يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"Inda-Díaz, H. A."', وقت الاستعلام: 0.35s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: O’Brien, T. A.; Wehner, M. F.; Payne, A. E.; Shields, C. A.; Rutz, J. J.; Leung, L.-R.; Ralph, F. M.; Collow, A.; Gorodetskaya, I.; Guan, B.; Lora, J. M.; McClenny, E.; Nardi, K. M.; Ramos, A. M.; Tomé, R.; Sarangi, C.; Shearer, E. J.; Ullrich, P. A.; Zarzycki, C.; Loring, B.; Huang, H.; Inda-Díaz, H. A.; Rhoades, A. M.; Zhou, Y. (2022). "Increases in Future AR Count and Size: Overview of the ARTMIP Tier 2 CMIP5/6 Experiment." Journal of Geophysical Research: Atmospheres 127(6): n/a-n/a.; https://hdl.handle.net/2027.42/171990; Journal of Geophysical Research: Atmospheres; Ramos, A. M., Tomé, R., Trigo, R. M., Liberato, M. L., & Pinto, J. G. ( 2016 ). Projected changes in atmospheric rivers affecting Europe in CMIP5 models. Geophysical Research Letters, 43 ( 17 ), 9315 - 9323. https://doi.org/10.1002/2016GL070634; Polade, S. D., Gershunov, A., Cayan, D. R., Dettinger, M. D., & Pierce, D. W. ( 2017 ). Precipitation in a warming world: Assessing projected hydro- climate changes in California and other Mediterranean climate regions. Scientific Reports, 7 ( 1 ), 10783. https://doi.org/10.1038/s41598-017-11285-y; Prabhat, P., Kashinath, K., Mudigonda, M., Kim, S., Kapp- Schwoerer, L., Graubner, A., & Collins, W. ( 2021 ). ClimateNet: An expert- labelled open dataset and Deep Learning architecture for enabling high- precision analyses of extreme weather. Geoscientific Model Development, 14 ( 1 ), 107 - 124. http://doi.org/10.5194/gmd- 14- 107- 2021; Ralph, F. M., Coleman, T., Neiman, P. J., Zamora, R. J., & Dettinger, M. D. ( 2013 ). Observed impacts of duration and seasonality of atmospheric- river landfalls on soil moisture and runoff in coastal northern California. Journal of Hydrometeorology, 14 ( 2 ), 443 - 459. https://doi.org/10.1175/JHM-D-12-076.1; Ralph, F. M., Dettinger, M., Lavers, D., Gorodetskaya, I. V., Martin, A., Viale, M., & Cordeira, J. ( 2017 ). Atmospheric rivers emerge as a global science and applications focus. Bulletin of the American Meteorological Society, 98 ( 9 ), 1969 - 1973. https://doi.org/10.1175/BAMS-D-16-0262.1; Ralph, F. M., Dettinger, M. D., Cairns, M. M., Galarneau, T. J., & Eylander, J. ( 2018 ). Defining - atmospheric river- : How the glossary of meteorology helped resolve a debate. Bulletin of the American Meteorological Society, 99 ( 4 ), 837 - 839. https://doi.org/10.1175/BAMS-D-17-0157.1; Ralph, F. M., Neiman, P. J., & Rotunno, R. ( 2005 ). Dropsonde observations in low- level jets over the northeastern Pacific Ocean from CALJET- 1998 and PACJET- 2001: Mean vertical- profile and atmospheric- river characteristics. Monthly Weather Review, 133 ( 4 ), 889 - 910. https://doi.org/10.1175/MWR2896.1; Ralph, F. M., Neiman, P. J., & Wick, G. A. ( 2004 ). Satellite and CALJET aircraft observations of atmospheric rivers over the Eastern North Pacific Ocean during the winter of 1997/98. Monthly Weather Review, 132 ( 7 ), 1721 - 1745. https://doi.org/10.1175/1520-0493(2004)1322.0.CO;2; Ralph, F. M., Rutz, J. J., Cordeira, J. M., Dettinger, M., Anderson, M., Reynolds, D., & Smallcomb, C. ( 2019 ). A scale to characterize the strength and impacts of atmospheric rivers. Bulletin of the American Meteorological Society, 100 ( 2 ), 269 - 289. https://doi.org/10.1175/BAMS-D-18-0023.1; Ralph, F. M., Wilson, A. M., Shulgina, T., Kawzenuk, B., Sellars, S., Rutz, J. J., & Wick, G. A. ( 