يعرض 1 - 20 نتائج من 20 نتيجة بحث عن '"INS gene"', وقت الاستعلام: 0.58s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
  3. 3
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
  10. 10
  11. 11
  12. 12
    Academic Journal

    المساهمون: Iafusco, D, Massa, O, Pasquino, B, Colombo, C, Iughetti, Lorenzo, Bizzarri, C, Mammì, C, Lo Presti, D, Suprani, T, Schiaffini, R, Nichols, Cg, Russo, L, Grasso, V, Meschi, F, Bonfanti, R, Brescianini, S, Barbetti, F.

    مصطلحات موضوعية: KCNJ11 gene, ABCC8 gene, INS gene, neonatal diabetes

    وصف الملف: STAMPA

    Relation: info:eu-repo/semantics/altIdentifier/pmid/21953423; info:eu-repo/semantics/altIdentifier/wos/WOS:000309545800012; volume:49; issue:5; firstpage:405; lastpage:408; journal:ACTA DIABETOLOGICA; http://hdl.handle.net/11380/926708; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84867988456

  13. 13
  14. 14
  15. 15
    Academic Journal

    وصف الملف: application/pdf

    Relation: Arunagiri, Anoop; Haataja, Leena; Cunningham, Corey N.; Shrestha, Neha; Tsai, Billy; Qi, Ling; Liu, Ming; Arvan, Peter (2018). "Misfolded proinsulin in the endoplasmic reticulum during development of beta cell failure in diabetes." Annals of the New York Academy of Sciences 1418(1): 5-19.; https://hdl.handle.net/2027.42/143748; Annals of the New York Academy of Sciences; Bachar‐Wikstrom, E., J.D. Wikstrom, N. Kaiser, et al. 2013. Improvement of ER stress‐induced diabetes by stimulating autophagy. Autophagy 9: 626 – 628.; Sugawara, T., F. Kano & M. Murata. 2014. Rab2A is a pivotal switch protein that promotes either secretion or ER‐associated degradation of (pro)insulin in insulin‐secreting cells. Sci. Rep. 4: 6952.; Allen, J.R., L.X. Nguyen, K.E.G. Sargent, et al. 2004. High ER stress in beta‐cells stimulates intracellular degradation of misfolded insulin. Biochem. Biophys. Res. Commun. 324: 166 – 170.; Hartley, T., M. Siva, E. Lai, et al. 2010. Endoplasmic reticulum stress response in an INS‐1 pancreatic beta‐cell line with inducible expression of a folding‐deficient proinsulin. BMC Cell Biol. 11: 59.; Zhang, X., Q. Yuan, W. Tang, et al. 2011. Substrate‐favored lysosomal and proteasomal pathways participate in the normal balance control of insulin precursor maturation and disposal in β‐cells. PLoS One 6: e27647.; Hoelen, H., A. Zaldumbide, W.F. van Leeuwen, et al. 2015. Proteasomal degradation of proinsulin requires Derlin‐2, HRD1 and p97. PLoS One 10: e0128206.; Kobayashi, T., S. Ogawa, T. Yura, et al. 2000. Abundant expression of 150‐kDa oxygen‐regulated protein in mouse pancreatic beta cells is correlated with insulin secretion. Biochem. Biophys. Res. Commun. 267: 831 – 837.; Jung, H.S., K.W. Chung, J. Won Kim, et al. 2008. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab. 8: 318 – 324.; Bachar‐Wikstrom, E., J.D. Wikstrom, Y. Ariav, et al. 2013. Stimulation of autophagy improves endoplasmic reticulum stress‐induced diabetes. Diabetes 62: 1227 – 1237.; Riahi, Y., J.D. Wikstrom, E. Bachar‐Wikstrom, et al. 2016. Autophagy is a major regulator of beta cell insulin homeostasis. Diabetologia 59: 1480 – 1491.; van Raalte, D.H. & C.B. Verchere. 2017. Improving glycaemic control in type 2 diabetes: stimulate insulin secretion or provide beta‐cell rest ? Diabetes Obes. Metab. 