-
1Academic Journal
المؤلفون: Lu Yang, Zijin Lin, Ruijing Mu, Wenhan Wu, Hao Zhi, Xiaodong Liu, Hanyu Yang, Li Liu
المصدر: eLife, Vol 13 (2024)
مصطلحات موضوعية: blood–brain barrier, IVIVC, in vivo/in vitro correlation, in vitro BBB model, brain endothelial cells, neurons, Medicine, Science, Biology (General), QH301-705.5
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: Tian-Tian Zuo, Jia Zhu, Fei Gao, Ji-Shuang Wang, Qing-Hui Song, Hai-Yan Wang, Lei Sun, Wan-Qiang Zhang, De-Juan Kong, Yuan-Sheng Guo, Jian-Bo Yang, Feng Wei, Qi Wang, Hong-yu Jin, Shuang-Cheng Ma
المصدر: Environment International, Vol 175, Iss , Pp 107933- (2023)
مصطلحات موضوعية: Relative bioavailability, In vivo-in vitro correlation, Accumulative risk assessment, Medical earthworms, Heavy metal(loid)s, Environmental sciences, GE1-350
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: Mette Klitgaard, Anette Müllertz, Ragna Berthelsen
المصدر: Pharmaceutics; Volume 13; Issue 4; Pages: 489
مصطلحات موضوعية: in vivo–in vitro correlation, lipolysis-permeation, lipid-based drug delivery system, PermeaPad, cinnarizine, lipolysis
وصف الملف: application/pdf
Relation: Biopharmaceutics; https://dx.doi.org/10.3390/pharmaceutics13040489
-
4Academic Journal
المصدر: Falavigna , M , Brurok , S , Klitgaard , M & Flaten , G E 2021 , ' Simultaneous assessment of in vitro lipolysis and permeation in the mucus-PVPA model to predict oral absorption of a poorly water soluble drug in SNEDDSs ' , International Journal of Pharmaceutics , vol. 596 , 120258 . https://doi.org/10.1016/j.ijpharm.2021.120258
مصطلحات موضوعية: In vivo-in vitro correlation (IVIVC), In vitro permeation, In vitro lipolysis, Lipid-based formulation, Oral drug delivery, Poorly water-soluble drugs
وصف الملف: application/pdf
الاتاحة: https://researchprofiles.ku.dk/da/publications/simultaneous-assessment-of-in-vitro-lipolysis-and-permeation-in-the-mucuspvpa-model-to-predict-oral-absorption-of-a-poorly-water-soluble-drug-in-sneddss(f17994f1-d514-49bf-9ff3-0540a5af1ff2).html
https://doi.org/10.1016/j.ijpharm.2021.120258
https://curis.ku.dk/ws/files/317091576/392180603.pdf -
5Dissertation/ Thesis
المؤلفون: Carvajal Barbosa, Laura
المساهمون: Aragón Novoa, Diana Marcela, Sistemas Para Liberación Controlada de Moléculas Biológicamente Activas
مصطلحات موضوعية: 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales, 610 - Medicina y salud::615 - Farmacología y terapéutica, Carbamazepina/síntesis química, Disolución, Técnicas In Vitro/métodos, Carbamazepine/chemical synthesis, Dissolution, In Vitro Techniques/methods, Correlación in vivo in vitro, Carbamazepina, Método de disolución, Liberación modificada, Aparato de disolución USP 4, Celda de flujo, In vivo in vitro correlation, Carbamazepine, Dissolution method, Modified release, Dissolution apparatus USP 4, Flow-through cell
وصف الملف: x,x, 111 páginas; application/pdf
Relation: Bireme; Aguilar Ros, A., Caamaño Somoza, Manuel., Martín Martín, F. R., & Montejo Rubio, M. Consuelo. (2014). Biofarmacia y farmacocinética : ejercicios y problemas resueltos (B. Elsevier, Ed.; 2nd ed.). https://bibliotecadigital.uchile.cl/discovery/fulldisplay?docid=alma991002291699703936&context=L&vid=56UDC_INST:56UDC_INST&lang=es&adaptor=Local%20Search%20Engine&tab=Everything&query=sub,exact,%20Tecnologi%CC%81a%20farmace%CC%81utica,AND&mode=advanced&offset=10; Aldenkamp, A. P., Alpherts, W. C. J., Moerland, M. C., Ottevanger, N., & Parys, J. A. P. V. (1987). Controlled release carbamazepine: cognitive side effects in patients with epilepsy. Epilepsia, 28(5), 507–514. https://doi.org/10.1111/J.1528-1157.1987.TB03679.X; Alizadeh, M. N., Shayanfar, A., & Jouyban, A. (2018). Solubilization of drugs using sodium lauryl sulfate: Experimental data and modeling. Journal of Molecular Liquids, 268, 410–414. https://doi.org/10.1016/j.molliq.2018.07.065; Alvarado, A. T., Muñoz, A. M., Bendezú, M. R., Palomino-Jhong, J. J., García, J. A., Alvarado, C. A., Alvarado, E. A., Ochoa-Pachas, G., Pineda-Pérez, M., & Bolarte, M. (2021). In Vitro Biopharmaceutical Equivalence of Carbamazepine Sodium Tablets Available in Lima, Peru. Dissolution Technologies, 28(2). https://doi.org/10.14227/DT280221PGC2; Ambrósio, A. F., Soares-da-Silva, P., Carvalho, C. M., & Carvalho, A. P. (2002). Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024. Neurochemical Research, 27(1–2), 121–130. https://doi.org/10.1023/A:1014814924965; Amidon, G. L., Lennernäs, H., Shah, V. P., & Crison, J. R. (1995). A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharmaceutical Research, 12(3), 413–420. https://doi.org/10.1023/A:1016212804288; Baena, Y., & Ponce D’León, L. F. (2008). Importancia y fundamentación del sistema de clasificación biofarmacéutico, como base de la exención de estudios de biodisponibilidad y bioequivalencia in vivo. Revista Colombiana de Ciencias Químico - Farmacéuticas, 37(1), 18–32. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74182008000100002; Barzegar-Jalali, M., Maleki, N., Garjani, A., Khandar, A. A., Haji-Hosseinloo, M., Jabbari, R., & Dastmalchi, S. (2002). Enhancement of Dissolution Rate and Anti-inflammatory Effects of Piroxicam Using Solvent Deposition Technique. Drug Development and Industrial Pharmacy, 28(6), 681–686. https://doi.org/10.1081/DDC-120003859; Bermejo, M., Meulman, J., Davanço, M. G., Carvalho, P. de O., Gonzalez-Alvarez, I., & Campos, D. R. (2020). In Vivo Predictive Dissolution (IPD) for Carbamazepine Formulations: Additional Evidence Regarding a Biopredictive Dissolution Medium. Pharmaceutics 2020, Vol. 12, Page 558, 12(6), 558. https://doi.org/10.3390/PHARMACEUTICS12060558; Bodhe, R., Deshmukh, R., Gorale, A., Shinde, R., & Bodhe, P. (2019). Formulation, Development and Evaluation of Carbamazepine Extended Release Tablet: Dissolution Apparatus USP IV. World Journal of Pharmaceutical Research, 8(9), 1484–1504. https://doi.org/10.20959/wjpr20199-15588; Bondareva, I. B., Jelliffe, R. W., Gusev, E. I., Guekht, A. B., Melikyan, E. G., & Belousov, Y. B. (2006). Population pharmacokinetic modelling of carbamazepine in epileptic elderly patients: implications for dosage. Journal of Clinical Pharmacy and Therapeutics, 31(3), 211–221. https://doi.org/10.1111/j.1365-2710.2006.00717.x; Bruschi, M. L. (2015). Mathematical models of drug release. In Strategies to Modify the Drug Release from Pharmaceutical Systems (pp. 63–86). Elsevier. https://doi.org/10.1016/B978-0-08-100092-2.00005-9; Cárdenas Cuadros, P. A. (2015). Estudio de la correlación in vitro/ in vivo de la liberación de 6-metilcumarina a partir de un sistema micropartículado [Tesis doctoral, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/56673; Cárdenas, P. A., Jiménez – Kairuz, Á., Verlindo de Araujo, B., & Aragón, D. M. (2019). Development of a dissolution method based on lipase for preclinical level A IVIVC of oral poly(ε-caprolactone) microspheres. Journal of Drug Delivery Science and Technology, 52, 632–641. https://doi.org/10.1016/j.jddst.2019.05.011; Carrión Recio, D., González Delgado, C. A., Olivera Ruano, L., & Correa Fernández, A. (1999). Bioequivalencia: Introducción a la correlación in vivo-in vitro. Parte I. Revista Cubana de Farmacia, 33(2), 137-142. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75151999000200010; Comisión Federal para la Protección contra Riesgos Sanitarios (COFEPRIS). (2024). Consulta de Registros Sanitarios . https://tramiteselectronicos02.cofepris.gob.mx/BuscadorPublicoRegistrosSanitarios/BusquedaRegistroSanitario.aspx; Costa, P., & Sousa Lobo, J. M. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13(2), 123–133. https://doi.org/10.1016/S0928-0987(01)00095-1; Ding, A., Zhou, Y., Chen, P., & Nie, W. (2017). Ibuprofen-loaded micelles based on star-shaped erythritol-core PLLA-PEG copolymer: effect of molecular weights of PEG. Colloid and Polymer Science, 295(9), 1609–1619. https://doi.org/10.1007/s00396-017-4141-6; Dressman, J. B. (Jennifer B. ), & Krämer, J. (2005). Pharmaceutical dissolution testing. Taylor & Francis.; Eichelbaum, M., Köthe, K. W., Hoffmann, F., & von Unruh, G. E. (1982). Use of stable labelled carbamazepine to study its kinetics during chronic carbamazepine treatment. European Journal of Clinical Pharmacology 1982 23:3, 23(3), 241–244. https://doi.org/10.1007/BF00547561; EL-Massik, M. A., Abdallah, O. Y., Galal, S., & Daabis, N. A. (2006). Towards a Universal Dissolution Medium for Carbamazepine. Drug Development and Industrial Pharmacy, 32(7), 893–905. https://doi.org/10.1080/03639040600762677; European Medicines Agency (EMEA). (2010). Guideline On The Investigation of Bioequivalence Discussion in the Joint Efficacy and Quality Working Group. http://www.ema.europa.eu; Figueroa, A. I., Gonzalez, M., Merino, V., & Bermejo, M. del V. (2019). Desarrollo de métodos de disolución con capacidad predictiva del rendimiento in vivo de formulaciones farmacéuticas [Tesis doctoral, Universitat de València]. https://hdl.handle.net/10550/70578; Food and Drug Administration (FDA). (1997). Guía para la Industria: Pruebas de disolución de formas de dosificación oral sólidas de liberación inmediata. Centro de Evaluación e Investigación de Drogas. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guia-para-la-industria-pruebas-de-disolucion-de-formas-de-dosificacion-oral-solidas-de-liberacion; Food and Drug Administration (FDA). (2018). Guía para la Industria: Formas de dosificación oral de liberación prolongada: elaboración, evaluación y aplicación de correlaciones in vitro/in vivo. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guia-para-la-industria-formas-de-dosificacion-oral-de-liberacion-prolongada-elaboracion-evaluacion-y; Food and Drug Administration (FDA). (2021). M9 Biopharmaceutics Classification System-Based Biowaivers. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m9-biopharmaceutics-classification-system-based-biowaivers; Fotaki, N., & Reppas, C. (2005). The Flow Through Cell Methodology in the Evaluation of Intralumenal Drug Release Characteristics. Dissolution Technologies, 12(2), 17–21. https://doi.org/10.14227/DT120205P17; Gao, Z. (2009). In Vitro Dissolution Testing with Flow-Through Method: A Technical Note. AAPS PharmSciTech, 10(4), 1401. https://doi.org/10.1208/s12249-009-9339-6; Gohel, M., Parikh, R., Aghara, P., Nagori, S., Delvadia, R., & Dabhi, M. (2009). Application of Simplex Lattice Design and Desirability Function for the Formulation Development of Mouth Dissolving Film of Salbutamol Sulphate. Current Drug Delivery, 6(5), 486–494. https://doi.org/10.2174/156720109789941696; Gohel, M., Sarvaiya, K., Shah, A., & Brahmbhatt, B. (2009). Mathematical Approach for the Assessment of Similarity Factor Using a New Scheme for Calculating Weight. Indian Journal of Pharmaceutical Sciences, 71(2), 142. https://doi.org/10.4103/0250-474X.54281; González García, I., Mangas Sanjuan, V., Merino Sanjuán, M., Álvarez Álvarez, C., Díaz Garzón, M. J., Rodríguez Bonnín, M. A., Langguth, T., Torrado Durán, J. J., Langguth, P., García Arieta, A., & Bermejo, M. (2017). IVIVC approach based on carbamazepine bioequivalence studies combination. Die Pharmazie, 72(8), 449–455. https://doi.org/10.1691/PH.2017.7011; Graves, N. M., Brundage, R. C., Wen, Y., Cascino, G., So, E., Ahman, P., Rarick, J., Krause, S., & Leppik, I. E. (1998). Population Pharmacokinetics of Carbamazepine in Adults with Epilepsy. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 18(2), 273–281. https://doi.org/10.1002/j.1875-9114.1998.tb03853.x; Grupo SOTAX. (n.d.). CE 7smart Offline: Disolución con celdas de flujo continuo con recogida de muestras.; Hann, E., Malagu, K., Stott, A., & Vater, H. (2022). The importance of plasma protein and tissue binding in a drug discovery program to successfully deliver a preclinical candidate (pp. 163–214). https://doi.org/10.1016/bs.pmch.2022.04.002; Höpener, R. J., Kuyer, A., Meijer, J. W. A., & Hulsman, J. (1980). Correlation between daily fluctuations of carbamazepine serum levels and intermittent side effects. Epilepsia, 21(4), 341–350. https://doi.org/10.1111/J.1528-1157.1980.TB04081.X; Hopfenberg, H. B. (1976). Controlled Release from Erodible Slabs, Cylinders, and Spheres (pp. 26–32). https://doi.org/10.1021/bk-1976-0033.ch003; Hurtado y de la Peña, M., Vargas Alvarado, Y., Domínguez-Ramírez, A. M., & Cortés Arroyo, A. R. (2003). Comparison of Dissolution Profiles for Albendazole Tablets Using USP Apparatus 2 and 4. Http://Dx.Doi.Org/10.1081/DDC-120021777, 29(7), 777–784. https://doi.org/10.1081/DDC-120021777; Instituto Nacional de Vigilancia de Medicamentos y Alimentos (INVIMA). (2022). Tegretol Retard de 200 mg: Expediente Sanitario 227376, Registro Sanitario INVIMA 2018M-011160-R2. Sistema de Tramites En Linea - Consultas Publicas. https://consultaregistro.invima.gov.co/Consultas/consultas/consreg_encabcum.jsp; Instituto Nacional de Vigilancia de Medicamentos y Alimentos (INVIMA). (2024). Sistema de Tramites en Linea - Consultas