2019 ). ARTMIP- early start comparison of atmospheric river detection tools: How many atmospheric rivers hit northern California’s Russian River watershed? Climate Dynamics, 52 ( 7- 8 ), 4973 - 4994. https://doi.org/10.1007/s00382-018-4427-5; Ramos, A. M., Blamey, R. C., Algarra, I., Nieto, R., Gimeno, L., Tomé, R., & Trigo, R. M. ( 2019 ). From Amazonia to southern Africa: Atmospheric moisture transport through low- level jets and atmospheric rivers. Annals of the New York Academy of Sciences, 1436 ( 1 ), 217 - 230. https://doi.org/10.1111/nyas.13960; Ramos, A. M., Trigo, R. M., Liberato, M. L. R., & Tomé, R. ( 2015 ). Daily precipitation extreme events in the Iberian Peninsula and its association with atmospheric rivers. Journal of Hydrometeorology, 16 ( 2 ), 579 - 597. https://doi.org/10.1175/JHM-D-14-0103.1; Rasmusson, E. M., & Arkin, P. A. ( 1993 ). A global view of large- scale precipitation variability. Journal of Climate, 6 ( 8 ), 1495 - 1522. https://doi.org/10.1175/1520-0442(1993)0062.0.CO;2; Reid, K. J., King, A. D., Lane, T. P., & Short, E. ( 2020 ). The sensitivity of atmospheric river identification to integrated water vapor transport threshold, resolution, and regridding method. Journal of Geophysical Research: Atmospheres, 125 ( 20 ), 1 - 15. https://doi.org/10.1029/2020JD032897; Rhoades, A. M., Jones, A. D., O- Brien, T. A., O- Brien, J. P., Ullrich, P. A., & Zarzycki, C. M. ( 2020 ). Influences of North Pacific Ocean domain extent on the western U.S. Winter hydroclimatology in variable- resolution CESM. Journal of Geophysical Research: Atmospheres, 125 ( 14 ), e2019JD031977. https://doi.org/10.1029/2019JD031977; Rhoades, A. M., Jones, A. D., Srivastava, A., Huang, H., O- Brien, T. A., Patricola, C. M., & Zhou, Y. ( 2020 ). The shifting scales of western U.S. landfalling atmospheric rivers under climate change. Geophysical Research Letters, 47 ( 17 ), e2020GL089096. https://doi.org/10.1029/2020GL089096; Rhoades, A. M., Risser, M. D., Stone, D. A., Wehner, M. F., & Jones, A. D. ( 2021 ). Implications of warming on western United States landfalling atmospheric rivers and their flood damages. Weather and Climate Extremes, 32, 100326. https://doi.org/10.1016/j.wace.2021.100326; Rutz, J. J., James Steenburgh, W., & Martin Ralph, F. ( 2014 ). Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Monthly Weather Review, 142 ( 2 ), 905 - 921. https://doi.org/10.1175/MWR-D-13-00168.1; Rutz, J. J., Shields, C. A., Lora, J. M., Payne, A. E., Guan, B., Ullrich, P., & Viale, M. ( 2019 ). The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying uncertainties in atmospheric river climatology. Journal of Geophysical Research: Atmospheres, 124 ( 24 ), 13777 - 13802. https://doi.org/10.1029/2019JD030936; Shearer, E. J., Nguyen, P., Sellars, S. L., Analui, B., Kawzenuk, B., Hsu, K.- l., & Sorooshian, S. ( 2020 ). Examination of global midlatitude atmospheric river lifecycles using an object- oriented methodology. Journal of Geophysical Research: Atmospheres, 125 ( 22 ), e2020JD033425. https://doi.org/10.1029/2020JD033425; Shields, C. A., & Kiehl, J. T. ( 2016b ). Simulating the pineapple express in the half degree community climate System Model, CCSM4. Geophysical Research Letters, 43 ( 14 ), 7767 - 7773. https://doi.org/10.1002/2016GL069476; Shields, C. A., & Kiehl, J. T. ( 2016a ). Atmospheric river landfall- latitude changes in future climate simulations. Geophysical Research Letters, 43 ( 16 ), 