19: 1205 – 1213.; Seaquist, E.R., S.E. Kahn, P.M. Clark, et al. 1995. Hyperproinsulinemia is associated with increased beta cell demand after hemipancreatectomy in humans. J. Clin. Invest. 97: 455 – 460.; Alarcon, C., J.L. Leahy, G.T. Schuppin, et al. 1995. Increased secretory demand rather than a defect in the proinsulin conversion mechanism causes hyperproinsulinemia in a glucose‐infusion rat model of non‐insulin‐dependent diabetes mellitus. J. Clin. Invest. 95: 1032 – 1039.; Imai, Y., A.D. Dobrian, M.A. Morris, et al. 2013. Islet inflammation: a unifying target for diabetes treatment ? Trends Endocrinol. Metab. 24: 351 – 360.; Hasnain, S.Z., J.B. Prins & M.A. McGuckin. 2016. Oxidative and endoplasmic reticulum stress in β‐cell dysfunction in diabetes. J. Mol. Endocrinol. 56: R33 – R54.; Zhao, Y., Q. Cao, Y. He, et al. 2017. Impairment of endoplasmic reticulum is involved in beta‐cell dysfunction induced by microcystin‐LR. Environ. Pollut. 223: 587 – 594.; Cnop, M., L. Ladriere, M. Igoillo‐Esteve, et al. 2010. Causes and cures for endoplasmic reticulum stress in lipotoxic β‐cell dysfunction. Diabetes Obes. Metab. 12 ( Suppl. 2 ): 76 – 82.; Cerasi, E. 2007. [And what about diabetes?]. Bull. Acad. Natl. Med. 191: 941 – 943; discussion 943.; Fonseca, S.G., S. Ishigaki, C.M. Oslowski, et al. 2010. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J. Clin. Invest. 120: 744 – 755.; Riggs, A.C., E. Bernal‐Mizrachi, M. Ohsugi, et al. 2005. Mice conditionally lacking the Wolfram gene in pancreatic islet beta cells exhibit diabetes as a result of enhanced endoplasmic reticulum stress and apoptosis. Diabetologia 48: 2313 – 2321.; Yamada, T., H. Ishihara, A. Tamura, et al. 2006. WFS1‐deficiency increases endoplasmic reticulum stress, impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreatic beta‐cells. Hum. Mol. Genet. 15: 1600 – 1609.; Sandhu, M.S., M.N. Weedon, K.A. Fawcett, et al. 2007. Common variants in WFS1 confer risk of type 2 diabetes. Nat. Genet. 39: 951 – 953.; Delepine, M., M. Nicolino, T. Barrett, et al. 2000. EIF2AK3, encoding translation initiation factor 2‐alpha kinase 3, is mutated in patients with Wolcott–Rallison syndrome. Nat. Genet. 25: 406 – 409.; Harding, H.P. & D. Ron. 2002. Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51 ( Suppl. 3 ): S455 – S461.; Lawlor, N., S. Khetan, D. Ucar, et al. 2017. Genomics of islet (Dys)function and type 2 diabetes. Trends Genet. 33: 244 – 255.; Gorasia, D.G., N.L. Dudek, P.D. Veith, et al. 2015. Pancreatic beta cells are highly susceptible to oxidative and ER stresses during the development of diabetes. J. Proteome Res. 14: 688 – 699.; Rao, P., Y. Zhou, S.Q. Ge, et al. 2016. Validation of type 2 diabetes risk variants identified by genome‐wide association studies in Northern Han Chinese. Int. J. Environ. Res. Public Health 13: 863.; Marchetti, P., M. Bugliani, R. Lupi, et al. 2007. The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients. Diabetologia 50: 2486 – 2494.; Cerasi, E., R. Nesher, M. Gadot, et al. 1995. Insulin secretion in obese and non‐obese NIDDM. Diabetes Res. Clin. Pract. 28 ( Suppl. ): S27 – S37.; Laybutt, D.R., A.M. Preston, M.C. Akerfeldt, et al. 2007. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50: 752 – 763.; Fonseca, S.G., J. Gromada & F. Urano. 2011. Endoplasmic reticulum stress and pancreatic β‐cell death. Trends Endocrinol. Metab. 