يعرض 1 - 20 نتائج من 714 نتيجة بحث عن '"Imagen Médica"', وقت الاستعلام: 0.60s تنقيح النتائج
  1. 1
    Dissertation/ Thesis
  2. 2
    Dissertation/ Thesis
  3. 3
    Dissertation/ Thesis

    المؤلفون: Jiménez Sánchez, Amelia

    المساهمون: University/Department: Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions

    Thesis Advisors: Piella Fenoy, Gemma, Mateus, Diana

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  4. 4
    Dissertation/ Thesis

    المؤلفون: Zhang, Yajie

    Thesis Advisors: Roig i Serra, Anna, Rosell Novel, Anna, Sebastián Pérez, Rosa M.

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  5. 5
    Dissertation/ Thesis

    المؤلفون: Xiberta, Pau

    المساهمون: University/Department: Universitat de Girona. Departament d'Informàtica, Matemàtica Aplicada i Estadística (2013-)

    Thesis Advisors: Boada, Imma, Bardera i Reig, Antoni

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  6. 6
    Dissertation/ Thesis

    المؤلفون: Roura Pérez, Eloy

    المساهمون: University/Department: Universitat de Girona. Departament d'Arquitectura i Tecnologia de Computadors

    Thesis Advisors: eloy.roura@gmail.com, Lladó Bardera, Xavier, Oliver i Malagelada, Arnau, Institut de Recerca en Visió per Computador i Robòtica

    المصدر: TDX (Tesis Doctorals en Xarxa)

    Time: 616.8

    وصف الملف: application/pdf

  7. 7
    Dissertation/ Thesis

    المؤلفون: Núñez Do Rio, Joan M.

    المساهمون: University/Department: Universitat Autònoma de Barcelona. Departament de Ciències de la Computació

    Thesis Advisors: Vilariño Freire, Fernando L.

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  8. 8
    Dissertation/ Thesis

    المؤلفون: Ganiler, Onur

    المساهمون: University/Department: Universitat de Girona. Departament d'Arquitectura i Tecnologia de Computadors

    Thesis Advisors: Lladó Bardera, Xavier

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  9. 9
    Academic Journal
  10. 10
    Book
  11. 11
    Dissertation/ Thesis

    المؤلفون: García Pañella, Oscar

    المساهمون: University/Department: Universitat Ramon Llull. EALS - Informàtica

    Thesis Advisors: oscarg@salle.url.edu, Susín, Antoni, Fernández, Gabriel

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  12. 12
    Dissertation/ Thesis

    المساهمون: University/Department: Universitat Autònoma de Barcelona. Departament d'Informàtica

    Thesis Advisors: Radeva, Petia

    المصدر: TDX (Tesis Doctorals en Xarxa)

    مصطلحات موضوعية: Ultrasonido, Imagen médica, IVUS, Tecnologies

    وصف الملف: application/pdf

  13. 13
    Academic Journal
  14. 14
    Academic Journal

    المصدر: TecnoLógicas; Vol. 27 No. 60 (2024); e3052 ; TecnoLógicas; Vol. 27 Núm. 60 (2024); e3052 ; 2256-5337 ; 0123-7799