Publicas. https://consultaregistro.invima.gov.co/Consultas/consultas/consreg_encabcum.jsp; Jinno, J. ichi, Kamada, N., Miyake, M., Yamada, K., Mukai, T., Odomi, M., Toguchi, H., Liversidge, G. G., Higaki, K., & Kimura, T. (2008). In vitro-in vivo correlation for wet-milled tablet of poorly water-soluble cilostazol. Journal of Controlled Release, 130(1), 29–37. https://doi.org/10.1016/J.JCONREL.2008.05.013; Jung Cook, H., de Anda Jáuregui, G., Rubio Carrasco, K., & Mayet Cruz, L. (2013). Comparación de perfiles de disolución: Impacto de los criterios de diferentes agencias regulatorias en el cálculo de ƒ2. Revista Mexicana de Ciencias Farmacéuticas, 43(3). http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-01952012000300007; Kassaye, L., & Genete, G. (2013). Evaluation and comparison of in-vitro dissolution profiles for different brands of amoxicillin capsules. African Health Sciences, 13(2). https://doi.org/10.4314/ahs.v13i2.25; Katzhendler, I., & Friedman, M. (1999). Zero-order sustained release matrix tablet formulations of carbamazepine (Patent No: US5980942A) (Patent US5980942A). United States Patent. https://patents.google.com/patent/US5980942A/en; Kayali, A., Tuglular, I., & Ertas, M. (1994). Pharmacokinetics of carbamazepine Part I: a new bioequivalency parameter based on a relative bioavailability trial. European Journal of Drug Metabolism and Pharmacokinetics, 19(4), 319–325. https://doi.org/10.1007/BF03188858; Kiuri, J. N., Maru, S. M., & Ndwigah, S. N. (2020). Product Evaluation of Carbamazepine 200mg Controlled Release Tablets using an in vitro-in vivo Correlation Simulation Model. East and Central African Journal of Pharmaceutical Sciences, 23(2), 60–66. https://www.ajol.info/index.php/ecajps/article/view/200123; Kovačević, I., Parojčić, J., Homšek, I., Tubić-Grozdanis, M., & Langguth, P. (2009). Justification of Biowaiver for Carbamazepine, a Low Soluble High Permeable Compound, in Solid Dosage Forms Based on IVIVC and Gastrointestinal Simulation. Molecular Pharmaceutics, 6(1), 40–47. https://doi.org/10.1021/mp800128y; Kuo, C. C., Chen, R. S., Lu, L., & Chen, R. C. (1997). Carbamazepine inhibition of neuronal Na+ currents: quantitative distinction from phenytoin and possible therapeutic implications. Molecular Pharmacology, 51(6), 1077–1083. https://doi.org/10.1124/MOL.51.6.1077; Lake, O. A., Olling, M., & Barends, D. M. (1999). In vitro/in vivo correlations of dissolution data of carbamazepine immediate release tablets with pharmacokinetic data obtained in healthy volunteers. European Journal of Pharmaceutics and Biopharmaceutics, 48(1), 13–19. https://doi.org/10.1016/S0939-6411(99)00016-8; Langenbucher, F. (2011). Letters to the Editor: Linearization of dissolution rate curves by the Weibull distribution. Journal of Pharmacy and Pharmacology, 24(12), 979–981. https://doi.org/10.1111/j.2042-7158.1972.tb08930.x; Lee, S. L., Raw, A. S., & Yu, L. (2008). Dissolution Testing. In Biopharmaceutics Applications in Drug Development (pp. 47–74). Springer US. https://doi.org/10.1007/978-0-387-72379-2_3; Lindenberg, M., Kopp, S., & Dressman, J. B. (2004). Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. European Journal of Pharmaceutics and Biopharmaceutics, 58(2), 265–278. https://doi.org/10.1016/J.EJPB.2004.03.001; Lopes, C. M., Lobo, J. M. S., & Costa, P. (2005). Formas farmacêuticas de liberação modificada: polímeros hidrifílicos. Revista Brasileira de Ciências Farmacêuticas, 41(2), 143–154. https://doi.org/10.1590/S1516-93322005000200003; Lu, Y., Kim, S., & Park, K. (2011). In vitro–in vivo correlation: Perspectives on model development. International Journal of Pharmaceutics, 418(1), 142–148. https://doi.org/10.1016/j.ijpharm.2011.01.010; Mateu López, L., & Herrera LLópiz, A. (2007). Fracturar tabletas de liberación modificada: ¿una práctica adecuada? Revista Cubana de Farmacia, 41(1). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75152007000100013; McLean, M. J., & Macdonald, R. L. (1983). Multiple actions of phenytoin on mouse spinal cord neurons in cell culture. Journal of Pharmacology and Experimental Therapeutics, 227(3).; Medina, J. R., Salazar, D. K., Hurtado, M., Cortés, A. R., & Domínguez-Ramírez, A. M. (2014). Comparative in vitro dissolution study of carbamazepine immediate-release products using the USP paddles method and the flow-through cell system. Saudi Pharmaceutical Journal, 22(2), 141–147. https://doi.org/10.1016/J.JSPS.2013.02.001; Medina Lopez, J. R., & Hurtado Y de la Peña, M. (2009). Dissolution of paracetamol suppositories using the flow-through cell system and their absorption in an animal model %7C Request PDF. Revista Mexicana de Ciencias Farmaceuticas , 40(2), 11–18. https://www.researchgate.net/publication/288673896_Dissolution_of_paracetamol_suppositories_using_the_flow-through_cell_system_and_their_absorption_in_an_animal_model; Resolución 1124 de 2016, 1 (2016).; Minitab LLC. (2023). Model reduction. https://support.minitab.com/en-us/minitab/20/help-and-how-to/statistical-modeling/regression/supporting-topics/regression-models/model-reduction/; Mittapalli, P. K., Suresh, B., Hussaini, S. S. Q., Rao, Y. M., & Apte, S. (2008). Comparative In Vitro Study of Six Carbamazepine Products. AAPS PharmSciTech, 9(2), 357. https://doi.org/10.1208/S12249-008-9035-Y; Mohamed Rizwan, I., & Damodharan, N. (2020). Mathematical Modelling of Dissolution Kinetics in Dosage forms. Research Journal of Pharmacy and Technology, 13(3), 1339. https://doi.org/10.5958/0974-360X.2020.00247.4; Moreno, J., Belmont, A., Jaimes, O., Santos, J. A., López, G., Campos, M. G., Amancio, O., Pérez, P., & Heinze, G. (2004). Pharmacokinetic study of carbamazepine and its carbamazepine 10,11-epoxide metabolite in a group of female epileptic patients under chronic treatment. Archives of Medical Research, 35(2), 168–171. https://doi.org/10.1016/j.arcmed.2003.09.016; Okumu, A., DiMaso, M., & Löbenberg, R. (2008). Dynamic dissolution testing to establish in vitro/in vivo correlations for montelukast sodium, a poorly soluble drug. Pharmaceutical Research, 25(12), 2778–2785. https://doi.org/10.1007/S11095-008-9642-Z; Olling, M., Mensinga, T. T., Barends, D. M., Groen, C., Lake, O. A., & Meulenbelt, J. (1999). Bioavailability of carbamazepine from four different products and the occurrence of side effects. Biopharmaceutics and Drug Disposition, 20(1), 19–28. https://doi.org/10.1002/(SICI)1099-081X(199901)20:13.0.CO;2-Q; Palma-Aguirre, J. A., & Barreiro Perera, O. (1992). Biodisponibilidad y bioequivalencia de medicamentos. Revista de La Facultad de Medicina, Universidad Nacional Autónoma de México, 35(1). http://revistas.unam.mx/index.php/rfm/article/view/74573; Paschal Iwundu, M., & Cosmos, J. (2022). The Efficiency of Seven-Variable Box-Behnken Experimental Design with Varying Center Runs on Full and Reduced Model Types. Journal of Mathematics and Statistics, 18(1), 196–207. https://doi.org/10.3844/jmssp.2022.196.207; Podczeck, F. (1993). Comparison of in vitro dissolution profiles by calculating mean dissolution time (MDT) or mean residence time (MRT). International Journal of Pharmaceutics, 97(1–3), 93–100. https://doi.org/10.1016/0378-5173(93)90129-4; Polli, J. E., Rekhi, G. S., Augsburger, L. L., & Shah, V. P. (1997). Methods to Compare Dissolution Profiles and a Rationale for Wide Dissolution Specifications for Metoprolol Tartrate tablets†. Journal of Pharmaceutical Sciences, 86(6), 690–700. https://doi.org/10.1021/js960473x; Punyawudho, B., Ramsay, E. R., Brundage, R. C., Macias, F. M., Collins, J. F., & Birnbaum, A. K. (2012). Population Pharmacokinetics of Carbamazepine in Elderly Patients. Therapeutic Drug Monitoring, 34(2), 176–181. https://doi.org/10.1097/FTD.0b013e31824d6a4e; Rabti, H., Mohammed Salmani, J. M., Elamin, E. S., Lammari, N., Zhang, J., & Ping, Q. (2014). Carbamazepine solubility enhancement in tandem with swellable polymer osmotic pump tablet: A promising approach for extended delivery of poorly water-soluble drugs. Asian Journal of Pharmaceutical Sciences, 9(3), 146–154. https://doi.org/10.1016/J.AJPS.2014.04.001; Rane, Y., Mashru, R., Sankalia, M., & Sankalia, J. (2007). Effect of hydrophilic swellable polymers on dissolution enhancement of carbamazepine solid dispersions studied using response surface methodology. AAPS PharmSciTech, 8(2), E1–E11. https://doi.org/10.1208/pt0802027; Rawlins, M. D., Collste, P., Bertilsson, L., & Palmér, L. (1975). Distribution and elimination kinetics of carbamazepine in man. European Journal of Clinical Pharmacology 1975 8:2, 8(2), 91–96. https://doi.org/10.1007/BF00561556; Riva, R., Albani, F., Ambrosetto, G., Contin, M., Cortelli, P., Perucca, E., & Baruzzi, A. (1984). Diurnal