression profiles of the midgut. BMC Genomics, 22(1). https://doi.org/10.1186/s12864-021-07726-8; Siddiqui, J. A., Fan, R., Naz, H., Bamisile, B. S., Hafeez, M., Ghani, M. I., Wei, Y., Xu, Y., & Chen, X. (2023). Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. In Frontiers in Physiology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fphys.2022.1112278; Siddiqui, J. A., Khan, M. M., Bamisile, B. S., Hafeez, M., Qasim, M., Rasheed, M. T., Rasheed, M. A., Ahmad, S., Shahid, M. I., & Xu, Y. (2022). Role of Insect Gut Microbiota in Pesticide Degradation: A Review. In Frontiers in Microbiology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2022.870462; Siripattanakul-Ratpukdi, S., Vangnai, A. S., Sangthean, P., & Singkibut, S. (2014). Profenofos insecticide degradation by novel microbial consortium and isolates enriched from contaminated chili farm soil. Environmental Science and Pollution Research, 22(1), 320–328. https://doi.org/10.1007/s11356-014-3354-1; Staetz, C. A. (2013). Directrices sobre la Prevención y Manejo de la Resistencia a los Plaguicidas. www.fao.org/publications; Stashenko, E. E., & René Martínez, J. (2010). Algunos aspectos prácticos para la identificación de analitos por cromatografía de gases acoplada a espectrometría de masas. Industrial University of Santander.; Suarez Ospina, D., & Morales Hernández, Y. (2018). Principios básicos de la cromatografía líquida de alto rendimiento para la separación y análisis de mezclas basic principles of high performance liquid chromatography for the separation and analysis of mixtures. América Revista Semilleros: Formación Investigativa, 4.; Tamimi, M., Qourzal, S., Assabbane, A., Chovelon, J. M., Ferronato, C., & Ait-Ichou, Y. (2006). Photocatalytic degradation of pesticide methomyl: Determination of the reaction pathway and identification of intermediate products. Photochemical and Photobiological Sciences, 5(5), 477–482. https://doi.org/10.1039/b517105a; Tang, X., Freitak, D., Vogel, H., Ping, L., Shao, Y., Cordero, E. A., Andersen, G., Westermann, M., Heckel, D. G., & Boland, W. (2012). Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS ONE, 7(7). https://doi.org/10.1371/journal.pone.0036978; Todd, E. L., & Poole, R. W. (1980). Keys and illustrations for the armyworm moths of the noctuid genus Spodoptera guenee from the Western Hemisphere 1. In ABSTRACT Ann. Entomol. Soc. Am (Vol. 73).; Ugwu, J. A., Liu, M., Sun, H., & Asiegbu, F. O. (2020). Microbiome of the larvae of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) from maize plants. Journal of Applied Entomology, 144(9), 764–776. https://doi.org/10.1111/jen.12821; Valbuena, D., Cely-Santos, M., & Obregón, D. (2021). Agrochemical pesticide production, trade, and hazard: Narrowing the information gap in Colombia. Journal of Environmental Management, 286. https://doi.org/10.1016/j.jenvman.2021.112141; Van Scoy, A. R., Yue, M., Deng, X., & Tjeerdema, R. S. (2013). Environmental fate and toxicology of methomyl. Reviews of Environmental Contamination and Toxicology, 222, 93–109. https://doi.org/10.1007/978-1-4614-4717-7_3; Velásquez-Vélez, M. I., C. I. Saldamando-Benjumea, and J. D. Ríos- Díez. (2011). Reproductive isolation between two populations of Spodoptera frugiperda (Lepidoptera, Noctuidae) collected in corn and rice fields from Central Colombia. Ann. Entomol. Soc. Am. 104: 826-833.; Vélez Arango, A. M., Arango I., R. E., Villanueva M., D., Aguilera G., E., & Saldamando B., C. I. (2008). Identificación de biotipos de Spodoptera frugiperda (Lepidoptera: Noctuidae) mediante marcadores mitocondriales y nucleares. Revista Colombiana de Entomología.; Visôtto, L. E., Oliveira, M. G. A., Ribon, A. O. B., Mares-Guia, T. R., & Guedes, R. N. C. (2009). Characterization and identification of proteolytic bacteria from the gut of the velvetbean caterpillar (Lepidoptera: Noctuidae). Environmental Entomology, 38(4), 1078–1085. https://doi.org/10.1603/022.038.0415; Wan, J., Huang, C., Li, C., Zhou, H. Xu, REN, Y. Lin, Li, Z. Yuan, Xing, L. Sheng, Zhang, B., Qiao, X., Liu, B., Liu, C. Hui, Xi, Y., Liu, W. Xue, Wang, W. Kai, Qian, W. Qiang, Mckirdy, S., & Wan, F. Hao. (2021). Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). In Journal of Integrative Agriculture (Vol. 20, Issue 3, pp. 646–663). Editorial Department of Scientia Agricultura Sinica. https://doi.org/10.1016/S2095-3119(20)63367-6; Wendeborn, S., Godineau, E., Mondière, R., Smejkal, T., & Smits, H. (2012). Chirality in Agrochemicals. In Comprehensive Chirality (Vol. 1, pp. 120–166). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-095167-6.00102-6; Worku, M., & Ebabuye, Y. (2019). Evaluation of efficacy of insecticides against the fall armyworm Spodoptera frugiperda. Indian Journal of Entomology, 81(1), 13. https://doi.org/10.5958/0974-8172.2019.00076.2; Xia, X., Gurr, G. M., Vasseur, L., Zheng, D., Zhong, H., Qin, B., Lin, J., Wang, Y., Song, F., Li, Y., Lin, H., & You, M. (2017). Metagenomic Sequencing of Diamondback Moth Gut Microbiome Unveils Key Holobiont Adaptations for Herbivory. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00663; Xia, X., Sun, B., Gurr, G. M., Vasseur, L., Xue, M., & You, M. (2018). Gut microbiota mediate insecticide resistance in the Diamondback moth, Plutella xylostella (L.). Frontiers in Microbiology, 9(JAN). https://doi.org/10.3389/fmicb.2018.00025; Xie, S., Liu, J., Li, L., & Qiao, C. (2009). Biodegradation of malathion by Acinetobacter johnsonii MA19 and optimization of cometabolism substrates. Journal of Environmental Sciences, 21(1), 76–82. https://doi.org/10.1016/S1001-0742(09)60014-0; Yamamoto, S., & Harayama, S. (1995). PCR Amplification and Direct Sequencing of gyrB Genes with Universal Primers and Their Application to the Detection and Taxonomic Analysis of Pseudomonas putida Strains. In Applied and environmental microbiology (Vol. 61, Issue 3).; Yingjie, Y., Qianru, C., Naila, I., Ping, Z., Changliang, J., Bin, L., & Yiqiang, L. (2022). Synergism in microbial communities facilitate the biodegradation of pesticides. In Microbial Syntrophy-mediated Eco-enterprising (pp. 259–273). Elsevier. https://doi.org/10.1016/B978-0-323-99900-7.00011-0; Yuning, L., Luyang, L., Xueming, C., Xianmei, Y., Jintian, L., & Benshui, S. (2022). The bacterial and fungal communities of the larval midgut of Spodoptera frugiperda (Lepidoptera: Noctuidae) varied by feeding on two cruciferous vegetables. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-17278-w; Zhang, C., Yang, Z., Jin, W., Wang, X., Zhang, Y., Zhu, S., Yu, X., Hu, G., & Hong, Q. (2017). Degradation of methomyl by the combination of Aminobacter sp. MDW-2 and Afipia sp. MDW-3. Letters in Applied Microbiology, 64(4), 289–296. https://doi.org/10.1111/lam.12715; Zhao, M., Lin, X., & Guo, X. (2022). The Role of Insect Symbiotic Bacteria in Metabolizing Phytochemicals and Agrochemicals. In Insects (Vol. 13, Issue 7). MDPI. https://doi.org/10.3390/insects13070583; https://repositorio.unal.edu.co/handle/unal/86987; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  20. 20
    Dissertation/ Thesis

    المساهمون: Uribe Soto, Sandra Inés, Gómez Álvarez, Lilliam Eugenia, Clavijo Giraldo, Alejandra Milena

    وصف الملف: 84 páginas; application/pdf

    Relation: LaReferencia; Cullen, J. M., Sheppard, A. W., & Raghu, S. (2022). Effectiveness of classical weed biological control agents released in Australia. Biological Control, 166. https://doi.org/10.1016/j.biocontrol.2021.104835; Dau David, J. A. (1970). Biología y Morfología del Agraulis vanillae (Linn) como enemigo del maracuyá (Passiflora edulis var. Flavicarpa). Universidad Tecnológica de Magdalena; de Oliveira, C. M., de Campos Dianese, A., Frizzas, M. R., Guimarães, T. G., & Campos, G. A. (2014). First report of an insect pest on Passiflora tenuifila Killip (Passifloraceae). Phytoparasitica, 42(5), 677–680. https://doi.org/10.1007/s12600- 014-0408-3; Deochand Lade, B., Surendra Patil, A., Rajaram