22: 266 – 274.; Eizirik, D.L. & M. Cnop. 2010. ER stress in pancreatic beta cells: the thin red line between adaptation and failure. Sci. Signal. 3: pe7.; Oakes, S.A. & F.R. Papa. 2015. The role of endoplasmic reticulum stress in human pathology. Annu. Rev. Pathol. 10: 173 – 194.; Wang, M. & R.J. Kaufman. 2016. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529: 326 – 335.; Gurlo, T., S. Ryazantsev, C.J. Huang, et al. 2010. Evidence for proteotoxicity in beta cells in type 2 diabetes: toxic islet amyloid polypeptide oligomers form intracellularly in the secretory pathway. Am. J. Pathol. 176: 861 – 869.; Sun, J., J. Cui, Q. He, et al. 2015. Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes. Mol. Aspects Med. 42: 105 – 118.; Mukherjee, A. & C. Soto. 2017. Prion‐like protein aggregates and type 2 diabetes. Cold Spring Harb. Perspect. Med. 7. https://doi.org/10.1101/cshperspect.a024315.; Weiss, M.A. 2009. Proinsulin and the genetics of diabetes mellitus. J. Biol. Chem. 284: 19159 – 19163.; Zoete, V. & M. Meuwly. 2006. Importance of individual side chains for the stability of a protein fold: computational alanine scanning of the insulin monomer. J. Comput. Chem. 27: 1843 – 1857.; Singh, R., R. Bansal, A.S. Rathore, et al. 2017. Equilibrium ensembles for insulin folding from bias‐exchange metadynamics. Biophys. J. 112: 1571 – 1585.; Bekard, I.B. & D.E. Dunstan. 2009. Tyrosine autofluorescence as a measure of bovine insulin fibrillation. Biophys. J. 97: 2521 – 2531.; Ivanova, M.I., S.A. Sievers, M.R. Sawaya, et al. 2009. Molecular basis for insulin fibril assembly. Proc. Natl. Acad. Sci. USA 106: 18990 – 18995.; Chiang, H.L., S.T. Ngo, C.J. Chen, et al. 2013. Oligomerization of peptides LVEALYL and RGFFYT and their binding affinity to insulin. PLoS One 8: e65358.; Haataja, L., N. Manickam, A. Soliman, et al. 2016. Disulfide mispairing during proinsulin folding in the endoplasmic reticulum. Diabetes 65: 1050 – 1060.; Chan, S.J., P. Keim & D.F. Steiner. 1976. Cell‐free synthesis of rat preproinsulins: characterization and partial amino acid sequence determination. Proc. Natl. Acad. Sci. USA 73: 1964 – 1968.; Liu, M., J. Wright, H. Guo, et al. 2014. Proinsulin entry and transit through the endoplasmic reticulum in pancreatic beta cells. Vitam. Horm. 95: 35 – 62.; Woycechowsky, K.J. & R.T. Raines. 2000. Native disulfide bond formation in proteins. Curr. Opin. Chem. Biol. 4: 533 – 539.; Guo, Z.Y., Z.S. Qiao & Y.M. Feng. 2008. The in vitro oxidative folding of the insulin superfamily. Antioxid. Redox Signal. 10: 127 – 139.; Zhang, B.Y., M. Liu & P. Arvan. 2003. Behavior in the eukaryotic secretory pathway of insulin‐containing fusion proteins and single‐chain insulins bearing various B‐chain mutations. J. Biol. Chem. 278: 3687 – 3693.; Liu, M., J. Ramos‐Castañeda & P. Arvan. 2003. Role of the connecting peptide in insulin biosynthesis. J. Biol. Chem. 278: 14798 – 14805.; Liu, M., Y. Li, D. Cavener, et al. 2005. Proinsulin disulfide maturation and misfolding in the endoplasmic reticulum. J. Biol. Chem. 280: 13209 – 13212.; Wicksteed, B., Y. Uchizono, C. Alarcon, et al. 2007. A cis‐element in the 5′ untranslated region of the preproinsulin mRNA (ppIGE) is required for glucose regulation of proinsulin translation. Cell Metab. 