Fluctuations in Free and Total Steady-State Plasma Levels of Carbamazepine and Correlation with Intermittent Side Effects. Epilepsia, 25(4), 476–481. https://doi.org/10.1111/J.1528-1157.1984.TB03446.X; Rodriguez, C., Guevara, B. H., & Lobo, G. (2010). Mecanismos de acción de fármacos antiepilépticos. Informe Médico, 12(6), 321–326. https://www.researchgate.net/publication/235769333_Mecanismos_de_accion_de_farmacos_antiepilepticos; Roni, M., Kibria, G., & Jalil, R. (2009). Formulation and in vitro Evaluation of Alfuzosin Extended Release Tablets Using Directly Compressible Eudragit. Indian Journal of Pharmaceutical Sciences, 71(3), 252. https://doi.org/10.4103/0250-474X.56019; Ruiz, A. M., Restrepo, M. M., Cuesta, F., Giraldo, J., Archbold, R., & Holguín, G. (2001). Estudio de bioequivalencia de dos formulaciones de tabletas de carbamazepina de liberación retardada. Iatreia, 13(3), 131–139.; Sakore, S., & Chakraborty, B. (2011). In Vitro - In Vivo Correlation (IVIVC): A Strategic Tool in Drug Development. Journal of Bioequivalence & Bioavailability, 8(4). https://doi.org/10.4172/JBB.S3-001; Sánchez-Dengra, B., González-García, I., González-Álvarez, M., González-Álvarez, I., & Bermejo, M. (2021). Two-step in vitro-in vivo correlations: Deconvolution and convolution methods, which one gives the best predictability? Comparison with one-step approach. European Journal of Pharmaceutics and Biopharmaceutics, 158, 185–197. https://doi.org/10.1016/j.ejpb.2020.11.009; Shargel, L., & Yu, A. B. C. (2016). Applied Biopharmaceutics & Pharmacokinetics (7th ed.). McGraw-Hill. https://accesspharmacy.mhmedical.com/book.aspx?bookID=1592; Springer Boston, M. (2004). Bioavailability and Bioequivalence. In Foundations of Pharmacokinetics (pp. 171–177). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47924-9_17; Tomson, T. (1984). Interdosage fluctuations in plasma carbamazepine concentration determine intermittent side effects. Archives of Neurology, 41(8), 830–834. https://doi.org/10.1001/ARCHNEUR.1984.04050190036011; Tunnicliff, G. (1996). Basis of the antiseizure action of phenytoin. General Pharmacology: The Vascular System, 27(7), 1091–1097. https://doi.org/10.1016/S0306-3623(96)00062-6; United States Pharmacopeia USP-NF. (2015, May 1). Espectroscopía En El Infrarrojo Medio—Teoría Y Práctica. Online United States Pharmacopeia USP-NF. https://doi.org/10.31003/USPNF_M5512_02_02; United States Pharmacopeia USP-NF. (2022a, April 1). Monografía oficial Carbamazepina. Online United States Pharmacopeia USP-NF. https://doi.org/https://doi.org/10.31003/USPNF_M12565_04_02; United States Pharmacopeia USP-NF. (2022b, December 1). Capítulo General Espectroscopía Ultravioleta-Visible. Online United States Pharmacopeia USP-NF. https://doi.org/https://doi.org/10.31003/USPNF_M3209_04_02; United States Pharmacopeia USP-NF. (2023a, April 1). Monografía oficial Carbamazepina, Tabletas de Liberación Prolongada. https://doi.org/10.31003/USPNF_M12565_04_02; United States Pharmacopeia USP-NF. (2023b, May 1). Capítulo General Disolución. https://doi.org/10.31003/USPNF_M99470_03_02; United States Pharmacopeia USP-NF. (2023c, August 1). Capítulo General Uniformidad de Unidades de Dosificación. Online United States Pharmacopeia USP-NF. https://doi.org/10.31003/USPNF_M99694_03_02; Valbuena Reyes, K. (2018). Estudio de la Cinética de Degradación Bajo Carga Mecánica de un Polímero Implantable [Tesis de maestría]. Universidad Nacional de Colombia .; Veng-Pedersen, P., Gobburu, J. V. S., Meyer, M. C., & Straughn, A. B. (2000). Carbamazepine level-Ain vivo-in vitro correlation (IVIVC): a scaled convolution based predictive approach. Biopharmaceutics & Drug Disposition, 21(1), 1–6. https://doi.org/10.1002/1099-081X(200001)21:13.0.CO;2-D; Vinayakrao Barabde, U., Kumar Verma, R., & Singh Raghuvanshi, R. (2009). Carbamazepine formulations (Patent US20090143362A1). United States Patent and Trademark Office. https://patents.google.com/patent/US20090143362A1/en; Volonté, M. G., Viñas, M. A., de Buschiazzo, P. M., Piersante, M. v., Escales, M. C., & Gorriti, C. E. (2004). Estudio comparativo de comprimidos con 200 mg de carbamacepina para determinar equivalencia farmacéutica. Acta Farmaceutica Bonaerense, 23(3), 391–397.; Wadher, K., Umekar, M., & Kakde, R. (2011). Formulation