يعرض 1 - 20 نتائج من 70 نتيجة بحث عن '"Inducción de resistencia"', وقت الاستعلام: 0.89s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المساهمون: University/Department: Universitat de Lleida. Departament de Química

    Thesis Advisors: Eras i Joli, Jordi, Murillo, Walter

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  2. 2
    Academic Journal

    المصدر: Revista Colombiana de Ciencias Hortícolas; Vol. 15 No. 3 (2021); e12822 ; Revista Colombiana de Ciencias Hortícolas; Vol. 15 Núm. 3 (2021); e12822 ; Revista Colombiana de Ciencias Hortícolas; Vol. 15 No 3 (2021); e12822 ; Revista Colombiana de Ciencias Hortícolas; V. 15 N. 3 (2021); e12822 ; 2422-3719 ; 2011-2173

    جغرافية الموضوع: Colombia, Cundinamarca, Mosquera

    وصف الملف: application/pdf

  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal

    المصدر: Revista Colombiana de Ciencias Hortícolas; Vol. 13 No. 1 (2019); 55-63 ; Revista Colombiana de Ciencias Hortícolas; Vol. 13 Núm. 1 (2019); 55-63 ; Revista Colombiana de Ciencias Hortícolas; Vol. 13 No 1 (2019); 55-63 ; Revista Colombiana de Ciencias Hortícolas; V. 13 N. 1 (2019); 55-63 ; 2422-3719 ; 2011-2173

    جغرافية الموضوع: Brazil, Alegre

    وصف الملف: application/pdf

  8. 8
  9. 9
    Academic Journal
  10. 10
    Dissertation/ Thesis

    المؤلفون: Cuero Amu, Kelin Johana

    المساهمون: García Castañeda, Javier Eduardo, Rivera Monroy, Zuly Jenny, Síntesis y Aplicación de Moléculas Peptídicas