5: 221 – 227.; Derewenda, U., Z. Derewenda, G.G. Dodson, et al. 1989. Molecular structure of insulin: the insulin monomer and its assembly. Br. Med. Bull. 45: 4 – 18.; Huang, X.F. & P. Arvan. 1995. Intracellular transport of proinsulin in pancreatic beta‐cells. Structural maturation probed by disulfide accessibility. J. Biol. Chem. 270: 20417 – 20423.; Haataja, L., E. Snapp, J. Wright, et al. 2013. Proinsulin intermolecular interactions during secretory trafficking in pancreatic β cells. J. Biol. Chem. 288: 1896 – 1906.; Hebert, D.N. & M. Molinari. 2007. In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol. Rev. 87: 1377 – 1408.; Wright, J., X. Wang, L. Haataja, et al. 2013. Dominant protein interactions that influence the pathogenesis of conformational diseases. J. Clin. Invest. 123: 3124 – 3134.; Kayo, T. & A. Koizumi. 1998. Mapping of murine diabetogenic gene mody on chromosome 7 at D7Mit258 and its involvement in pancreatic islet and beta cell development during the perinatal period. J. Clin. Invest. 101: 2112 – 2118.; Wang, J., T. Takeuchi, S. Tanaka, et al. 1999. A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta‐cell dysfunction in the Mody mouse. J. Clin. Invest. 103: 27 – 37.; Liu, M., I. Hodish, C.J. Rhodes, et al. 2007. Proinsulin maturation, misfolding, and proteotoxicity. Proc. Natl. Acad. Sci. USA 104: 15841 – 15846.; Harding, H.P., H. Zeng, Y. Zhang, et al. 2001. Diabetes mellitus and exocrine pancreatic dysfunction in perk–/– mice reveals a role for translational control in secretory cell survival. Mol. Cell 7: 1153 – 1163.; Gilligan, M., G.I. Welsh, A. Flynn, et al. 1996. Glucose stimulates the activity of the guanine nucleotide‐exchange factor eIF‐2B in isolated rat islets of Langerhans. J. Biol. Chem. 271: 2121 – 2125.; Gomez, E., M.L. Powell, I.C. Greenman, et al. 2004. Glucose‐stimulated protein synthesis in pancreatic beta‐cells parallels an increase in the availability of the translational ternary complex (eIF2–GTP.Met–tRNAi) and the dephosphorylation of eIF2 alpha. J. Biol. Chem. 279: 53937 – 53946.; Zhang, P., B. McGrath, S. Li, et al. 2002. The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol. Cell. Biol. 22: 3864 – 3874.; Gupta, S., B. McGrath & D.R. Cavener. 2010. PERK (EIF2AK3) regulates proinsulin trafficking and quality control in the secretory pathway. Diabetes 59: 1937 – 1947.; Wang, R., B.C. McGrath, R.F. Kopp, et al. 2013. Insulin secretion and Ca 2+ dynamics in β‐cells are regulated by PERK (EIF2AK3) in concert with calcineurin. J. Biol. Chem. 288: 33824 – 33836.; Harding, H.P., A.F. Zyryanova & D. Ron. 2012. Uncoupling proteostasis and development in vitro with a small molecule inhibitor of the pancreatic endoplasmic reticulum kinase, PERK. J. Biol. Chem. 287: 44338 – 44344.; Zhang, W., D. Feng, Y. Li, et al. 2006. PERK EIF2AK3 control of pancreatic beta cell differentiation and proliferation is required for postnatal glucose homeostasis. Cell Metab. 4: 491 – 497.; Shi, Y., S.I. Taylor, S.‐L. Tan, et al. 2003. When translation meets metabolism: multiple links to diabetes. Endocr. Rev. 24: 91 – 101.; Julier, C. & M. Nicolino. 2010. Wolcott–Rallison syndrome. Orphanet J. Rare Dis. 5: 29.; Harding, H.P., Y. Zhang, H. Zeng, et al. 2003. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11: 619 – 633.; Scheuner, D., D. Vander Mierde, B. Song, et al. 2005. Control of mRNA translation preserves reticulum function in beta cells and maintains glucose homeostasis. Nat. Med. 11: 757 – 764.; Scheuner, D., B. Song, E. McEwen, et al. 2001. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7: 1165 – 1176.; Back, S.H., D. Scheuner, J. Han, et al. 2009. Translation attenuation through eIF2alpha phosphorylation prevents oxidative stress and maintains the differentiated state in beta cells. Cell Metab. 10: 13 – 26.; Alarcon, C., B.B. Boland, Y. Uchizono, et al. 2015. Pancreatic β‐cell adaptive plasticity in obesity increases insulin production but adversely affects secretory function. Diabetes 65: 438 – 450.; Nolan, C.J. & V. Delghingaro‐Augusto. 2016. Reversibility of defects in proinsulin processing and islet beta‐cell failure in obesity‐related type 2 diabetes. Diabetes 65: 352 – 354.; Han, J., S.H. Back, J. Hur, et al. 2013. ER‐stress‐induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 15: 481 – 490.; Krokowski, D., J. Han, M. Saikia, et al. 2013. A self‐defeating anabolic program leads to β cell apoptosis in ER stress‐induced diabetes via regulation of amino acid flux. J. Biol. Chem. 288: 17202 – 17213.; Marciniak, S.J., C.Y. Yun, S. Oyadomari, et al. 2004. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18: 3066 – 3077.; Hassler, J.R., D.L. Scheuner, S. Wang, et al. 2015. The IRE1α/XBP1s pathway is essential for the glucose response and protection of β cells. PLoS Biol. 13: e1002277.; Kaniuk, N.A., M. Kiraly, H. Bates, et al. 2007. Ubiquitinated‐protein aggregates form in pancreatic beta‐cells during diabetes‐induced oxidative stress and are regulated by autophagy. Diabetes 56: 930 – 939.; Despa, F. 2009. Dilation of the endoplasmic reticulum in beta cells due to molecular overcrowding? Kinetic simulations of extension limits and consequences on proinsulin synthesis. Biophys. Chem. 140: 115 – 121.; Despa, F. 2010. Endoplasmic reticulum overcrowding as a mechanism of β‐cell dysfunction in diabetes. Biophys. J. 98: 1641 – 1648.; Gardner, B.M., D. Pincus, K. Gotthardt, et al. 2013. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb. Perspect. Biol. 5: a013169.; Zhu, Y.L., A. Abdo, J.F. Gesmonde, et al. 2004. Aggregation and lack of secretion of most newly synthesized proinsulin in non‐beta‐cell lines. Endocrinology 145: 3840 – 3849.; Wang, J., Y. Chen, Q. Yuan, et al. 2011. Control of precursor maturation and disposal is an early regulative mechanism in the normal insulin production of pancreatic β‐cells. PLoS One 6: e19446.; Dowling, P., L. O’Driscoll, F. O’Sullivan, et al. 2006. Proteomic screening of glucose‐responsive and glucose non‐responsive MIN‐6 beta cells reveals differential expression of proteins involved in protein folding, secretion and oxidative stress. Proteomics 6: 6578 – 6587.; Lee, J.S., Y. Wu, P. Schnepp, et al. 2015. Proteomics analysis of rough endoplasmic reticulum in pancreatic beta cells. Proteomics 15: 1508 – 1511.; Margittai, E. & R. Sitia. 2011. Oxidative protein folding in the secretory pathway and redox signaling across compartments and cells. Traffic 12: 1 – 8.; Hudson, D.A., S.A. Gannon & C. Thorpe. 2015. Oxidative protein folding: from thiol‐disulfide exchange reactions to the redox poise of the endoplasmic reticulum. Free Radic. Biol. Med. 80: 171 – 182.; Mehmeti, I., S. Lortz, M. Elsner, et al. 2014. Peroxiredoxin 4 improves insulin biosynthesis and glucose‐induced insulin secretion in insulin‐secreting INS‐1E cells. J. Biol. Chem. 289: 26904 – 26913.; Frand, A.R. & C.A. Kaiser. 