and evaluation of a sustained-release tablets of metformin hydrochloride using hydrophilic synthetic and hydrophobic natural polymers. Indian Journal of Pharmaceutical Sciences, 73(2), 208. https://doi.org/10.4103/0250-474X.91579; Wei-Qin, T. (Tony). (2008). Molecular and Physicochemical Properties Impacting OralAbsorptionofDrugs. In Biopharmaceutics Applications in Drug Development (pp. 26–46). Springer US. https://doi.org/10.1007/978-0-387-72379-2_2; Wennergren, B., Lindberg, J., Nicklasson, M., Nilsson, G., Nyberg, G., Ahlgren, R., Persson, C., & Palm, B. (1989). A collaborative in vitro dissolution study: comparing the flow-through method with the USP paddle method using USP prednisone calibrator tablets. International Journal of Pharmaceutics, 53(1), 35–41. https://doi.org/10.1016/0378-5173(89)90358-X; World Health Oranization Collaborating Centre for Drug Statistics Methodology. (2022). ATC/DDD Index: Carbamazepine. Norwegian Institute of Public Health. https://www.whocc.no/atc_ddd_index/?code=N03AF01; Zadbuke, N., Khan, A. R., Battase, A., & Shahi, S. (2017). Convolution and Deconvolution Based Approach For Prediction of in-vivo Performance. European Journal of Biomedical and Pharmaceutical Sciences, 4(11), 447–453. https://www.ejbps.com/ejbps/abstract_id/3377; Zhang, G. H., Vadino, W. A., Yang, T. T., Cho, W. P., & Chaudry, I. A. (1994). Evaluation of the Flow-Through Cell Dissolution Apparatus: Effects of Flow Rate, Glass Beads and Tablet Position on Drug Release from Different Type of Tablets. Drug Development and Industrial Pharmacy, 20(13), 2063–2078. https://doi.org/10.3109/03639049409050222; https://repositorio.unal.edu.co/handle/unal/86344; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
6Academic Journal
المؤلفون: Chun Ping Yuan, Hui Min Hou, Zhi Hong Cheng, Qing Hua Ge, Ding Zhong Song, Jian Qiang Xi
المصدر: Pharmaceutical Fronts, Vol 02, Iss 01, Pp e1-e10 (2020)
مصطلحات موضوعية: thermoplastic coating, spray coating, metformin hydrochloride, nifedipine, osmotic pump tablet, pharmacokinetics, in vivo–in vitro correlation, Pharmacy and materia medica, RS1-441
وصف الملف: electronic resource
-
7Academic Journal
المؤلفون: Vítor Todeschini, Maximiliano S. Sangoi, Gustavo K. Goelzer, Jaison C. Machado, Clésio S. Paim, Bibiana V. Araujo, Nadia M. Volpato
المصدر: Journal of Pharmaceutical Analysis, Vol 6, Iss 1, Pp 49-55 (2016)
مصطلحات موضوعية: Delapril, Dissolution, in vivo-in vitro correlation, Manidipine, Validation, Therapeutics. Pharmacology, RM1-950
وصف الملف: electronic resource
-
8Academic Journal
المؤلفون: Jenna L. Gordon, Mark A. Brown, Melissa M. Reynolds
المصدر: Diseases; Volume 6; Issue 4; Pages: 85
مصطلحات موضوعية: in vivo/in vitro correlation, bioassay approaches, pharmaceutical analysis
وصف الملف: application/pdf
Relation: Oncology; https://dx.doi.org/10.3390/diseases6040085
-
9Academic Journal
المؤلفون: HEALY, ANNE
مصطلحات موضوعية: Franz diffusion cell, In vivo-in vitro correlation, Permeation, Point-to-point IVIVC, Rivastigmine, Strat-M?, Synthetic membrane, Transdermal drug delivery system
Relation: International Journal of Pharmaceutics; 512; Simon A, Amaro MI, Healy AM, Cabral LM, de Sousa VP, Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation, International Journal of Pharmaceutics, 512, 1, 2016, 234 - 241; Y; http://hdl.handle.net/2262/78790; http://people.tcd.ie/healyam; 138198; http://dx.doi.org/10.1016/j.ijpharm.2016.08.052; https://www.scopus.com/inward/record.uri?eid=2-s2.0-84983608418&doi=10.1016%2fj.ijpharm.2016.08.052&partnerID=40&md5=543e486009793914342d6d236483b6c4; orcid:0000-0001-5093-9786
-
10Academic Journal
المؤلفون: Hanafy, Amira Sayed, Dietrich, Dirk, Fricker, Gert, Lamprecht, Alf
المصدر: Faculty of Pharmacy
مصطلحات موضوعية: Animal modeling, Brain targeting, Cerebral capillaries, Drug delivery, In vivo-in vitro correlation, Nanotechnology, Life Sciences, Pharmacology, Toxicology, Pharmaceutical Science
-
11Academic Journal
مصطلحات موضوعية: Glibenclamide, Glyburide, Dissolution, In vivo/in vitro correlation, Bula de medicamentos, Hemólise, Glicose-6-fosfato desidrogenase : Deficiência, Atenção primária à saúde
وصف الملف: application/pdf
Relation: Revista brasileira de farmácia. Rio de janeiro. Vol. 92, n. 3 (2011), p. 90-94; http://hdl.handle.net/10183/277324; 000793886
