يعرض 1 - 20 نتائج من 145 نتيجة بحث عن '"Imber, S. M."', وقت الاستعلام: 1.02s تنقيح النتائج
  1. 1
    Report
  2. 2
    Report
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المصدر: Milillo, A.; Fujimoto, M.; Murakami, G.; Benkhoff, J.; Zender, J.; Aizawa, S.; Dósa, M.; Griton, L.; Heyner, D.; Ho, G.; Imber, S. M.; Jia, X.; Karlsson, T.; Killen, R. M.; Laurenza, M.; Lindsay, S. T.; McKenna-Lawlor, S.; Mura, A.; Raines, J. M.; Rothery, D. A.; . (2020). Investigating Mercury’s Environment with the Two-Spacecraft BepiColombo Mission. Space science reviews, 216(5) Springer 10.1007/s11214-020-00712-8

    مصطلحات موضوعية: 520 Astronomy, 620 Engineering

    وصف الملف: application/pdf

  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal

    المصدر: Journal of Geophysical Research. Space Physics; Aug2023, Vol. 128 Issue 8, p1-12, 12p

  11. 11
    Academic Journal

    وصف الملف: application/pdf

    Relation: Lindsay, S. T.; Bunce, E. J.; Imber, S. M.; Martindale, A.; Nittler, L. R.; Yeoman, T. K. (2022). "MESSENGER X‐Ray Observations of Electron Precipitation on the Dayside of Mercury." Journal of Geophysical Research: Space Physics 127(1): n/a-n/a.; https://hdl.handle.net/2027.42/171562; Journal of Geophysical Research: Space Physics; Schlemm, C. E., Starr, R. D., Ho, G. C., Bechtold, K. E., Hamilton, S. A., Boldt, J. D., et al. ( 2007 ). The X‐Ray spectrometer on the MESSENGER spacecraft. Space Science Reviews, 131, 393 – 415. https://doi.org/10.1007/s11214-007-9248-5; Heyner, D., Nabert, C., Liebert, E., & Glassmeier, K.‐H. ( 2016 ). Concerning reconnection‐induction balance at the magnetopause of Mercury. Journal of Geophysical Research: Space Physics, 121 ( 4 ), 2935 – 2961, https://doi.org/10.1002/2015JA021484; Ho, G. C., Starr, R. D., Gold, R. E., Krimigis, S. M., Slavin, J. A., Baker, D. N., et al. ( 2011 ). Observations of suprathermal electrons in Mercury’s magnetosphere during the three MESSENGER flybys. Planetary and Space Science, 59, 2016 – 2025. https://doi.org/10.1016/j.pss.2011.01.011; Ho, G. C., Starr, R. D., Krimigis, S. M., Vandegriff, J. D., Baker, D. N., Gold, R. E., et al. ( 2016 ). MESSENGER observations of suprathermal electrons in Mercury’s magnetosphere. Geophysical Research Letters, 43 ( 2 ), 550 – 555. https://doi.org/10.1002/2015GL066850; Khurana, K. K., Pappalardo, R. T., Murphy, N., & Denk, T. ( 2007 ). The origin of Ganymede’s polar caps. Icarus, 191 ( 1 ), 193 – 202. https://doi.org/10.1016/j.icarus.2007.04.022; Killen, R. M., & Hahn, J. M. ( 2015 ). Impact vaporization as a possible source of Mercury’s calcium exosphere. Icarus, 250, 230 – 237. https://doi.org/10.1016/j.icarus.2014.11.035; Korth, H., Anderson, B. J., Gershman, D. J., Raines, J. M., Slavin, J. A., Zurbuchen, T. H., et al. ( 2014 ). Plasma distribution in Mercury’s magnetosphere derived from MESSENGER magnetometer and fast imaging plasma spectrometer observations. Journal of Geophysical Research: Space Physics, 119, 2917 – 2932. https://doi.org/10.1002/2013ja019567; Korth, H., Tsyganenko, N. A., Johnson, C. L., Philpott, L. C., Anderson, B. J., Al Asad, M. M., et al. ( 2015 ). Modular model for Mercury’s magnetospheric magnetic field confined within the average observed magnetopause. Journal of Geophysical Research: Space Physics, 120 ( 6 ), 4503 – 4518. https://doi.org/10.1002/2015JA021022; Lawrence, D. J., Anderson, B. J., Baker, D. N., Feldman, W. C., Ho, G. C., Korth, H., et al. ( 2015 ). Comprehensive survey of energetic electron events in Mercury’s magnetosphere with data from the MESSENGER Gamma‐Ray and Neutron Spectrometer. Journal of Geophysical Research: Space Physics, 120 ( 4 ), 2851 – 2876. https://doi.org/10.1002/2014JA020792; Lindsay, S. T., James, M. K., Bunce, E. J., Imber, S. M., Korth, H., Martindale, A., & Yeoman, T. K. ( 2016 ). MESSENGER X‐ray