1999. Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum. Mol. Cell 4: 469 – 477.; Khoo, C., J. Yang, G. Rajpal, et al. 2011. Endoplasmic reticulum oxidoreductase‐1‐like‐β (ERO1l‐β) regulates susceptibility to endoplasmic reticulum stress and is induced by insulin flux in β‐cells. Endocrinology 152: 2599 – 2608.; Zito, E., K.T. Chin, J. Blais, et al. 2010. ERO1‐beta, a pancreas‐specific disulfide oxidase, promotes insulin biogenesis and glucose homeostasis. J. Cell Biol. 188: 821 – 832.; Wright, J., J. Birk, L. Haataja, et al. 2013. Endoplasmic reticulum oxidoreductin‐1α (Ero1α) improves folding and secretion of mutant proinsulin and limits mutant proinsulin‐induced endoplasmic reticulum stress. J. Biol. Chem. 288: 31010 – 31018.; Yoshioka, M., T. Kayo, T. Ikeda, et al. 1997. A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early‐onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 46: 887 – 894.; Rajpal, G. & P. Arvan. 2013. Disulfide bond formation. In Handbook of Biologically Active Peptides. A. Kastin, Ed.: 1721 – 1729. San Diego: Elsevier/Academic Press.; Montane, J., S. de Pablo, M. Obach, et al. 2016. Protein disulfide isomerase ameliorates beta‐cell dysfunction in pancreatic islets overexpressing human islet amyloid polypeptide. Mol. Cell. Endocrinol. 420: 57 – 65.; Rajpal, G., I. Schuiki, M. Liu, et al. 2012. Action of protein disulfide isomerase on proinsulin exit from endoplasmic reticulum of pancreatic β‐cells. J. Biol. Chem. 287: 43 – 47.; Zhang, L., E. Lai, T. Teodoro, et al. 2009. GRP78, but not protein‐disulfide isomerase, partially reverses hyperglycemia‐induced inhibition of insulin synthesis and secretion in pancreatic {beta}‐cells. J. Biol. Chem. 284: 5289 – 5298.; Oka, O.B., H.Y. Yeoh & N.J. Bulleid. 2015. Thiol–disulfide exchange between the PDI family of oxidoreductases negates the requirement for an oxidase or reductase for each enzyme. Biochem. J. 469: 279 – 288.; Sato, Y., R. Kojima, M. Okumura, et al. 2013. Synergistic cooperation of PDI family members in peroxiredoxin 4‐driven oxidative protein folding. Sci. Rep. 3: 2456.; He, K., C.N. Cunningham, N. Manickam, et al. 2015. PDI reductase acts on Akita mutant proinsulin to initiate retrotranslocation along the Hrd1/Sel1L–p97 axis. Mol. Biol. Cell 26: 3413 – 3423.; Cunningham, C.N., K. He, A. Arunagiri, et al. 2016. Chaperone‐driven degradation of a misfolded proinsulin mutant in parallel with restoration of wild type insulin secretion. Diabetes 66: 741 – 753.; Alberti, A., P. Karamessinis, M. Peroulis, et al. 2009. ERp46 is reduced by high glucose and regulates insulin content in pancreatic beta‐cells. Am. J. Physiol. Endocrinol. Metab. 297: E812 – E821.; Lampropoulou, E., A. Lymperopoulou & A. Charonis. 2016. Reduced expression of ERp46 under diabetic conditions in beta‐cells and the effect of liraglutide. Metabolism 65: 7 – 15.; Eletto, D., D. Eletto, S. Boyle, et al. 2016. PDIA6 regulates insulin secretion by selectively inhibiting the RIDD activity of IRE1. FASEB J. 30: 653 – 665.; Gorasia, D.G., N.L. Dudek, H. Safavi‐Hemami, et al. 2016. A prominent role of PDIA6 in processing of misfolded proinsulin. Biochim. Biophys. Acta 1864: 715 – 723.; Groenendyk, J., Z. Peng, E. Dudek, et al. 2014. Interplay between the oxidoreductase PDIA6 and microRNA‐322 controls the response to disrupted endoplasmic reticulum calcium homeostasis. Sci. Signal. 