    وصف الملف: xvi, 115 páginas; application/pdf

    Relation: Assoni, L., Milani, B., Carvalho, M. R., Nepomuceno, L. N., Waz, N. T., Guerra, M. E. S., Converso, T. R., & Darrieux, M. (2020). Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria. Frontiers in Microbiology, 11(October), 1–20. https://doi.org/10.3389/fmicb.2020.593215; ATCC. (2023a). Escherichia coli (Migula) Castellani and Chalmers - 25922 %7C ATCC. https://www.atcc.org/products/25922; ATCC. (2023b). Staphylococcus aureus subsp. aureus rosenbach 29213. https://www.atcc.org/products/29213; Bahar, A. A., & Ren, D. (2013). Antimicrobial Peptides. Pharmaceuticals 2013, Vol. 6, Pages 1543-1575, 6(12), 1543–1575. https://doi.org/10.3390/PH6121543; Barragán-Cárdenas, A. C., Insuasty-Cepeda, D. S., Cárdenas-Martínez, K. J., López-Meza, J., Ochoa-Zarzosa, A., Umaña-Pérez, A., Rivera-Monroy, Z. J., & García-Castañeda, J. E. (2022). LfcinB-Derived Peptides: Specific and punctual change of an amino acid in monomeric and dimeric sequences increase selective cytotoxicity in colon cancer cell lines. Arabian Journal of Chemistry, 15(8), 103998. https://doi.org/10.1016/J.ARABJC.2022.103998; Bellamy, W., Wakabayashi, H., Takase, M., Kawase, K., Shimamura, S., & Tomita, M. (1993). Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Medical Microbiology and Immunology, 182(2), 97–105. https://doi.org/10.1007/BF00189377; Bonilla, L. D. (2021). ACTIVIDAD ANTIBACTERIANA DEL PÉPTIDO LfcinB (20-25)4 CONTRA AISLADOS CLÍNICOS. Universidad Nacional de Colombia.; Brand, I., & Khairalla, B. (2021). Structural changes in the model of the outer cell membrane of Gram-negative bacteria interacting with melittin: an in situ spectroelectrochemical study. Faraday Discussions, 232(0), 68–85. https://doi.org/10.1039/D0FD00039F; Castañeda Casimiro, J., Ortega Roque, J. A., Venegas Medina, A. M., Aquino Andrade, A., Serafín López, J., Estrada Parra, S., & Estrada, I. (2009). Péptidos antimicrobianos: péptidos con múltiples funciones Artemisa medigraphic en línea. Alergia, Asma e Inmunologia Pediatrica, 18(1), 16–29. www.medigraphic.com; Chan, D. I., Prenner, E. J., & Vogel, H. J. (2006). Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochimica et Biophysica Acta - Biomembranes, 1758(9), 1184–1202. https://doi.org/10.1016/j.bbamem.2006.04.006; Chapple, D. S., Hussain, R., Joannou, C. L., Hancock, R. E. W., Odell, E., & Evans, R. W. (2004). Structure and Association of Human Lactoferrin Peptides with Escherichia coli Lipopolysaccharide. 48(6), 2190–2198. https://doi.org/10.1128/AAC.48.6.2190; Cheung, G. Y. C., Bae, J. S., & Otto, M. (2021). Pathogenicity and virulence of Staphylococcus aureus. Virulence, 12(1), 547–569. https://doi.org/10.1080/21505594.2021.1878688; Chou, T. C. (2006). Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacological Reviews, 58(3), 621–681. https://doi.org/10.1124/pr.58.3.10; Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. Journal of Molecular Evolution, 88(1), 26–40. https://doi.org/10.1007/S00239-019-09914-3; Christmann, J., Cao, P., Becker, J., Desiderato, C. K., Goldbeck, O., Riedel, C. U., Kohlstedt, M., & Wittmann, C. (2023). High-efficiency production of the antimicrobial peptide pediocin PA-1 in metabolically engineered Corynebacterium glutamicum using a microaerobic process at acidic pH and elevated levels of bivalent calcium ions. Microbial Cell Factories, 22(1), 1–18. https://doi.org/10.1186/s12934-023-02044-y; CLSI. (2018). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Clinical and Laboratory Standards Institute, 11(M07). www.clsi.org.; De Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A., Paterson, D. L., & Walker, M. J. (2020). Antimicrobial resistance in ESKAPE pathogens. Clinical Microbiology Reviews, 33(3). https://doi.org/10.1128/CMR.00181-19/ASSET/CBA1C1D1-CF90-43DE-A9DF-32D24A4334AC/ASSETS/GRAPHIC/CMR.00181-19-F0001.JPEG; Duperthuy, M. (2020). Antimicrobial peptides: Virulence and resistance modulation in gram-negative bacteria. Microorganisms, 8. https://doi.org/10.3390/microorganisms8020280; Farnaud, S., & Evans, R. W. (2003). Lactoferrin - A multifunctional protein with antimicrobial properties. Molecular Immunology, 40(7), 395–405. https://doi.org/10.1016/S0161-5890(03)00152-4; Fleece, M. E., Pholwat, S., Mathers, A. J., & Houpt, E. R. (2018). Molecular diagnosis of antimicrobial resistance in Escherichia coli. Expert Review of Molecular Diagnostics, 18(3), 207–217. https://doi.org/10.1080/14737159.2018.1439381; Gao, Y., Fang, H., Fang, L., Liu, D., Liu, J., Su, M., Fang, Z., Ren, W., & Jiao, H. (2018). The Modification and Design of Antimicrobial Peptide. Curr Pharm Des, 24(8), 904–910. https://doi.org/10.2174/1381612824666180213130318; Gifford, J. L., Hunter, H. N., & Vogel, H. J. (2005). Lactoferricin. Cellular and Molecular Life Sciences 2005 62:22, 62(22), 2588–2598. https://doi.org/10.1007/S00018-005-5373-Z; Gruden, Š., & Ulrih, N. P. (2021). Diverse Mechanisms of Antimicrobial Activities of Lactoferrins, Lactoferricins, and Other Lactoferrin-Derived Peptides. International Journal of Molecular Sciences 2021, Vol. 22, Page 11264, 22(20), 11264. https://doi.org/10.3390/IJMS222011264; Guo, Y., Song, G., Sun, M., Wang, J., & Wang, Y. (2020). Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/FCIMB.2020.00107; Gutman, I., Gutman, R., Sidney, J., Chihab, L., Mishto, M., Liepe, J., Chiem, A., Greenbaum, J., Yan, Z., Sette, A., Koşaloǧlu-Yalçln, Z., & Peters, B. (2022). Predicting the Success of Fmoc-Based Peptide Synthesis. ACS Omega, 7(27), 23771–23781. https://doi.org/10.1021/ACSOMEGA.2C02425/SUPPL_FILE/AO2C02425_SI_002.XLSX; Hao, L., Shan, Q., Wei, J., Ma, F., & Sun, P. (2019). Lactoferrin: Major Physiological Functions and Applications. Current Protein & Peptide Science, 20(2), 139–144. https://doi.org/10.2174/1389203719666180514150921; Ho, Y. H., Shah, P., Chen, Y. W., & Chen, C. S. (2016). Systematic analysis of intracellular-targeting antimicrobial peptides, bactenecin 7, hybrid of pleurocidin and dermaseptin, proline-arginine-rich peptide, and lactoferricin b, by using Escherichia coli proteome microarrays. Molecular and Cellular Proteomics, 15(6), 1837–1847. https://doi.org/10.1074/mcp.M115.054999; Hoskin, D. . (2017). Lactoferricin Antiangiogenesis Inhibitor. Encyclopedia of Cancer, 2433–2436. https://doi.org/10.1007/978-3-662-46875-3_3261; Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Frontiers in Microbiology, 11, 2559. https://doi.org/10.3389/FMICB.2020.582779/BIBTEX; Huemer, M., Mairpady Shambat, S., Brugger, S. D., & Zinkernagel, A. S. (2020). Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Reports, 21(12). https://doi.org/10.15252/EMBR.202051034; Huertas Méndez, N. D. J., Vargas Casanova, Y., Gómez Chimbi, A. K., Hernández, E., Leal Castro, A. L., Melo Diaz, J. M., Rivera Monroy, Z. J., & García Castañeda, J. E. (2017). Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Molecules (Basel, Switzerland), 22(3), 1–10. https://doi.org/10.3390/molecules22030452; IACG. (2019). No time to wait: Securing the future from drug-resistant infections. World Health Organization. In World Health Organization. https://www.who.int/publications/i/item/no-time-to-wait-securing-the-future-from-drug-resistant-infections; INS. (2019). INFORME DE RESULTADOS DE LA VIGILANCIA POR LABORATORIO DE RESISTENCIA ANTIMICROBIANA EN INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD.; Insuasty Cepeda, D. S., Barragán Cárdenas, A. C., Ochoa Zarzosa, A., López Meza, J. E., Fierro Medina, R., García Castañeda, J. E., & Rivera Monroy, Z. J. (2020). Peptides Derived from (RRWQWRMKKLG)2-K-Ahx Induce Selective Cellular Death in Breast Cancer Cell Lines through Apoptotic Pathway. International Journal of Molecular Sciences, 21(12), 4550. https://doi.org/10.3390/IJMS21124550; Insuasty, D. (2022). Implementación y Optimización de la Síntesis de Péptidos Diméricos Derivados de la Secuencia LfcinB (20-30) con Potencial Actividad Anticancerígena Contra el Cáncer de Mama. Universidad Nacional de Colombia.; Jaradat, D. M. M. (2018). Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation. Amino Acids, 50(1), 39–68. https://doi.org/10.1007/S00726-017-2516-0; Kang, J. H., Lee, M. K., Kim, K. L., & Hahm, K. S. (1996). Structure–biological activity relationships of 11-residue highly basic peptide segment of bovine lactoferrin. International Journal of Peptide and Protein Research, 48(4), 357–363. https://doi.org/10.1111/J.1399-3011.1996.TB00852.X; Kumar, P., Kizhakkedathu, J. N., & Straus, S. K. (2018). Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules, 8(1). https://doi.org/10.3390/BIOM8010004; Lebreton, F., & Cattoir, V. (2019). Resistance to glycopeptide antibiotics. Bacterial Resistance to Antibiotics: From Molecules to Man, 51–80. https://doi.org/10.1002/9781119593522.ch3; Lei, J., Sun, L., Huang, S., Zhu, C., Li, P., He, J., Mackey, V., & Coy, D. H. (2019). The antimicrobial peptides and their potential clinical applications. 11(7), 3919–3931.; León Calvijo, M. A., Leal Castro, A. L., Almanzar Reina, G. A., Rosas Pérez, J. E., García Castañeda, J. E., & Rivera Monroy, Z. J. (2015). Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus Faecalis ATCC 29212. BioMed Research International, 2015. https://doi.org/10.1155/2015/453826; Longhi, C., Conte, M. P., Bellamy, W., Seganti, L., & Valenti, P. (1994). Effect of lactoferricin B, a pepsin-generated peptide of bovine lactoferrin, on Escherichia coli HB101 (pRI203) entry into HeLa cells. Medical Microbiology and Immunology 1994 183:2, 183(2), 77–85. https://doi.org/10.1007/BF00277158; Lorenzon, E. N., Piccoli, J. P., Santos-Filho, N. A., & Cilli, E. M. (2019). Dimerization of Antimicrobial Peptides: A Promising Strategy to Enhance Antimicrobial Peptide Activity. Protein & Peptide Letters, 26(2), 98–107. https://doi.org/10.2174/0929866526666190102125304; Martínez, J. L. (2019). Mechanisms of action and of resistance to quinolones. Antibiotic Drug Resistance, 