8775 - 8782. https://doi.org/10.1002/2016GL070470; Shields, C. A., Rosenbloom, N., Bates, S., Hannay, C., Hu, A., Payne, A. E., & Truesdale, J. ( 2019 ). Meridional heat transport during atmospheric rivers in high- resolution CESM climate projections. Geophysical Research Letters, 46 ( 24 ), 14702 - 14712. https://doi.org/10.1029/2019GL085565; Shields, C. A., Rutz, J. J., Leung, L. R., Ralph, F. M., Wehner, M., O- Brien, T., & Pierce, R. ( 2019 ). Defining uncertainties through comparison of atmospheric river tracking methods. Bulletin of the American Meteorological Society, 100 ( 2 ), ES93 - ES96. https://doi.org/10.1175/BAMS-D-18-0200.1; Shields, C. A., Rutz, J. J., Leung, L.- Y., Ralph, F. M., Wehner, M., Kawzenuk, B., & Nguyen, P. ( 2018 ). Atmospheric river tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design. Geoscientific Model Development, 11 ( 6 ), 2455 - 2474. https://doi.org/10.5194/gmd-11-2455-2018; Skinner, C. B., Lora, J. M., Payne, A. E., & Poulsen, C. J. ( 2020 ). Atmospheric river changes shaped mid- latitude hydroclimate since the mid- holocene. Earth and Planetary Science Letters, 541, 116293. https://doi.org/10.1016/j.epsl.2020.116293; Sousa, P. M., Ramos, A. M., Raible, C. C., Messmer, M., Tomé, R., Pinto, J. G., & Trigo, R. M. ( 2020 ). North Atlantic integrated water vapor transport- From 850 to 2100 CE: Impacts on western European Rainfall. Journal of Climate, 33 ( 1 ), 263 - 279. https://doi.org/10.1175/JCLI-D-19-0348.1; Stohl, A., Forster, C., & Sodemann, H. ( 2008 ). Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N- A tale of hurricanes and an atmospheric river. Journal of Geophysical Research Atmospheres, 113 ( 5 ), 1 - 13. https://doi.org/10.1029/2007JD009006; Taylor, K. E. ( 2001 ). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106 ( D7 ), 7183 - 7192. https://doi.org/10.1029/2000JD900719; Taylor, K. E., Stouffer, R. J., & Meehl, G. A. ( 2012 ). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93 ( 4 ), 485 - 498. https://doi.org/10.1175/BAMS-D-11-00094.1; Thepenir, R.- M., & Cruette, D. ( 1981 ). Formation of cloud bands associated with the American subtropical jet stream and their interaction with midlatitude synoptic disturbances reaching Europe. Monthly Weather Review, 109 ( 10 ), 2209 - 2220. https://doi.org/10.1175/1520-0493(1981)1092.0.CO;2; Tilinina, N., Gulev, S. K., Rudeva, I., & Koltermann, P. ( 2013 ). Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses. Journal of Climate, 26 ( 17 ), 6419 - 6438. https://doi.org/10.1175/JCLI-D-12-00777.1; Ullrich, P. A., & Zarzycki, C. M. ( 2017 ). TempestExtremes: A framework for scale- insensitive pointwise feature tracking on unstructured grids. Geoscientific Model Development, 10 ( 3 ), 1069 - 1090. https://doi.org/10.5194/gmd-10-1069-2017; Viale, M., & Nuñez, M. N. ( 2011 ). Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. Journal of Hydrometeorology, 12 ( 4 ), 481 - 507. https://doi.org/10.1175/2010JHM1284.1; Waliser, D. E., Moncrieff, M. W., Burridge, D., Fink, A. H., Gochis, D., Goswami, B. N., & Yuter, S. ( 2012 ). The - Year- of tropical convection (May 2008- April 2010): Climate variability and weather highlights. Bulletin of the American Meteorological Society, 93 ( 8 ), 1189 - 1218. https://doi.org/10.1175/2011BAMS3095.1; Warner, M. D., Mass, C. F., & Salathé, E. P. ( 2015 ). Changes in winter atmospheric rivers along the North American West Coast in CMIP5 climate models. Journal of Hydrometeorology, 