    وصف الملف: application/pdf

    Relation: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3052/3306; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3052/3318; M. P. Jimenez Herrera, “Informe de Evento Cáncer de Mama y Cuello Uterino en Colombia 2018,” Instituto Nacional de Salud, Colombia, Versión 04, May 2018. [Online]. Available: https://bit.ly/3J1FcnV; M. Martín, A. Herrero, and I. Echavarría, “El cáncer de mama,” Arbor, vol. 191, no. 773, p. a234, Jun. 2015. https://doi.org/10.3989/arbor.2015.773n3004; IARC. “Data visualization tools for exploring the global cancer burden in 2022.” iarc.who. Accessed: Feb. 20, 2024. [Online.] Available: https://gco.iarc.who.int/today/en; X. Zhou et al., “A Comprehensive Review for Breast Histopathology Image Analysis Using Classical and Deep Neural Networks,” IEEE Access, vol. 8, pp. 90931-90956, May. 2020. https://doi.org/10.1109/ACCESS.2020.2993788; H. V. Guleria et al., “Enhancing the breast histopathology image analysis for cancer detection using Variational Autoencoder,” Int. J. Environ. Res. Public Health., vol. 20, no. 5, p. 4244, Feb. 2023. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002012/; Instituto Nacional del Cáncer. “Tratamiento del cáncer de seno.” cancer.gov. Accessed: Feb. 20, 2024. [Online.] Available: https://www.cancer.gov/espanol/tipos/seno/paciente/tratamiento-seno-pdq; S. G. Macias, “Métodos de imagen en el estudio de la mama - Ecografía mamaria,” Editorial Medica Panamericana, Bogotá, Colombia, Módulo 1, 2019. https://bit.ly/4aFIg4y; P. E. Freer, “Mammographic breast density: Impact on breast cancer risk and implications for screening,” Radiographics, vol. 35, no. 2, pp. 302–315, Mar. 2015. https://doi.org/10.1148/rg.352140106; P. Campáz-Usuga, R. D. Fonnegra, and C. Mera, “Quality Enhancement of Breast DCE-MRI Images Via Convolutional Autoencoders,” in 2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI), Bogotá D.C., Colombia, 2021, pp. 1-4. https://doi.org/10.1109/CI-IBBI54220.2021.9626097; Y. M. Rodríguez Marcano, I. González, H. Palencia, M. Sandoval, and L. León, “Mamografía espectral con realce de contraste. Nuestra experiencia,” Revista Venezolana de Oncologia, vol. 26, no. 4, pp. 743–751, Dec. 2014. https://www.redalyc.org/articulo.oa?id=375633971003; I. Pérez-Zúñiga, Y. Villaseñor-Navarro, M. P. Pérez-Badillo, R. Cruz-Morales, C. Pavón-Hernández, and L. Aguilar-Cortázar, “Resonancia magnética de mama y sus aplicaciones,” Gaceta Mexicana de Oncologia, vol. 11, no. 4, pp. 268–280, 2012. https://www.elsevier.es/es-revista-gaceta-mexicana-oncologia-305-articulo-resonancia-magnetica-mama-sus-aplicaciones-X1665920112544919; C. Balleyguier et al., “New potential and applications of contrast-enhanced ultrasound of the breast: Own investigations and review of the literature,” Eur. J. Radiol., vol. 69, no. 1, pp. 14–23, Jan. 2009. https://doi.org/10.1016/J.EJRAD.2008.07.037; R. Valenzuela, O. Arevalo, A. Tavera, R. Riascos, E. Bonfante, and R. Patel, “Imágenes del depósito de gadolinio en el sistema nervioso central,” Revista Chilena de Radiologia, vol. 23, no. 2, pp. 59–65, Jul.2017. https://doi.org/10.4067/S0717-93082017000200005; F. Gao, T. Wu, X. Chu, H. Yoon, Y. Xu, and B. Patel, “Deep Residual Inception Encoder-Decoder Network for Medical Imaging Synthesis,” IEEE J. Biomed. Health Inform., vol. 24, no. 1, pp. 39–49, Jan. 2020. https://doi.org/10.1109/JBHI.2019.2912659; F. Gao et al., “SD-CNN: A shallow-deep CNN for improved breast cancer diagnosis,” Computerized Medical Imaging and Graphics, vol. 70, pp. 53–62, Dec. 2018. https://doi.org/10.1016/j.compmedimag.2018.09.004; K. Wu et al., “Image synthesis in contrast MRI based on super resolution reconstruction with multi-refinement cycle-consistent generative adversarial networks,” J. Intell. Manuf., vol. 31, no. 5, pp. 1215–1228, Jun. 2020. https://doi.org/10.1007/s10845-019-01507-7; E. Kim, C. Hwan-Ho, J. Kwon, O, Young-Tack, E. S. Ko, and H. Park, “Tumor-Attentive Segmentation-Guided GAN for Synthesizing Breast Contrast-Enhanced MRI Without Contrast Agents,” IEEE Journal of Translational Engineering in Health and Medicine, vol. 11, pp. 32-43, Nov. 2023. https://doi.org/10.1109/JTEHM.2022.3221918; Y. Jiang, Y. Zheng, W. Jia, S. Song, and Y. Ding, “Synthesis of contrast-enhanced spectral mammograms from low-energy mammograms using cGAN-based synthesis network,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, M. de Bruijne, et al., Eds. Cham: Springer International Publishing, 2021, pp. 68–77. https://doi.org/10.1007/978-3-030-87234-2_7; D. Huangz, and M. Feng, “Understanding Deep Convolutional Networks for Biomedical Imaging: A Practical Tutorial,” in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 2019, pp. 857-863. https://doi.org/10.1109/EMBC.2019.8857529; C. Shorten, and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J. Big Data, vol. 6, no. 1, Jul. 2019. https://doi.org/10.1186/s40537-019-0197-0; A. Beers et al., “High-resolution medical image synthesis using progressively grown generative adversarial networks,” 2018, ArXiv: 1805.03144. https://arxiv.org/abs/1805.03144; T. Shen, C. Gou, J. Wang, and