39–55. https://doi.org/10.1002/9781119282549.ch2; McEwen, S. A., & Collignon, P. J. (2018). Antimicrobial Resistance: a One Health Perspective. Microbiology Spectrum, 6(2). https://doi.org/10.1128/MICROBIOLSPEC.ARBA-0009-2017; Minogue, T. D., Daligault, H. A., Davenport, K. W., Bishop-Lilly, K. A., Broomall, S. M., Bruce, D. C., Chain, P. S., Chertkov, O., Coyne, S. R., Freitas, T., Frey, K. G., Gibbons, H. S., Jaissle, J., Redden, C. L., Rosenzweig, C. N., Xu, Y., & Johnson, S. L. (2014). Complete Genome Assembly of Escherichia coli ATCC 25922, a Serotype O6 Reference Strain. Genome Announcements, 2(5), 969–983. https://doi.org/10.1128/GENOMEA.00969-14; Miranda García, M. C. (2013). Escherichia coli portador de betalactamasas de espectro extendido: resistencia. Sanidad Militar, 69(4), 244–248. https://doi.org/10.4321/s1887-85712013000400003; Morrison, L., & Zembower, T. R. (2020). Antimicrobial Resistance. Gastrointestinal Endoscopy Clinics of North America, 30(4), 619–635. https://doi.org/10.1016/J.GIEC.2020.06.004; Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S., & Pardesi, K. R. (2019). Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Frontiers in Microbiology, 10(APR). https://doi.org/10.3389/FMICB.2019.00539; Nguyen, L. T., Schibli, D. J., & Vogel, H. J. (2005). Structural studies and model membrane interactions of two peptides derived from bovine lactoferricin. Journal of Peptide Science, 11(7), 379–389. https://doi.org/10.1002/psc.629; OMS. (2022). Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022 (Issue 8.5.2017).; Paitan, Y. (2018). Current Trends in Antimicrobial Resistance of Escherichia coli. Current Topics in Microbiology and Immunology, 416, 181–211. https://doi.org/10.1007/82_2018_110; Pei, J., Xiong, L., Chu, M., Guo, X., & Yan, P. (2020). Effect of intramolecular disulfide bond of bovine lactoferricin on its molecular structure and antibacterial activity against Trueperella pyogenes separated from cow milk with mastitis. BMC Veterinary Research, 16(1), 1–10. https://doi.org/10.1186/s12917-020-02620-z; Raheem, N., & Straus, S. K. (2019). Mechanisms of Action for Antimicrobial Peptides With Antibacterial and Antibiofilm Functions. Frontiers in Microbiology, 10(December), 1–14. https://doi.org/10.3389/fmicb.2019.02866; Rainard, P. (1986). Bacteriostatic activity of bovine milk lactoferrin against mastitic bacteria. Veterinary Microbiology, 11(4), 387–392. https://doi.org/10.1016/0378-1135(86)90068-4; Rodríguez, J. (2019). Evaluación de la actividad anticancerígena In Vitro de péptidos sintéticos derivados de Lactoferricina Bovina en líneas celulares de cáncer de mama [Universidad Nacional de Colombia]. In Repositorio.Unal.Edu.Co. https://repositorio.unal.edu.co/handle/unal/76436; Sinha, M., Kaushik, S., Kaur, P., Sharma, S., & Singh, T. P. (2013). Antimicrobial lactoferrin peptides: The hidden players in the protective function of a multifunctional protein. International Journal of Peptides, 2013. https://doi.org/10.1155/2013/390230; Sun, C., Li, Y., Cao, S., Wang, H., Jiang, C., Pang, S., Hussain, M. A., & Hou, J. (2018). Antibacterial Activity and Mechanism of Action of Bovine Lactoferricin Derivatives with Symmetrical Amino Acid Sequences. International Journal of Molecular Sciences 2018, Vol. 19, Page 2951, 19(10), 2951. https://doi.org/10.3390/IJMS19102951; Tu, Y. H., Ho, Y. H., Chuang, Y. C., Chen, P. C., & Chen, C. S. (2011). Identification of lactoferricin B intracellular targets using an escherichia coli proteome chip. PLoS ONE, 6(12). https://doi.org/10.1371/journal.pone.0028197; University of Nebraska Medical Center. (2023). Antimicrobial Peptide Database. https://aps.unmc.edu/; Vargas Casanova, Y. (2018). EVALUACIÓN DE LA ACTIVIDAD ANTIBACTERIANA DE PÉPTIDOS DIMÉRICOS Y TETRAMÉRICOS DERIVADOS DE LACTOFERRICINA BOVINA CONTRA BACTERIAS GRAM POSITIVAS Y GRAM NEGATIVAS. Universidad Nacional de Colombia.; Vargas Casanova, Y., Rodríguez Mayor, A. V., Cardenas, K. J., Leal Castro, A. L., Muñoz Molina, L. C., Fierro Medina, R., Rivera Monroy, Z. J., & García Castañeda, J. E. (2019). Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains. The Royal Society of Chemistry Advances, 9(13), 7239–7245. https://doi.org/10.1039/C9RA00708C; Ventola, C. L. (2015). The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharmacy and Therapeutics, 40(4), 277. https://doi.org/Article; Wang, B., Timilsena, Y. P., Blanch, E., & Adhikari, B. (2017). Lactoferrin: Structure, function, denaturation and digestion. Critical Reviews in Food Science and Nutrition, 59(4), 580–596. https://doi.org/10.1080/10408398.2017.1381583; Ying, J. P., Wu, G., Zhang, Y. M., & Zhang, Q. L. (2023). Proteomic analysis of Staphylococcus aureus exposed to bacteriocin XJS01 and its bio-preservative effect on raw pork loins. Meat Science, 204(February), 109258. https://doi.org/10.1016/j.meatsci.2023.109258; https://repositorio.unal.edu.co/handle/unal/86767; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  11. 11
    Dissertation/ Thesis