Patil, S., & Madhukarra Paikrao, H. (2014). Preliminary observation of Acrae violae: a natural enemy of Passiflora foetida. Discovery Nature, 9(19), 1–10.; Hamilton, J. G., & Zalucki, M. P. (1993). Interactions between a specialist herbivore, Crocidosema plebejana, and its host plants Malva parviflora and cotton, Gossypium hirsutum: Larval performance. Entomologia Experimentalis et Applicata, 66(3), 199–205. https://doi.org/10.1111/j.1570-7458.1993.tb00710.x; Henry, T. J. (1997). Monograph of the stilt bugs, or Berytidae (Heteroptera) of the Western Hemisphere. Memoirs of the entomological society of Washington. Entomological Society of Washington, 1–149; Hopley, T., Webber, B. L., Raghu, S., Morin, L., & Byrne, M. (2021). Revealing the Introduction History and Phylogenetic Relationships of Passiflora foetida sensu lato in Australia. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.651805; Minghetti, E., Maestro, M., & Dellapé, P. M. (2021). Engytatus passionarius sp. nov. (Hemiptera: Miridae), a new natural enemy of the invasive stinking passion flower Passiflora foetida L. Austral Entomology, 60(2), 295–300. https://doi.org/10.1111/aen.12533; Mound A, L., & Murillo, R. (1996). The thrips of central and south America: an introduction (Insecta:thysanoptera) (Vol. 6); Ocampo Pérez, J., Coppens D’eeckenbrugge, G., Restrepo, M., Jarvis, A., Salazar, M., & Caetano, C. (2007). Diversity of Colombian Passifloraceae: biogeography and an updated list for conservation. Biota Colombiana, 8(1), 1–45. http://www.igac.gov.co; Patil, A. S., Paikrao, H. M., & Patil, A. S. R. (2013). Passiflora foetida Linn: a complete morphological and phytopharmacological review. Int J Pharm Bio Sci, 4(1), 285–296. www.ijpbs.net; Ross, H., & Thomas, M. (2002). American Beetles Polyphaga: Scarabaeoidea through Curculionoidea (Vol. 2); Santos, A. R. de O., Lee, D. K., Ferreira, A. G., do Carmo, M. C., Rondelli, V. M., Barros, K. O., Hsiang, T., Rosa, C. A., & Lachance, M. A. (2020). The yeast community of Conotelus sp. (Coleoptera: Nitidulidae) in Brazilian passionfruit flowers (Passiflora edulis) and description of Metschnikowia amazonensis sp. nov., a large-spored clade yeast. Yeast, 37(3), 253–260. https://doi.org/10.1002/yea.3453; Susilowati, R. P., & Rumiati, F. (2021). Efficacy of knockdown insecticide based on Permot (Passiflora foetida L.) leaf extract against mortality of German cockroach (Blattella germanica L.). Biogenesis: Jurnal Ilmiah Biologi, 9(2), 226–232. https://doi.org/10.24252/bio.v9i2.24100; Waterhouse, D. F. (1994). Biological control of weeds : Southeast Asian prospects. ACIAR; Webber, B. L., Yeoh, P. B., & Somaweera, R. (2021). Distribution maps of stinking passionflower (Passiflora foetida) at Danggu (Geikie Gorge) National Park Report Cover photo. CSIRO; Witt, A., & Luke, Q. (2017). Guide to the naturalized and invasive plants of eastern Africa (pp. 96–97). CABI.; Cullen, J. M., Palmer, W. A., & Sheppard, A. W. (2023). Biological control of weeds in Australia: the last 120 years. In Austral Entomology (Vol. 62, Issue 2, pp. 133– 148). John Wiley and Sons Inc. https://doi.org/10.1111/aen.12638; Dasilva, A., Reddy, A. M., Pratt, P. D., Hansel Friedman, M. S., Grewell, B. J., Harms, N. E., Cibils-Stewart, X., Walsh, G. C., Faltlhauser, A., & Chamorro, M. L. (2022). Biology of Immature Stages and Host Range Characteristics of Sudauleutes bosqi (Coleoptera: Curculionidae), a Candidate Biological Control Agent of Exotic Ludwigia spp. in the USA. Florida Entomologist, 105(3), 243–249. https://doi.org/10.1653/024.105.0310; Depieri, R. A., Siqueira, F., & Panizzi, A. R. (2010). Aging and Food Source Effects on Mandibular Stylets Teeth Wear of Phytophagous Stink Bug (Heteroptera: Pentatomidae). Neotropical Entomology, 952–956; Luk, S. (2008). Neoneides muticus. Bugguide. Recuperado el 1 de noviembre del 2023 de https://bugguide.net/node/view/187194/bgimage; Martínez Bravo, C. M., Mancera Rodríguez, N. J., & Buitrago