F. -Y. Wang, “Collaborative Adversarial Networks for Joint Synthesis and Segmentation of X-ray Breast Mass Images,” in 2020 Chinese Automation Congress (CAC), Shanghai, China, 2020, pp. 1743-1747. https://doi.org/10.1109/CAC51589.2020.9326848; Y. Pang, J. Lin, T. Qin, and Z. Chen, “Image-to-Image Translation: Methods and Applications,” IEEE Trans. Multimedia, vol. 24, pp. 3859–3881, Sep. 2021. https://doi.org/10.1109/TMM.2021.3109419; M. Carmen, J. Lizandra, C. Monserrat, A. José, and H. Orallo, “Síntesis de Imágenes en Imagen Médica,” Universidad Politécnica de Valencia, 2003. https://josephorallo.webs.upv.es/escrits/ACTA3.pdf; A. Anwar “Difference between AutoEncoder (AE) and Variational AutoEncoder (VAE),” towardsdatascience.com Accessed: Feb. 20, 2024. [Online]. Available: https://towardsdatascience.com/difference-between-autoencoder-ae-and-variational-autoencoder-vae-ed7be1c038f2; W. Weng, and X. Zhu, “INet: Convolutional Networks for Biomedical Image Segmentation,” IEEE Access, vol. 9, pp. 16591-16603, 2021. https://doi.org/10.1109/ACCESS.2021.3053408; I. J. Goodfellow et al., “Generative Adversarial Networks,” Advances in Neural Information Processing Systems, vol. 14, Jun. 2014. https://doi.org/https://doi.org/10.48550/arXiv.1406.2661; I. C. Moreira, I. Amaral, I. Domingues, A. Cardoso, M. J. Cardoso, and J. S. Cardoso “INbreast: toward a full-field digital mammographic database,” Acad. Radiol., vol. 19, no. 2, pp. 236-248, Feb. 2012. https://doi.org/10.1016/j.acra.2011.09.014; F. Gao, T. Wu, X. Chu, H. Yoon, Y. Xu, and B. Patel, “Deep Residual Inception Encoder-Decoder Network for Medical Imaging Synthesis,” IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 1, pp. 39–49, Apr. 2020. https://doi.org/10.1109/JBHI.2019.2912659; M. Mori et al., “Feasibility of new fat suppression for breast MRI using pix2pix,” Jpn. J. Radiol., vol. 38, no. 11, pp. 1075–1081, Nov. 2020. https://doi.org/10.1007/s11604-020-01012-5; P. Isola, Z. Jun-Yan, T. Zhou, and A. A. Efros, “Image-to-Image Translation with Conditional Adversarial Networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 5967-5976. https://doi.org/10.1109/CVPR.2017.632; P. Wang et al., “Synthesizing the First Phase of Dynamic Sequences of Breast MRI for Enhanced Lesion Identification,” Front. Oncol., vol. 11, Dec. 2021. https://doi.org/10.3389/fonc.2021.792516; Z. Sani, R. Prasad, and E. K. M. Hashim, “Breast Cancer Detection in Mammography using Faster Region Convolutional Neural Networks and Group Convolution,” ETE J. Res., pp. 1–17, May 2024. https://doi.org/10.1080/03772063.2024.2352643; M. Fan et al., “Generative adversarial network-based synthesis of contrast-enhanced MR images from precontrast images for predicting histological characteristics in breast cancer,” Phys. Med. Biol., vol. 69, no. 9, p. 095002, Apr. 2024. https://doi.org/10.1088/1361-6560/ad3889; O. Young-Tack, E. Ko, and H. Park, “TDM-Stargan: Stargan Using Time Difference Map to Generate Dynamic Contrast-Enhanced Mri from Ultrafast Dynamic Contrast-Enhanced Mri,” in 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), Kolkata, India, 2022, pp. 1-5. https://doi.org/10.1109/ISBI52829.2022.9761463; T. Fujioka et al., “Proposal to improve the image quality of short-acquisition time-dedicated breast positron emission tomography using the Pix2pix generative adversarial network,” Diagnostics, vol. 12, no. 12, p. 3114, Dec. 2022. https://doi.org/10.3390/diagnostics12123114; G. Jiang, Y. Lu, J. Wei, and Y. Xu, “Synthesize Mammogram from Digital Breast Tomosynthesis with Gradient Guided cGANs,” Springer International Publishing, D. Shen et al., Eds. vol. 11769, Oct. 2019. https://doi.org/10.1007/978-3-030-32226-7_89; B. Yu, L. Zhou, L. Wang, Y. Shi, J. Fripp, and P. Bourgeat, “Ea-GANs: Edge-Aware Generative Adversarial Networks for Cross-Modality MR Image Synthesis,” IEEE Transactions on Medical Imaging, vol. 38, no. 7, pp. 1750–1762, Jan. 2019. https://doi.org/10.1109/TMI.2019.2895894; B. H. Menze et al., “The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS),” IEEE Transactions on Medical Imaging, vol. 34, no. 10, pp. 1993-2024, Dec. 2015. https://doi.org/10.1109/TMI.2014.2377694; D. Duque-Arias et al., “On power jaccard losses for semantic segmentation,” in Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Setúbal, Portugal, 2021, pp. 561–568. https://doi.org/10.5220/0010304005610568; M. Berman, A. R. Triki, and M. B. Blaschko, “The Lovasz-Softmax Loss: A Tractable Surrogate for the Optimization of the Intersection-Over-Union Measure in Neural Networks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 4413-4421. https://doi.org/10.1109/CVPR.2018.00464; B. Xu, N. Wang, T. Chen, and M. Li, “Empirical Evaluation of Rectified Activations in Convolutional Network,” 2015, arXiv:1505.00853. http://arxiv.org/abs/1505.00853; A. Horé, and D. Ziou, “Image Quality Metrics: PSNR vs. SSIM,” in 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 2010, pp. 2366-2369. https://doi.org/10.1109/ICPR.2010.579; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3052