    المؤلفون: Muñoz Ibañez, Laura Maria

    المساهمون: Bernal Giraldo, Adriana Jimena, Uribe Velez, Daniel

    وصف الملف: 66 páginas; application/pdf

    Relation: Abo-Elyousr, K. A. M., Almasoudi, N. M., Abdelmagid, A. W. M., Roberto, S. R., & Youssef, K. (2020). Plant extract treatments induce resistance to bacterial spot by tomato plants for a sustainable system. Horticulturae, 6(2), 1–12. https://doi.org/10.3390/horticulturae6020036; Agroproductores. (n.d.). Control Biologico. Retrieved January 29, 2024, from https://agroproductores.com/control-biologico/#:~:text=El%20control%20biol%C3%B3gico%20es%20el%20uso%20de%20t%C3%A9cnicas,,el%20impacto%20ambiental%20de%20una%20producci%C3%B3n%20agr%C3%ADcola%20intensiva.; Alzandi, A. A., & Naguib, D. M. (2019). Pseudomonas fluorescens metabolites as biopriming agent for systemic resistance induction in tomato against Fusarium wilt. Rhizosphere, 11, 100168. https://doi.org/10.1016/J.RHISPH.2019.100168; Ambayeba Muimba-Kankolongo. (2018). Food Crop Production by Smallholder Farmers in Southern Africa: Challenges and Opportunities for Improvement evaluates traditional cultivation practices used by smallholder farmers (Academic Press, Ed.). https://www.sciencedirect.com/science/article/abs/pii/B9780128143834000116; Arias, L. A., Garzón, A., Ayarza, A., Aux, S., & Bojacá, C. R. (2021). Environmental fate of pesticides in open field and greenhouse tomato production regions from Colombia. Environmental Advances, 3, 100031. https://doi.org/10.1016/J.ENVADV.2021.100031; Bautista, G., Sc, M., Mendoza, H., & Uribe, D. (2007). BIOCONTROL OF Rhizoctonia solani IN NATIVE POTATO (Solanum phureja) PLANTS USING NATIVE Pseudomonas f1uorescens. In Acta bioi. Colomb (Vol. 12, Issue 1).; Bukhat, S., Imran, A., Javaid, S., Shahid, M., Majeed, A., & Naqqash, T. (2020). Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. In Microbiological Research (Vol. 238). Elsevier GmbH. https://doi.org/10.1016/j.micres.2020.126486; Cai, J., Jozwiak, A., Holoidovsky, L., Meijler, M. M., Meir, S., Rogachev, I., & Aharoni, A. (2021). Glycosylation of N-hydroxy-pipecolic acid equilibrates between systemic acquired resistance response and plant growth. Molecular Plant, 14(3), 440–455. https://doi.org/10.1016/j.molp.2020.12.018; Carrillo, R. S., & Guerra Ramírez, P. (2022). Pseudomonas spp. beneficial in agriculture. In Revista Mexicana Ciencias Agrícolas (Vol. 13, Issue 4). https://pubchem.ncbi.nlm.nih.gov; CHEN, C. long, YUAN, F., LI, X. ying, MA, R. cai, & XIE, H. (2021). Jasmonic acid and ethylene signaling pathways participate in the defense response of Chinese cabbage to Pectobacterium carotovorum infection. Journal of Integrative Agriculture, 20(5), 1314–1326. https://doi.org/10.1016/S2095-3119(20)63267-1; Chulze, S. N. (2023). Agentes de control biológico de origen microbiano para reducir el impacto de hongos patógenos y toxicogénicos. Revista Argentina de Microbiología, 55(1), 1–2. https://doi.org/10.1016/J.RAM.2023.02.001; Cordovez, V., Mommer, L., Moisan, K., Lucas-Barbosa, D., Pierik, R., Mumm, R., Carrion, V. J., & Raaijmakers, J. M. (2017). Plant phenotypic and transcriptional changes induced by volatiles from the fungal root pathogen Rhizoctonia solani. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01262; DANE. (2020). Boletín Técnico. Encuesta Nacional Agropecuaria (ENA) 2019; DANE. (2022). Boletín Técnico Mensual Abastecimiento de Alimentos SIPSA_A Junio de 2022; Delgado Oramas, B. P. (2020). La resistencia inducida como alternativa para el manejo de plagas en las plantas de cultivo. Revista de Proteccion Vegetal, 35(1). https://eqrcode.co/a/4Io53i; Dhanya, S., Sherin, V., Divya, K., Sreekumar, J., & Jisha, M. S. (2020). Pseudomonas taiwanensis (MTCC11631) mediated induction of systemic resistance in Anthurium andreanum L against blight disease and visualisation of defence related secondary metabolites using confocal laser scanning microscopy. Biocatalysis and Agricultural Biotechnology, 24, 101561. https://doi.org/10.1016/J.BCAB.2020.101561; Emannuel Oliveira Vieira, M., Vieira Nunes, V., Costa Calazans, C., & Silva-Mann, R. (2024). Unlocking plant defenses: Harnessing the power of beneficial