الاتاحة: http://hdl.handle.net/10183/277324
-
12Academic Journal
المؤلفون: Baptista, Edilene Bolutari, Volpato, Nadia Maria
مصطلحات موضوعية: Glibenclamide, Glyburide, Dissolution, In vivo/in vitro correlation, Glibenclamida, Medicamentos : Dissolução, Controle de qualidade de medicamentos
وصف الملف: application/pdf
Relation: Revista Brasileira de Farmacia. Rio de Janeiro. Vol. 88, n. 3 (2007), p. 107-112; http://hdl.handle.net/10183/277333; 000646822
الاتاحة: http://hdl.handle.net/10183/277333
-
13
المؤلفون: Felix Berger, Marco Bartosch, Boris Schmitt, A. Koerner, Heiner Peters, Frank Witte, Norbert Hort
المصدر: Bartosch, M, Peters, H, Koerner, A, Schmitt, B, Berger, F, Hort, N & Witte, F 2018, ' New methods for in vivo degradation testing of future stent materials ', Materials and Corrosion, vol. 69, no. 2, pp. 156-166 . https://doi.org/10.1002/maco.201709521
مصطلحات موضوعية: Materials science, Annealing (metallurgy), medicine.medical_treatment, 0206 medical engineering, wire, 02 engineering and technology, 030204 cardiovascular system & hematology, biodegradable stent, 03 medical and health sciences, Engineering, 0302 clinical medicine, Ultimate tensile strength, Materials Chemistry, medicine, Forensic engineering, Environmental Chemistry, Magnesium alloy, Tensile testing, in vivo in vitro correlation, Inert, Mechanical Engineering, Metals and Alloys, tensile test, Stent, General Medicine, magnesium alloy, equipment and supplies, 020601 biomedical engineering, Clamping, Surfaces, Coatings and Films, Mechanics of Materials, Material properties, Biomedical engineering
-
14
المؤلفون: Reynaud, Yohan
المساهمون: Science et Technologie du Lait et de l'Oeuf (STLO), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Thèse Cifre n°216/0719, Agrocampus Ouest, 65 rue de Saint Brieuc, 35042 Rennes, Didier Dupont, Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, Agrocampus Ouest, AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
المصدر: Sciences du Vivant [q-bio]. Agrocampus Ouest, 65 rue de Saint Brieuc, 35042 Rennes, 2020. Français
Biologie animale. Agrocampus Ouest, 2020. Français. ⟨NNT : 2020NSARB334⟩مصطلحات موضوعية: in vivo in vitro correlation, corrélation in vivo in vitro, [SDV.BA]Life Sciences [q-bio]/Animal biology, [SDV]Life Sciences [q-bio], mini-porc, miniature pigs, gastrointestinal digestion, [SDV.AEN]Life Sciences [q-bio]/Food and Nutrition, DiDGI®, food matrix, matrice alimentaire, digestion gastro-intestinale
-
15Dissertation/ Thesis
المؤلفون: Reynaud, Yohan
المساهمون: Rennes, Agrocampus Ouest, Dupont, Didier
-
16Dissertation/ Thesis
المؤلفون: Reynaud, Yohan
المساهمون: Science et Technologie du Lait et de l'Oeuf (STLO), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Agrocampus Ouest, Didier Dupont
المصدر: https://theses.hal.science/tel-03279438 ; Biologie animale. Agrocampus Ouest, 2020. Français. ⟨NNT : 2020NSARB334⟩.
مصطلحات موضوعية: DiDGI®, Miniature pigs, In vivo in vitro correlation, Gastrointestinal digestion, Food matrix, Mini-Porc, Corrélation in vivo in vitro, Matrice alimentaire, Digestion gastro-intestinale, [SDV.BA]Life Sciences [q-bio]/Animal biology
Relation: NNT: 2020NSARB334; tel-03279438; https://theses.hal.science/tel-03279438; https://theses.hal.science/tel-03279438v2/document; https://theses.hal.science/tel-03279438v2/file/fix_itlUwCEs_reynaud.pdf
-
17
المؤلفون: Mark A. Brown, Jenna L. Gordon, Melissa M. Reynolds
المصدر: Diseases
Diseases, Vol 6, Iss 4, p 85 (2018)مصطلحات موضوعية: 0301 basic medicine, Cell cycle checkpoint, bioassay approaches, Cell growth, business.industry, lcsh:R, Cell, lcsh:Medicine, Cancer, Review, in vivo/in vitro correlation, pharmaceutical analysis, medicine.disease, Cytostasis, 03 medical and health sciences, 3D cell culture, 030104 developmental biology, medicine.anatomical_structure, Drug development, Cell culture, medicine, Cancer research, business
-
18Academic Journal
المؤلفون: Akiharu Isowaki, Hisae Aoyagi, Kakuji Tojo
المصدر: JOURNAL OF CHEMICAL ENGINEERING OF JAPAN. 2002, 35(5):450
-
19Academic Journal
المؤلفون: Akira OHTORI, Kakuji TOJO
المصدر: Biological and Pharmaceutical Bulletin. 1994, 17(2):283
-
20Academic Journal
المؤلفون: Akira Ohtori, Kakuji Tojo, Katsunori Nakagawa, Kumiko Uno, 中川 勝憲, 大鳥 聡, 宇野 久美子, 東條 角治
المصدر: Drug Delivery System. 1996, 11(2):133