16 ( 1 ), 118 - 128. https://doi.org/10.1175/JHM-D-14-0080.1; Warner, M. D., Mass, C. F., & Salatheé, E. P. ( 2012 ). Wintertime extreme precipitation events along the Pacific Northwest Coast: Climatology and synoptic evolution. Monthly Weather Review, 140 ( 7 ), 2021 - 2043. https://doi.org/10.1175/MWR-D-11-00197.1; Wille, J. D., Favier, V., Dufour, A., Gorodetskaya, I. V., Turner, J., Agosta, C., & Codron, F. ( 2019 ). West Antarctic surface melt triggered by atmospheric rivers. Nature Geoscience, 12 ( 11 ), 911 - 916. https://doi.org/10.1038/s41561-019-0460-1; Wille, J. D., Favier, V., Gorodetskaya, I. V., Agosta, C., Kittel, C., Beeman, J. C., & Codron, F. ( 2021 ). Antarctic atmospheric river climatology and precipitation impacts. Journal of Geophysical Research: Atmospheres, 126 ( 8 ), e2020JD033788. https://doi.org/10.1029/2020JD033788; Xin, X., Wu, T., Shi, X., Zhang, F., Li, J., Chu, M., et al. ( 2019 ). BCC BCC- CSM2MR model output prepared for CMIP6 ScenarioMIP ssp585 (Version 20181130) [Data set]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.3050; Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., et al. ( 2019 ). MRI MRI- ESM2.0 model output prepared for CMIP6 ScenarioMIP ssp585 (Version 20190625) [Data set]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6929; Zhang, Z., Ralph, F. M., & Zheng, M. ( 2019 ). The relationship between extratropical cyclone strength and atmospheric river intensity and position. Geophysical Research Letters, 46 ( 3 ), 1814 - 1823. https://doi.org/10.1029/2018GL079071; Zhou, Y., O- Brien, T. A., Ullrich, P. A., Collins, W. D., Patricola, C. M., & Rhoades, A. M. ( 2021 ). Uncertainties in atmospheric river lifecycles by detection algorithms: Climatology and variability. Journal of Geophysical Research: Atmospheres, 126 ( 8 ), 1 - 22. https://doi.org/10.1029/2020JD033711; Zhu, Y., & Newell, R. E. ( 1998 ). A proposed algorithm for moisture fluxes from atmospheric rivers. Monthly Weather Review, 126 ( 3 ), 725 - 735. https://doi.org/10.1175/1520-0493(1998)1262.0.CO;2; Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. ( 2016 ). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9 ( 5 ), 1937 - 1958. https://doi.org/10.5194/gmd-9-1937-2016; Fyfe, J. C. ( 2003 ). Extratropical Southern Hemisphere cyclones: Harbingers of climate change? Journal of Climate, 16 ( 17 ), 2802 - 2805. https://doi.org/10.1175/1520-0442(2003)0162.0.CO;2; Gao, Y., Lu, J., & Leung, L. R. ( 2016 ). Uncertainties in projecting future changes in atmospheric rivers and their impacts on heavy precipitation over Europe. Journal of Climate, 29 ( 18 ), 6711 - 6726. https://doi.org/10.1175/JCLI-D-16-0088.1; Bao, J. W., Michelson, S. A., Neiman, P. J., Ralph, F. M., & Wilczak, J. M. ( 2006 ). Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Monthly Weather Review, 134 ( 4 ), 1063 - 1080. https://doi.org/10.1175/MWR3123.1; Blamey, R. C., Ramos, A. M., Trigo, R. M., Tomé, R., & Reason, C. J. ( 2018 ). The influence of atmospheric rivers over the South Atlantic on winter rainfall in South Africa. Journal of Hydrometeorology, 19 ( 1 ), 127 - 142. https://doi.org/10.1175/JHM-D-17-0111.1; Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.