microorganisms for induced systemic resistance in vegetables – A systematic review. Biological Control, 188, 105428. https://doi.org/10.1016/J.BIOCONTROL.2023.105428; Ephytia. (2023). Tomate - Pseudomonas syringae pv. tomato (moteado). http://ephytia.inra.fr/es/C/5042/Tomate-Pseudomonas-syringae-pv-tomato-moteado; FAOSTAT. (2021). Cultivos y productos de ganadería. https://www.fao.org/faostat/es/#data/QCL/visualize; FAUBA. (2023). Peca bacteriana del tomate (Pseudomonas syringae pv tomato). Https://Herbariofitopatologia.Agro.Uba.Ar/.; Gail, M. (2000). Pseudomonas syringae pv. tomato_ the right pathogen. Molecular Plant Patology, 263–275; Gómez-Godínez, L. J., Aguirre-Noyola, J. L., Martínez-Romero, E., Arteaga-Garibay, R. I., Ireta-Moreno, J., & Ruvalcaba-Gómez, J. M. (2023). A Look at Plant-Growth-Promoting Bacteria. In Plants (Vol. 12, Issue 8). MDPI. https://doi.org/10.3390/plants12081668; Guevara Luna, & Alvarado Delgado. (2014). Importancia, contribución y estabilidad de antioxidantes den frutos y productos de tomate (Solanum lycopersicum L.).; He, L. L., Wang, X., O’Neill Rothenberg, D., Xu, X., Wang, H. H., Deng, X., & Cui, Z. N. (2023a). A novel strategy to control Pseudomonas syringae through inhibition of type III secretion system. Pesticide Biochemistry and Physiology, 194, 105471. https://doi.org/10.1016/J.PESTBP.2023.105471; He, L. L., Wang, X., O’Neill Rothenberg, D., Xu, X., Wang, H. H., Deng, X., & Cui, Z. N. (2023b). A novel strategy to control Pseudomonas syringae through inhibition of type III secretion system. Pesticide Biochemistry and Physiology, 194, 105471. https://doi.org/10.1016/J.PESTBP.2023.105471; Howlader, P., Bose, S. K., Jia, X., Zhang, C., Wang, W., & Yin, H. (2020). Oligogalacturonides induce resistance in Arabidopsis thaliana by triggering salicylic acid and jasmonic acid pathways against Pst DC3000. International Journal of Biological Macromolecules, 164, 4054–4064. https://doi.org/10.1016/J.IJBIOMAC.2020.09.026; Khoshru, B., Mitra, D., Joshi, K., Adhikari, P., Rion, M. S. I., Fadiji, A. E., Alizadeh, M., Priyadarshini, A., Senapati, A., Sarikhani, M. R., Panneerselvam, P., Mohapatra, P. K. Das, Sushkova, S., Minkina, T., & Keswani, C. (2023). Decrypting the multi-functional biological activators and inducers of defense responses against biotic stresses in plants. Heliyon, 9(3), e13825. https://doi.org/10.1016/j.heliyon.2023.e13825; Koike, S. T., & Kravik, A. (2017). Small, brown/black spots on a green tomato characteristic of bacterial speck. (Photo courtesy of Bacterial Speck of Tomato. https://pddc.wisc.edu.; Lahlali, R., Ezrari, S., Radouane, N., Kenfaoui, J., Esmaeel, Q., El Hamss, H., Belabess, Z., & Barka, E. A. (2022). Biological Control of Plant Pathogens: A Global Perspective. In Microorganisms (Vol. 10, Issue 3). MDPI. https://doi.org/10.3390/microorganisms10030596; Lee, B., Farag, M. A., Park, H. B., Kloepper, J. W., Lee, S. H., & Ryu, C. M. (2012). Induced Resistance by a Long-Chain Bacterial Volatile: Elicitation of Plant Systemic Defense by a C13 Volatile Produced by Paenibacillus polymyxa. PLoS ONE, 7(11). https://doi.org/10.1371/journal.pone.0048744; Llorens, E., Scalschi, L., Sharon, O., Vicedo, B., Sharon, A., & García-Agustín, P. (2022). Jasmonic acid pathway is required in the resistance induced by Acremonium sclerotigenum in tomato against Pseudomonas syringae. Plant Science, 318, 111210. https://doi.org/10.1016/J.PLANTSCI.2022.111210; Lu, Y., Kronzucker, H. J., & Shi, W. (2021). Stigmasterol root exudation arising from Pseudomonas inoculation of the duckweed rhizosphere enhances nitrogen removal from polluted waters. Environmental Pollution, 287, 117587. https://doi.org/10.1016/J.ENVPOL.2021.117587; Meena, M., Yadav, G., Sonigra, P., Nagda, A., Mehta, T., Swapnil, P., Harish, & Marwal, A. (2022). Role of elicitors to initiate the induction of systemic resistance in plants to biotic stress. Plant Stress, 5, 100103. https://doi.org/10.1016/J.STRESS.2022.100103; Messa, V. R. (2021). Biocontrol by induced systemic resistance using plant growth promoting rhizobacteria. Rhizosphere, 17, 100323. https://doi.org/10.1016/J.RHISPH.2021.100323; Millas, P., & Castillo, P. (2021, January 