observations of magnetosphere‐surface interaction on the nightside of Mercury. Planetary and Space Science, 125, 72 – 79. https://doi.org/10.1016/j.pss.2016.03.005; McAdams, J. V., Farquhar, R. W., Taylor, A. H., & Williams, B. G. ( 2007 ). MESSENGER mission design and navigation. Space Science Reviews, 131 ( 1–4 ), 219 – 246. https://doi.org/10.1007/s11214-007-9162-x; Milillo, A., Fujimoto, M., Murakami, G., Benkhoff, J., Zender, J., Aizawa, S., et al. ( 2020 ). Investigating Mercury’s environment with the two‐spacecraft BepiColombo mission. Space Science Reviews, 216 ( 5 ), 93. https://doi.org/10.1007/s11214-020-00712-8; Nittler, L. R., Frank, E. A., Weider, S. Z., Crapster‐Pregont, E., Vorburger, A., Starr, R. D., & Solomon, S. C. ( 2020 ). Global major‐element maps of Mercury from four years of MESSENGER X‐Ray Spectrometer observations. Icarus, 345, 113716. https://doi.org/10.1016/j.icarus.2020.113716; Orsini, S., Livi, S. A., Lichtenegger, H., Barabash, S., Milillo, A., De Angelis, E., et al. ( 2021 ). Serena: Particle instrument suite for determining the sun‐mercury interaction from BepiColombo. Space Science Reviews, 217 ( 1 ), 11. https://doi.org/10.1007/s11214-020-00787-3; Quémerais, E., Chaufray, J. Y., Koutroumpa, D., Leblanc, F., Reberac, A., Lustrement, B., et al. ( 2020 ). PHEBUS on Bepi‐Colombo: Post‐launch update and instrument performance. Space Science Reviews, 216 ( 4 ), 67. https://doi.org/10.1007/s11214-020-00695-6; Schriver, D., Trávníček, P., Ashour‐Abdalla, M., Richard, R. L., Hellinger, P., Slavin, J. A., et al. ( 2011b ). Electron transport and precipitation at Mercury during the MESSENGER flybys: Implications for electron‐stimulated desorption. Planetary and Space Science, 59, 2026 – 2036. https://doi.org/10.1016/j.pss.2011.03.008; Schriver, D., Trávníček, P. M., Anderson, B. J., Ashour‐Abdalla, M., Baker, D. N., Benna, M., et al. ( 2011a ). Quasi‐trapped ion and electron populations at Mercury. Geophysical Research Letters, 38. https://doi.org/10.1029/2011GL049629; Simpson, J. A., Eraker, J. H., Lamport, J. E., & Walpole, P. H. ( 1974 ). Electrons and protons accelerated in Mercury’s magnetic field. Science, 185 ( 4146 ), 160 – 166. https://doi.org/10.1126/science.185.4146.160; Slavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Gloeckler, G., et al. ( 2008 ). Mercury’s magnetosphere after MESSENGER’s first flyby. Science, 321, 85 – 89. https://doi.org/10.1126/science.1159040; Slavin, J. A., Baker, D. N., Gershman, D. J., Ho, G. C., Imber, S. M., Krimigis, S. M., & Sundberg, T. ( 2018 ). Mercury’s dynamic magnetosphere. In S. C. Solomon, L. R. Nittler, & B. J. Anderson (Eds.), Mercury: The view after MESSENGER (pp. 461 – 496 ). Cambridge University Press. https://doi.org/10.1017/9781316650684.018; Slavin, J. A., DiBraccio, G. A., Gershman, D. J., Imber, S. M., Poh, G. K., Raines, J. M., et al. ( 2014 ). MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 119 ( 10 ), 8087 – 8116. https://doi.org/10.1002/2014JA020319; Solomon, S. C., McNutt, R. L., Gold, R. E., & Domingue, D. L. ( 2007 ). MESSENGER mission overview. Space Science Reviews, 131, 3 – 39. https://doi.org/10.1007/s11214-007-9247-6; Solomon, S. C., Nittler, L. R., & Anderson, B. J. ( 2018 ). Mercury: The view after MESSENGER. Cambridge University Press.; Starr, R. D. ( 2010 ). MESSENGER E/V/H XRS calibrated (CDR) spectra v1.0. NASA Planetary Data System. https://doi.org/10.17189/1518576; Starr, R. D., Schriver, D., Nittler, L. R., Weider, S. Z., Byrne, P. K., Ho, G. C., et al. ( 2012 ). MESSENGER detection of electron‐induced X‐ray fluorescence from Mercury’s surface. Journal of Geophysical Research, 117, E00L02. https://doi.org/10.1029/2012JE004118; Walsh, B. M., Ryou, A. S., Sibeck, D. G., & Alexeev, I. I. ( 2014 ). Energetic particle dynamics in Mercury’s magnetosphere. Journal of Geophysical Research Space Physics, 118, 1992 – 1999. https://doi.org/10.1002/jgra.50266; Weider, S. Z., Nittler, L. R., Starr, R. D., Crapster‐Pregont, E. J., Peplowski, P. N., Denevi, B. W., et al. ( 2015 ). Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X‐Ray Spectrometer. Earth and Planetary Science Letters, 416 ( 0 ), 109 – 120. https://doi.org/10.1016/j.epsl.2015.01.023; Yoshikawa, I., Korablev, O., Kameda, S., Rees, D., Nozawa, H., Okano, S., et al. ( 2010 ). The Mercury sodium atmospheric spectral imager for the MMO spacecraft of Bepi‐Colombo. Planetary and Space Science, 58 ( 1 ), 224 – 237. https://doi.org/10.1016/j.pss.2008.07.008; Armstrong, T. P., Krimigis, S. M., & Lanzerotti, L. J. ( 1975 ). A reinterpretation of the reported energetic particle fluxes in the vicinity of Mercury. Journal of Geophysical Research, 80 ( 28 ), 4015 – 4017. https://doi.org/10.1029/JA080i028p04015; Baker, D. N., Borovsky, J. E., Burns, J. O., Gisler, G. R., & Zeilik, M. ( 1987 ). Possible calorimetric effects at mercury due to solar wind‐magnetosphere interactions, Journal of Geophysical Research, 92 ( A5 ), 4707 – 4712. https://doi.org/10.1029/JA092iA05p04707; Baker, D. N., Dewey, R., Anderson, B. J., Ho, G., Korth, H., Krimigis, S., et al. ( 2015 ). Energetic electron flux enhancements in Mercury’s magnetosphere: An integrated view with multi‐instrument observations from Messenger. Geophysical Research Abstracts, 17, 2517.; Bannister, N. P., Fraser, G. W., Lindsay, S. T., Martindale, A., & Talboys, D. L. ( 2012 ). Astrophysical objects observed by the MESSENGER X‐ray spectrometer during Mercury flybys. Planetary and Space Science, 69, 28 – 39. https://doi.org/10.1016/j.pss.2012.05.006; Bunce, E. J., Martindale, A., Lindsay, S., Muinonen, K., Rothery, D. A., Pearson, J., et al. ( 2020 ). The BepiColombo mercury imaging X‐ray spectrometer: Science goals, instrument performance and operations. Space Science Reviews, 216 ( 8 ), 126. https://doi.org/10.1007/s11214-020-00750-2; Burger, M. H., Killen, R. M., McClintock, W. E., Merkel, A. W., Vervack, R. J., Jr, Cassidy, T. A., & Sarantos, M. ( 2014 ). Seasonal variations in Mercury’s dayside calcium exosphere. Icarus, 238, 51 – 58. https://doi.org/10.1016/j.icarus.2014.04.049; Dimeo, R. M. ( 2004 ). In get_peak_pos.pro NIST center for neutron research. NIST Center for Neutron Research.; Domingue, D. L., Chapman, C. R., Killen, R. M., Zurbuchen, T. H., Gilbert, J. A., Sarantos, M., et al. ( 2014 ). Mercury’s weather‐Beaten surface: Understanding mercury in the context of lunar and asteroidal space weathering studies. Space Science Reviews, 181 ( 1 ), 121 – 214. https://doi.org/10.1007/s11214-014-0039-5; Grande, M. ( 1997 ). Investigation of magnetospheric interactions with the Hermean surface. Advances in Space Research, 19 ( 10 ), 1609 – 1614. https://doi.org/10.1016/S0273-1177(97)00374-8

  12. 12
    Conference
  13. 13
  14. 14
    Academic Journal
  15. 15
    Academic Journal

    وصف الملف: application/pdf

    Relation: https://eprints.lancs.ac.uk/id/eprint/67004/1/Grocott2012a.pdf; Grocott, A. and Milan, S. E. and Imber, S. M. and Lester, M. and Yeoman, T. K. (2012) A quantitative deconstruction of the morphology of high-latitude ionospheric convection. Journal of Geophysical Research, 117 (A5): 05317. ISSN 0148-0227

  16. 16
    Academic Journal

    وصف الملف: application/pdf

    Relation: https://eprints.lancs.ac.uk/id/eprint/67082/1/Milan2009a.pdf; Milan, S. E. and Grocott, A. and Forsyth, C. and Imber, S. M. and Boakes, P. D. and Hubert, B. (2009) A superposed epoch analysis of auroral evolution during substorm growth, onset and recovery : open magnetic flux control of substorm intensity. Annales Geophysicae, 27 (2). pp. 659-668. ISSN 0992-7689

  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20
    Academic Journal