- A., et al. (2019). IPSL IPSL- CM6A- LR model output prepared for CMIP6 ScenarioMIP ssp585 (Version 20180803) [Data set]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.5271; Browning, K. A., & Pardoe, C. W. ( 1973 ). Structure of low- level jet streams ahead of mid- latitude cold fronts. Quarterly Journal of the Royal Meteorological Society, 99 ( 422 ), 619 - 638. https://doi.org/10.1002/qj.49709942204; Chang, E. K., Guo, Y., & Xia, X. ( 2012 ). CMIP5 multimodel ensemble projection of storm track change under global warming. Journal of Geophysical Research Atmospheres, 117 ( 23 ), 1 - 19. https://doi.org/10.1029/2012JD018578; Davis, S. M., & Rosenlof, K. H. ( 2012 ). A multidiagnostic intercomparison of tropical- width time series using reanalyses and satellite observations. Journal of Climate, 25 ( 4 ), 1061 - 1078. https://doi.org/10.1175/JCLI-D-11-00127.1; Dettinger, M. D., Ralph, F. M., Das, T., Neiman, P. J., & Cayan, D. R. ( 2011 ). Atmospheric rivers, floods and the water resources of California. Water, 3 ( 2 ), 445 - 478. https://doi.org/10.3390/w3020445; Espinoza, V., Waliser, D. E., Guan, B., Lavers, D. A., & Ralph, F. M. ( 2018 ). Global analysis of climate change projection effects on atmospheric rivers. Geophysical Research Letters, 45 ( 9 ), 4299 - 4308. https://doi.org/10.1029/2017GL076968; Gao, Y., Lu, J., Leung, L. R., Yang, Q., Hagos, S., & Qian, Y. ( 2015 ). Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. Geophysical Research Letters, 42 ( 17 ), 7179 - 7186. https://doi.org/10.1002/2015GL065435; Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., & Zhao, B. ( 2017 ). The Modern- Era Retrospective Analysis for Research and Applications, version 2 (MERRA- 2). Journal of Climate, 30 ( 14 ), 5419 - 5454. https://doi.org/10.1175/JCLI-D-16-0758.1; Gershunov, A., Shulgina, T., Clemesha, R. E. S., Guirguis, K., Pierce, D. W., Dettinger, M. D., & Ralph, F. M. ( 2019 ). Precipitation regime change in Western North America: The role of atmospheric rivers. Scientific Reports, 9 ( 1 ), 9944. https://doi.org/10.1038/s41598-019-46169-w; Gershunov, A., Shulgina, T., Ralph, F. M., Lavers, D. A., & Rutz, J. J. ( 2017 ). Assessing the climate- scale variability of atmospheric rivers affecting western North America. Geophysical Research Letters, 44 ( 15 ), 7900 - 7908. https://doi.org/10.1002/2017GL074175; Gimeno, L., Algarra, I., Eiras- Barca, J., Ramos, A. M., & Nieto, R. ( 2021 ). Atmospheric river, a term encompassing different meteorological patterns. WIREs Water, 8 ( 6 ), e1558. https://doi.org/10.1002/wat2.1558; Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., & Marengo, J. ( 2016 ). Major mechanisms of atmospheric moisture transport and their role in extreme precipitation events. Annual Review of Environment and Resources, 41 ( 1 ), 117 - 141. https://doi.org/10.1146/annurev-environ-110615-085558; Gorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., & Van Lipzig, N. P. M. ( 2014 ). The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophysical Research Letters, 41 ( 17 ), 6199 - 6206. https://doi.org/10.1002/2014GL060881; Guan, B., Molotch, N. P., Waliser, D. E., Fetzer, E. J., & Neiman, P. J. ( 2010 ). Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophysical Research Letters, 37 ( 20 ), L20401. https://doi.org/10.1029/2010GL044696; Guan, B., & Waliser, D. E. ( 2015 ). Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. Journal of Geophysical Research: Atmospheres, 120 ( 24 ), 12514 - 12535. https://doi.org/10.1002/2015JD024257; Guan, B., & Waliser, D. E. ( 2017 ). Atmospheric rivers in 20 year weather and climate simulations: A multimodel, global evaluation. Journal of Geophysical Research, 122 ( 11 ), 5556 - 5581. https://doi.org/10.1002/2016JD026174; Guan, B., Waliser, D. E., & Ralph, F. M. ( 2018 ). An intercomparison between reanalysis and dropsonde observations of the total water vapor transport in individual atmospheric rivers. Journal of Hydrometeorology, 19 ( 2 ), 321 - 337. https://doi.org/10.1175/JHM-D-17-0114.1; Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., & von Storch, J.