  15. 15
    Academic Journal
  16. 16
    Dissertation/ Thesis

    المؤلفون: Megías Díaz, Raquel

    Thesis Advisors: Belda González, Ricardo, Giner Maravilla, Eugenio, Vercher Martínez, Ana, Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials, Generalitat Valenciana, Agencia Estatal de Investigación

    Relation: info:eu-repo/grantAgreement/GVA//PROMETEO%2F2021%2F046/; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-118480RB-C22/ES/ANALISIS DE DEFECTOS EN LAMINADOS REFORZADOS CON FIBRAS DEBIDOS A PROCESOS DE FABRICACION Y EFECTO EN EL COMPORTAMIENTO A FATIGA/; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-118480RB-C21/ES/ENSAYO MECANICO DE LAMINADOS CON DEFECTOS Y SIMULACION NUMERICA/; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-118920RB-I00/ES/EVALUACION DEL RIESGO DE FRACTURA OSEA CON PREVALENCIA DE OSTEOPOROSIS MEDIANTE UN ENFOQUE MULTIESCALA/

  17. 17
    Dissertation/ Thesis
  18. 18
    Academic Journal

    المساهمون: Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia, Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular, AGENCIA ESTATAL DE INVESTIGACION, UNIVERSIDAD POLITECNICA DE VALENCIA

    Relation: info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//IJC2018-037897-I//AYUDA JUAN DE LA CIERVA INCORPORACION-JIMENEZ GONZALEZ/; info:eu-repo/grantAgreement/UPV-VIN//PAID-10-19//Development of a Photoacoustic Tomography system for biomedical imaging./; Revista de Acústica (Online); info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111436RB-C22/ES/NEW TECHNIQUES FOR MULTIMODAL MOLECULAR ELASTOGRAPHIC IMAGING/; https://documentacion.sea-acustica.es/revista/4658; http://hdl.handle.net/10251/199940; urn:eissn:2254-2396

  19. 19
    Academic Journal
  20. 20