7: ra54.; Pottekat, A., S. Becker, K.R. Spencer, et al. 2013. Insulin biosynthetic interaction network component, TMEM24, facilitates insulin reserve pool release. Cell Rep. 4: 921 – 930.; Feng, D., J. Wei, S. Gupta, et al. 2009. Acute ablation of PERK results in ER dysfunctions followed by reduced insulin secretion and cell proliferation. BMC Cell Biol. 10: 61.; Schmitz, A., M. Maintz, T. Kehle, et al. 1995. In vivo iodination of a misfolded proinsulin reveals co‐localized signals for BiP binding and for degradation in the ER. EMBO J. 14: 1091 – 1098.; Teodoro‐Morrison, T., I. Schuiki, L. Zhang, et al. 2013. GRP78 overproduction in pancreatic beta cells protects against high‐fat‐diet‐induced diabetes in mice. Diabetologia 56: 1057 – 1067.; Fritz, J.M., M. Dong, K.S. Apsley, et al. 2014. Deficiency of the BiP cochaperone ERdj4 causes constitutive endoplasmic reticulum stress and metabolic defects. Mol. Biol. Cell 25: 431 – 440.; Ittner, A.A., J. Bertz, T.Y. Chan, et al. 2014. The nucleotide exchange factor SIL1 is required for glucose‐stimulated insulin secretion from mouse pancreatic beta cells in vivo. Diabetologia 57: 1410 – 1419.; Han, J., B. Song, J. Kim, et al. 2015. Antioxidants complement the requirement for protein chaperone function to maintain β‐cell function and glucose homeostasis. Diabetes 64: 2892 – 2904.; O’Neill, C.M., C. Lu, K.L. Corbin, et al. 2013. Circulating levels of IL‐1B+IL‐6 cause ER stress and dysfunction in islets from prediabetic male mice. Endocrinology 154: 3077 – 3088.; Avezov, E., T. Konno, A. Zyryanova, et al. 2015. Retarded PDI diffusion and a reductive shift in poise of the calcium depleted endoplasmic reticulum. BMC Biol. 13: 2.; Chemaly, E.R., L. Troncone & D. Lebeche. 2017. SERCA control of cell death and survival. Cell Calcium. 69: 46 – 61.; Varadi, A. & G.A. Rutter. 2002. Dynamic imaging of endoplasmic reticulum Ca 2+ concentration in insulin‐secreting MIN6 cells using recombinant targeted cameleons: roles of sarco(endo)plasmic reticulum Ca 2+ –ATPase (SERCA)‐2 and ryanodine receptors. Diabetes 51 ( Suppl. 1 ): S190 – S201.; Johnson, J.S., T. Kono, X. Tong, et al. 2014. Pancreatic and duodenal homeobox protein 1 (Pdx‐1) maintains endoplasmic reticulum calcium levels through transcriptional regulation of sarco‐endoplasmic reticulum calcium ATPase 2b (SERCA2b) in the islet β cell. J. Biol. Chem. 289: 32798 – 32810.; Guest, P.C., E.M. Bailyes & J.C. Hutton. 1997. Endoplasmic reticulum Ca 2+ is important for the proteolytic processing and intracellular transport of proinsulin in the pancreatic beta‐cell. Biochem. J. 323: 445 – 450.; Tong, X., T. Kono, E.K. Anderson‐Baucum, et al. 2016. SERCA2 deficiency impairs pancreatic β‐cell function in response to diet‐induced obesity. Diabetes 65: 3039 – 3052.; Tiwari, A., I. Schuiki, L. Zhang, et al. 2013. SDF2L1 interacts with the ER‐associated degradation machinery and retards the degradation of mutant proinsulin in pancreatic beta‐cells. J. Cell Sci. 126: 1962 – 1968.; Goodchild, R.E. & W.T. Dauer. 