4). Manejo del cultivo y principales enfermedades de los tomates - PortalFruticola.com. https://www.portalfruticola.com/noticias/2021/01/04/manejo-del-cultivo-y-principales-enfermedades-de-los-tomates/; Mourouzidou, S., Ntinas, G. K., Tsaballa, A., & Monokrousos, N. (2023). Introducing the Power of Plant Growth Promoting Microorganisms in Soilless Systems: A Promising Alternative for Sustainable Agriculture. In Sustainability (Switzerland) (Vol. 15, Issue 7). MDPI. https://doi.org/10.3390/su15075959; Nam, J. H., Thibodeau, A., Qian, Y. L., Qian, M. C., & Park, S. H. (2023). Multidisciplinary evaluation of plant growth promoting rhizobacteria on soil microbiome and strawberry quality. AMB Express, 13(1). https://doi.org/10.1186/s13568-023-01524-z; Navarro-González, I., & Periago, M. J. (2016). Is tomato a healthy and/or functional food? Revista Espanola de Nutricion Humana y Dietetica, 20(4), 323–335. https://doi.org/10.14306/renhyd.20.4.208; Nguyen-Ngoc, H., Nguyen, C. Q., Vo, K. A. T., Nguyen, T. T. T., Nghiem, D. T., Ha, N. T., Nguyen, V. M., Choi, G. J., Ardiansyah, A. G., Nguyen, C. T., Vu, H. D., Nguyen, N. T., De Tran, Q., & Le Dang, Q. (2023). Insight into the role of phytoalexin naringenin and phytohormone abscisic acid in defense against phytopathogens Phytophthora infestans and Magnaporthe oryzae: In vitro and in silico approaches. Physiological and Molecular Plant Pathology, 127, 102123. https://doi.org/10.1016/J.PMPP.2023.102123; Ochoa, S. (2023). Productos,extractos y subproductos del tomate como nuevos ingredientes alimentarios . Https://Www.Ucm.Es/Otri/Complutransfer-Productos-Extractos-y-Subproductos-Del-Tomate-Como-Nuevos-Ingredientes-Alimentarios.; Palacio-Rodríguez, R., Patricia Ramos, B., Lizbeth Coria-Arellano, J., Nava Reyes, B., & Sáenz-Mata, J. (2016). MECANISMOS DE LAS PGPR PARA MITIGAR EL ESTRÉS ABIÓTICO DE PLANTAS PGPR MECHANISMS TO ALLEVIATE THE ABIOTIC STRESS OF PLANTS.; Pavone, D. (2020). Botrytis-cinerea-PDF. Tecnovita.; Pedraza, L. A., López, C. E., & Uribe-Vélez, D. (2020). Mechanisms of action of bacillus spp. (bacillaceae) against phytopathogenic microorganisms during their interaction with plants. In Acta Biologica Colombiana (Vol. 25, Issue 1, pp. 112–125). Universidad Nacional de Colombia. https://doi.org/10.15446/abc.v25n1.75045; Pei, H., Lu, M., Long, L., & Long, Z. (2022). Antibacterial mechanism of forsythoside A against Pseudomonas syringae pv. actinidiae. Microbial Pathogenesis, 173, 105858. https://doi.org/10.1016/J.MICPATH.2022.105858; Ponce Quimis, J. I. (2021). Aplicacion de Rizobacterias promotoras del crecimiento vegetal (PGPR) en plantas de Balsa Ochroma pyramidale (Cav. Ex Lam.).; Poppeliers, S. W., Sánchez-Gil, J. J., & de Jonge, R. (2023). Microbes to support plant health: understanding bioinoculant success in complex conditions. Current Opinion in Microbiology, 73, 102286. https://doi.org/10.1016/J.MIB.2023.102286; Poveda, J. (2021). Beneficial effects of microbial volatile organic compounds (MVOCs) in plants. Applied Soil Ecology, 168, 104118. https://doi.org/10.1016/J.APSOIL.2021.104118; RABARI, A., RUPARELIA, J., JHA, C. K., SAYYED, R. Z., MITRA, D., PRIYADARSHINI, A., SENAPATI, A., PANNEERSELVAM, P., & DAS MOHAPATRA, P. K. (2023). Articulating beneficial rhizobacteria-mediated plant defenses through induced systemic resistance: A review. Pedosphere, 33(4), 556–566. https://doi.org/10.1016/J.PEDSPH.2022.10.003; Raja Gopalan, N. S., Yegna Priya, S., & Mohapatra, S. (2024). The rhizobacterial strain, Pseudomonas putida AKMP7, causes conditional pathogenesis in Arabidopsis thaliana via negative regulation of salicylic acid signaling, under water stress. Plant Physiology and Biochemistry, 206, 108262. https://doi.org/10.1016/J.PLAPHY.2023.108262; Rana, A., Sudakov, K., Carmeli, S., Miyara, S. B., Bucki, P., & Minz, D. (2024). Volatile organic compounds of the soil bacterium Bacillus halotolerans suppress pathogens and elicit defense-responsive genes in plants. Microbiological Research, 281, 127611. https://doi.org/10.1016/J.MICRES.2024.127611; Rani, A., Rana, A., Dhaka, R. K., Singh, A. P., Chahar, M., Singh, S., Nain, L., Singh, K. P., & Minz, D. (2023). Bacterial volatile organic compounds as biopesticides, growth promoters and plant-defense elicitors: Current understanding and future scope. In Biotechnology Advances (Vol. 63). Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2022.108078; Raza, W., Ling, N., Liu, D., Wei, Z., Huang, Q., & Shen, Q. (2016). Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum. Microbiological Research, 192, 103–113. https://doi.org/10.1016/J.MICRES.2016.05.014; Rivera Gonzalez, J. P. (2021). “Caracterización de bacteriófagos contra Pseudomonas syringae pv. tomato como parte de una estrategia de biocontrol de la Peca Bacteriana en cultivos de tomate.”; Skliros, D., Papazoglou, P., Gkizi, D., Paraskevopoulou, E., Katharios, P., Goumas, D. E., Tjamos, S., & Flemetakis, E. (2023). In planta interactions of a novel bacteriophage against Pseudomonas syringae pv. tomato. Applied Microbiology and Biotechnology, 107(11), 3801–3815. https://doi.org/10.1007/s00253-023-12493-5; Soler, A., Marie-Alphonsine, P. A., Corbion, C., & Quénéhervé, P. (2013). Differential response of two pineapple cultivars (Ananas comosus (L.) Merr.) to SAR and ISR inducers against the nematode Rotylenchulus reniformis. Crop Protection, 54, 48–54. https://doi.org/10.1016/J.CROPRO.2013.07.012; Sundin, G. W., & Wang, N. (2018). Antibiotic Resistance in Plant-Pathogenic Bacteria. Https://Doi.Org/10.1146/Annurev-Phyto-080417-045946, 56, 161–180. https://doi.org/10.1146/ANNUREV-PHYTO-080417-045946; Suresh, P., Shanmugaiah, V., Rajagopal, R., Muthusamy, K., & Ramamoorthy, V. (2022). Pseudomonas fluorescens VSMKU3054 mediated induced systemic resistance in tomato against Ralstonia solanacearum. Physiological and Molecular Plant Pathology, 119, 101836. https://doi.org/10.1016/J.PMPP.2022.101836; Tahir, H. A. S., Gu, Q., Wu, H., Raza, W., Safdar, A., Huang, Z., Rajer, F. U., & Gao, X. (2017). Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles. BMC Plant Biology, 17(1). https://doi.org/10.1186/s12870-017-1083-6; Valan Arasu, M., & Al-Dhabi, N. A. (2023). Biological control of root rot disease-causing Rhizoctonia solani in tomato plant by an endophytic fungus and analysis of growth promoting activities in greenhouse and field. Physiological and Molecular Plant Pathology, 127, 102080. https://doi.org/10.1016/J.PMPP.2023.102080; Xin, X. F., & He, S. Y. (2013). Pseudomonas syringae pv. tomato DC3000: A model pathogen for probing disease susceptibility and hormone signaling in plants. Annual Review of Phytopathology, 51, 473–498. https://doi.org/10.1146/annurev-phyto-082712-102321; Yuan, M., Ngou, B. P. M., Ding, P., & Xin, X. F. (2021). PTI-ETI crosstalk: an integrative view of plant immunity. Current Opinion in Plant Biology, 62, 102030. https://doi.org/10.1016/J.PBI.2021.102030; Yunis, H., Assistant, R., Bashan, Y., Okon, Y., & Henis, Y. (1980). Two Sources of Resistance to Bacterial Speck of Tomato Caused by Pseudomonas tomato.; Zboralski, A., & Filion, M. (2020). Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp. Computational and Structural Biotechnology Journal, 18, 3539–3554. https://doi.org/10.1016/J.CSBJ.2020.11.025; Zheng, X. Y., Spivey, N. W., Zeng, W., Liu, P. P., Fu, Z. Q., Klessig, D. F., He, S. Y., & Dong, X. (2012). Coronatine Promotes Pseudomonas syringae Virulence in Plants by Activating a Signaling Cascade that Inhibits Salicylic Acid Accumulation. Cell Host & Microbe, 11(6), 587–596. https://doi.org/10.1016/J.CHOM.2012.04.014; https://repositorio.unal.edu.co/handle/unal/86901; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal

    المصدر: Investigación Agraria; Vol. 17 No. 2 (2015): Julio-Diciembre; 98-107 ; Investigación Agraria; Vol. 17 Núm. 2 (2015): Julio-Diciembre; 98-107 ; Investigación Agraria; v. 17 n. 2 (2015): Julio-Diciembre; 98-107 ; 2305-0683 ; 1684-9086

    وصف الملف: application/pdf

  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
    Academic Journal

    المصدر: Investigación Agraria; Vol. 14 No. 2 (2012): Julio-Diciembre; 71-79 ; Investigación Agraria; Vol. 14 Núm. 2 (2012): Julio-Diciembre; 71-79 ; Investigación Agraria; v. 14 n. 2 (2012): Julio-Diciembre; 71-79 ; 2305-0683 ; 1684-9086

    وصف الملف: application/pdf

  20. 20