Franco, G. (2013). Diversidad de aves en el Centro Agropecuario Cotové, Santa Fé de Antioquia, Colombia. Revista de Biología Tropical, 61(4), 1597–1617; Muthukrishnan, J., & Pandian, T. J. (1987). Relation between feeding and egg production in some insects. Indian Academy Animal Society, 96(3), 171–179.; Neville, A. C. (1983). Daily Cuticular Growth Layers and Teneral stage in Adult Insects: A Review the. Journal Insect Physiology, 29(3), 211–219.; Pagola-Carte, S. (2017). Adelphocoris falukei n. sp. from Almería, southeastern Iberian Peninsula (Hemiptera: Heteroptera: Miridae). Heteropterus Revista de Entomología Heteropterus Rev. Entomol, 17(2), 113–129; Panizzi, A. R., Lucini, T., & Levin Mitchell, P. (2021). Electronic Monitoring of Feeding Behavior of Phytophagous True Bugs (Heteroptera) (E. Simon L, Ed.; Entomology in Focus, Vol. 6). Springer and Sociedade Entomologica do Brazil. http://www.springer.com/series/10465; Patil, I. (2021). Visualizations with statistical details: The “ggstatsplot” approach. Journal of Open Source Software, 6(61), 3167. https://doi.org/10.21105/joss.03167; Pride, L., Vallad, G., & Agehara, S. (2020). How to Measure Leaf Disease Damage Using Image Analysis in ImageJ 1. https://www.java; Sharma, A., Khan, A. N., Subrahmanyam, S., Raman, A., Taylor, G. S., & Fletcher, M. J. (2014). Salivary proteins of plant-feeding hemipteroids-implication in phytophagy. In Bulletin of Entomological Research (Vol. 104, Issue 2, pp. 117– 136). Cambridge University Press. https://doi.org/10.1017/S0007485313000618; Teder, T., & Tammaru, T. (2005). Sexual size dimorphism within species increases with body size in insects. Oikos, 321–334; Wickman, P.-O., & Karlsson, B. (1989). Abdomen Size, Body Size and the Reproductive Effort of Insects. Oikos, 56(2), 209–214; Wilke, C. O. (2022). ggridges: Ridgeline Plots in “ggplot2.” In R package version 0.5.4. https://wilkelab.org/ggridges/; Zack, R. S., Henry, T. J., & Monzón Sierra, J. (2021). Annotated checklist of the stilt bugs (Hemiptera: Heteroptera: Berytidae) of Guatemala, with new country records. The Pan-pacific Entomologist, 97(4), 2010–2019. http://www.worldfloraonline.org; Cotes, A. M. (2017). Control biológico de fitopatógenos, insectos y ácaros. (Alba Maria Cortes, Vol. 1). AGROSAVIA; Dasilva, A., Reddy, A. M., Pratt, P. D., Hansel Friedman, M. S., Grewell, B. J., Harms, N. E., Cibils-Stewart, X., Walsh, G. C., Faltlhauser, A., & Chamorro, M. L. (2022). Biology of Immature Stages and Host Range Characteristics of Sudauleutes bosqi (Coleoptera: Curculionidae), a Candidate Biological Control Agent of Exotic Ludwigia spp. in the USA. Florida Entomologist, 105(3), 243–249. https://doi.org/10.1653/024.105.031; Eubanks, M. D., Styrsky, J. D., & Denno, R. F. (2003). The evolution of omnivory in heteropteran insects. In Ecology (Vol. 84, Issue 10, pp. 2549–2556). Ecological Society of America. https://doi.org/10.1890/02-0396; Moghadam, S. A. N., Sadeghi-Namaghi, H., & Moodi, S. (2023). Performance of Jujube Lace Bug, Monosteira alticarinata, on Jujube, Ziziphus jujuba under Different Levels of Nitrogen Fertilization. In J. Agric. Sci. Technol (Vol. 25, Issue 4).; Muniappan, R., P. Reddy, G. V., & Raman, A. (2009). Biological control of tropical weeds using arthropods (Cambridge University). Cambridge University; Reddy, A. M., Pratt, P. D., Grewell, B. J., Harms, N. E., Cibils-Stewart, X., Cabrera Walsh, G., & Faltlhauser, A. (2021). Biological and host range characteristics of lysathia flavipes (Coleoptera: Chrysomelidae), a candidate biological control agent of invasive ludwigia spp. (onagraceae) in the USA. Insects, 12(5). https://doi.org/10.3390/insects12050471; Simonetti, G., & Devoto, M. (2018). La defensa de Passiflora caerulea por hormigas reduce el número de huevos y larvas de Agraulis vanillae, pero no el daño por herbivoría. Ecología Austral, 28, 123–132; https://repositorio.unal.edu.co/handle/unal/85820; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/