- S. ( 2016 ). High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geoscientific Model Development, 9 ( 11 ), 4185 - 4208. https://doi.org/10.5194/gmd-9-4185-2016; Hagos, S., Ruby Leung, L., Yang, Q., Zhao, C., & Lu, J. ( 2015 ). Resolution and dynamical core dependence of atmospheric river frequency in global model simulations. Journal of Climate, 28 ( 7 ), 2764 - 2776. https://doi.org/10.1175/JCLI-D-14-00567.1; Huang, H., Patricola, C. M., Bercos- Hickey, E., Zhou, Y., Rhoades, A., Risser, M. D., & Collins, W. D. ( 2021 ). Sources of subseasonal- to- seasonal predictability of atmospheric rivers and precipitation in the western United States. Journal of Geophysical Research: Atmospheres, 126, e2020JD034053. https://doi.org/10.1029/2020JD034053; Huning, L. S., Margulis, S. A., Guan, B., Waliser, D. E., & Neiman, P. J. ( 2017 ). Implications of detection methods on characterizing atmospheric river contribution to seasonal snowfall across Sierra Nevada, USA. Geophysical Research Letters, 44 ( 20 ), 10445 - 10453. https://doi.org/10.1002/2017GL075201; Iskenderian, H. ( 1995 ). A 10- year climatology of Northern Hemisphere tropical cloud plumes and their composite flow patterns. Journal of Climate, 8 ( 6 ), 1630 - 1637. https://doi.org/10.1175/1520-0442(1995)0082.0.CO;2; Kiehl, J. T., Shields, C. A., Snyder, M. A., Zachos, J. C., & Rothstein, M. ( 2018 ). Greenhouse- and orbital- forced climate extremes during the early Eocene. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376 ( 2130 ), 20170085. https://doi.org/10.1098/rsta.2017.0085; Kiladis, G. N., & Weickmann, K. M. ( 1992 ). Extratropical forcing of tropical Pacific convection during northern winter. Monthly Weather Review, 120 ( 9 ), 1924 - 1939. https://doi.org/10.1175/1520-0493(1992)1202.0.CO;2; Kuhnel, I. ( 1989 ). Tropical- extratropical cloudband climatology based on satellite data. International Journal of Climatology, 9 ( 5 ), 441 - 463. https://doi.org/10.1002/joc.3370090502; Lackmann, G. M., & Gyakum, J. R. ( 1999 ). Heavy cold- season precipitation in the northwestern United States: Synoptic climatology and an analysis of the flood of 17- 18 January 1986. Weather and Forecasting, 14 ( 5 ), 687 - 700. https://doi.org/10.1175/1520-0434(1999)0142.0.CO;2; Lau, K.- M., & Chan, P. H. ( 1988 ). Intraseasonal and interannual variations of tropical convection: A possible link between the 40- 50 day oscillation and ENSO? Journal of the Atmospheric Sciences, 45 ( 3 ), 506 - 521. https://doi.org/10.1175/1520-0469(1988)0452.0.CO;2; Lavers, D. A., Pappenberger, F., Richardson, D. S., & Zsoter, E. ( 2016 ). ECMWF Extreme Forecast Index for water vapor transport: A forecast tool for atmospheric rivers and extreme precipitation. Geophysical Research Letters, 43 ( 22 ), 11852 - 11858. https://doi.org/10.1002/2016GL071320; Lavers, D. A., Ralph, F. M., Waliser, D. E., Gershunov, A., & Dettinger, M. D. ( 2015 ). Climate change intensification of horizontal water vapor transport in CMIP5. Geophysical Research Letters, 42 ( 13 ), 5617 - 5625. https://doi.org/10.1002/2015GL064672; Lavers, D. A., & Villarini, G. ( 2013 ). The nexus between atmospheric rivers and extreme precipitation across Europe. Geophysical Research Letters, 40 ( 12 ), 3259 - 3264. https://doi.org/10.1002/grl.50636; Lavers, D. A., Villarini, G., Allan, R. P., Wood, E. F., & Wade, A. J. ( 2012 ). The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large- scale climatic circulation. Journal of Geophysical Research Atmospheres, 117 ( 20 ), 1 - 13. https://doi.org/10.1029/2012JD018027; Lavers, D. A., Waliser, D. E., Ralph, F. M., & Dettinger, M. D. ( 2016 ). Predictability of horizontal water vapor transport relative to precipitation: Enhancing situational awareness for forecasting western U.S. extreme precipitation and flooding. Geophysical Research Letters, 43 ( 5 ), 2275 - 2282. https://doi.org/10.1002/2016GL067765; Leung, L.- R., & Qian, Y. ( 2009 ). Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophysical Research Letters, 36 ( 3 ), 1. https://doi.org/10.1029/2008GL036445; Lora, J. M., Mitchell, J. L., Risi, C., & Tripati, A. E. ( 2017 ). North Pacific atmospheric rivers and their influence on western North America at the last Glacial Maximum. Geophysical Research Letters, 44 ( 2 ), 1051 - 1059. https://doi.org/10.1002/2016GL071541; Lora, J. M., Shields, C. A., & Rutz, J. J. ( 2020 ). Consensus and disagreement in atmospheric river detection: ARTMIP global catalogues. Geophysical Research Letters, 47 ( 20 ), 1 - 10. https://doi.org/10.1029/2020GL089302; Lucas, C., Timbal, B., & Nguyen, H. ( 2014 ). The expanding tropics: A critical assessment of the observational and modeling studies. WIREs Climate Change, 5 ( 1 ), 89 - 112. https://doi.org/10.1002/wcc.251; Manney, G. L., & Hegglin, M. I. ( 2018 ). Seasonal and regional variations of long- term changes in upper- tropospheric jets from reanalyses. Journal of Climate, 31 ( 1 ), 423 - 448. https://doi.org/10.1175/JCLI-D-17-0303.1; Massoud, E., Espinoza, V., Guan, B., & Waliser, D. ( 2019 ). Global climate model ensemble approaches for future projections of atmospheric rivers. Earth’s Future, 7 ( 10 ), 1136 - 1151. https://doi.org/10.1029/2019EF001249; Mattingly, K. S., Mote, T. L., Fettweis, X., van As, D., Tricht, K. V., Lhermitte, S., & Fausto, R. S. ( 2020 ). Strong summer atmospheric rivers trigger Greenland ice sheet melt through spatially varying surface energy balance and cloud regimes. Journal of Climate, 33 ( 16 ), 6809 - 6832. https://doi.org/10.1175/JCLI-D-19-0835.1; McClenny, E. E., Ullrich, P. A., & Grotjahn, R. ( 2020 ). Sensitivity of atmospheric river vapor transport and precipitation to uniform sea surface temperature increases. Journal of Geophysical Research: Atmospheres, 125 ( 21 ), 1 - 20. https://doi.org/10.1029/2020JD033421; McGuirk, J. P., Thompson, A. H., & Smith, N. R. ( 1987 ). Moisture bursts over the tropical Pacific ocean. Monthly Weather Review, 115 ( 4 ), 787 - 798. https://doi.org/10.1175/1520-0493(1987)1152.0.CO;2; Menemenlis, S., Lora, J. M., Lofverstrom, M., & Chandan, D. ( 2021 ). Influence of stationary waves on mid- Pliocene atmospheric rivers and hydroclimate. Global and Planetary Change, 204, 103557. https://doi.org/10.1016/j.gloplacha.2021.103557; Mundhenk, B. D., Barnes, E. A., & Maloney, E. D. ( 2016 ). All- season climatology and variability of atmospheric river frequencies over the North Pacific. Journal of Climate, 29 ( 13 ), 4885 - 4903. https://doi.org/10.1175/JCLI-D-15-0655.1; Neiman, P. J., Ralph, F. M., White, A. B., Kingsmill, D. E., & Persson, P. O. ( 2002 ). The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Monthly Weather Review, 130 ( 6 ), 200211468. https://doi.org/10.1175/1520-0493(2002)1302.0.co;2; Neiman, P. J., Ralph, F. M., Wick, G. A., Kuo, Y. H., Wee, T. K., Ma, Z., & Dettinger, M. D. ( 2008 ). Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Monthly Weather Review, 136 ( 11 ), 4398 - 4420. https://doi.org/10.1175/2008MWR2550.1; Neiman, P. J., Ralph, F. M., Wick, G. A., Lundquist, J. D., & Dettinger, M. D. ( 2008 ). Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West coast of North America based on eight years of SSM/I satellite observations. Journal of Hydrometeorology, 9 ( 1 ), 22 - 47. https://doi.org/10.1175/2007JHM855.1; Neiman, P. J., Ralph, M. F., Moore, B. J., Hughes, M., Mahoney, K. M., Cordeira, J. M., & Dettinger, M. D. ( 2013 ). The landfall and inland penetration of a flood- producing atmospheric river in Arizona. Part I: Observed synoptic- scale, orographic, and hydrometeorological characteristics. Journal of Hydrometeorology, 14 ( 2 ), 460 - 484. https://doi.org/10.1175/JHM-D-12-0101.1; Newell, R. E., Newell, N. E., Zhu, Y., & Scott, C. ( 1992 ). Tropospheric rivers?- A pilot study. Geophysical Research Letters, 19 ( 24 ), 2401 - 2404. https://doi.org/10.1029/92GL02916; Newell, R. E., & Zhu, Y. ( 1994 ). Tropospheric rivers: A one- year record and a possible application to ice core data. Geophysical Research Letters, 21 ( 2 ), 113 - 116. https://doi.org/10.1029/93GL03113; Newman, M., Kiladis, G. N., Weickmann, K. M., Ralph, M. F., & Sardeshmukh, P. D. ( 2012 ). Relative contributions of synoptic and low- frequency eddies to time- mean atmospheric moisture transport, including the role of atmospheric rivers. Journal of Climate, 25 ( 21 ), 7341 - 7361. https://doi.org/10.1175/JCLI-D-11-00665.1; O- Brien, T. A., Payne, A. E., Shields, C. A., Rutz, J., Brands, S., Castellano, C., & Zhou, Y. ( 2020 ). Detection uncertainty matters for understanding atmospheric rivers. Bulletin of the American Meteorological Society, 101 ( 6 ), E790 - E796. https://doi.org/10.1175/BAMS-D-19-0348.1; O- Brien, T. A., Risser, M. D., Loring, B., Elbashandy, A. A., Krishnan, H., Johnson, J., & Collins, W. D. ( 2020 ). Detection of atmospheric rivers with inline uncertainty quantification: TECA- BARD v1.0.1. Geoscientific Model Development, 13 ( 12 ), 6131 - 6148. https://doi.org/10.5194/gmd-13-6131-2020; O- Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., & Sanderson, B. M. ( 2016 ). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9 ( 9 ), 3461 - 3482. https://doi.org/10.5194/gmd-9-3461-2016; Payne, A. E., Demory, M.- E., Leung, L. R., Ramos, A. M., Shields, C. A., Rutz, J. J., & Ralph, F. M. ( 2020 ). Responses and impacts of atmospheric rivers to climate change. Nature Reviews Earth & Environment, 1 ( 3 ), 143 - 157. https://doi.org/10.1038/s43017-020-0030-5; Payne, A. E., & Magnusdottir, G. ( 2015 ). An evaluation of atmospheric rivers over the North Pacific in CMIP5 and their response to warming under RCP 8.5. Journal of Geophysical Research: Atmospheres, 120 ( 21 ), 11173 - 11190. https://doi.org/10.1002/2015JD023586; Pena- Ortiz, C., Gallego, D., Ribera, P., Ordonez, P., & Alvarez- Castro, M. D. C. ( 2013 ). Observed trends in the global jet stream characteristics during the second half of the 20th century. Journal of Geophysical Research: Atmospheres, 118 ( 7 ), 2702 - 2713. https://doi.org/10.1002/jgrd.50305

  2. 2
    Academic Journal
  3. 3