2005. The AAA+ protein torsinA interacts with a conserved domain present in LAP1 and a novel ER protein. J. Cell Biol. 168: 855 – 862.; Xu, T., L. Yang, C. Yan, et al. 2014. The IRE1α–XBP1 pathway regulates metabolic stress‐induced compensatory proliferation of pancreatic β‐cells. Cell Res. 24: 1137 – 1140.; Tsuchiya, Y., M. Saito & K. Kohno. 2016. Pathogenic mechanism of diabetes development due to dysfunction of unfolded protein response. Yakugaku Zasshi 136: 817 – 825.; Lee, A.H., K. Heidtman, G.S. Hotamisligil, et al. 2011. Dual and opposing roles of the unfolded protein response regulated by IRE1alpha and XBP1 in proinsulin processing and insulin secretion. Proc. Natl. Acad. Sci. USA 108: 8885 – 8890.; Usui, M., S. Yamaguchi, Y. Tanji, et al. 2012. Atf6α‐null mice are glucose intolerant due to pancreatic β‐cell failure on a high‐fat diet but partially resistant to diet‐induced insulin resistance. Metabolism 61: 1118 – 1128.; Weiss, M.A., B.H. Frank, I. Khait, et al. 1990. NMR and photo‐CIDNP studies of human proinsulin and prohormone processing intermediates with application to endopeptidase recognition. Biochemistry 29: 8389 – 8401.; Weiss, M.A. 2013. Diabetes mellitus due to the toxic misfolding of proinsulin variants. FEBS Lett. 587: 1942 – 1950.; Liu, M., I. Hodish, L. Haataja, et al. 2010. Proinsulin misfolding and diabetes: mutant INS gene‐induced diabetes of youth. Trends Endocrinol. Metab. 21: 652 – 659.; Liu, M., L. Haataja, J. Wright, et al. 2010. Mutant INSgene induced diabetes of youth: proinsulin cysteine residues impose dominant‐negative inhibition on wild‐type proinsulin transport. PLoS One 5: e13333.; Back, S.H. & R.J. Kaufman. 2012. Endoplasmic reticulum stress and type 2 diabetes. Annu. Rev. Biochem. 81: 767 – 793.; Stoy, J., E.L. Edghill, S.E. Flanagan, et al. 2007. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc. Natl. Acad. Sci. USA 104: 15040 – 15044.; Colombo, C., O. Porzio, M. Liu, et al. 2008. Seven mutations in the human insulin gene linked to permanent neonatal/infancy‐onset diabetes mellitus. J. Clin. Invest. 118: 2148 – 2156.; Garin, I., E.L. Edghill, I. Akerman, et al. 2010. Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proc. Natl. Acad. Sci. USA 107: 3105 – 3110.; Zhu, S., D. Larkin, S. Lu, et al. 2016. Monitoring C‐peptide storage and secretion in islet β‐cells in vitro and in vivo. Diabetes 65: 699 – 709.; Rajan, S., S.C. Eames, S.Y. Park, et al. 2010. In vitro processing and secretion of mutant insulin proteins that cause permanent neonatal diabetes. Am. J. Physiol. Endocrinol. Metab. 298: E403 – E410.; Stoy, J., J. Olsen, S.Y. Park, et al. 2017. In vivo measurement and biological characterisation of the diabetes‐associated mutant insulin p.R46Q (GlnB22‐insulin). Diabetologia 60: 1423 – 1431.; Zuber, C., J.Y. Fan, B. Guhl, et al. 2004. Misfolded proinsulin accumulates in expanded pre‐Golgi intermediates and endoplasmic reticulum subdomains in pancreatic beta cells of Akita mice. FASEB J. 18: 917 – 919.; Izumi, T., H. Yokota‐Hashimoto, S. Zhao, et al. 2003. Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse. Diabetes 52: 409 – 416.; Oyadomari, S., A. Koizumi, K. Takeda, et al. 2002. Targeted disruption of the CHOP gene delays endoplasmic reticulum stress‐mediated diabetes. J. Clin. Invest. 109: 525 – 532.; Yamane, S., Y. Hamamoto, S. Harashima, et al. 2011. GLP‐1 receptor agonist attenuates endoplasmic reticulum stress‐mediated β‐cell damage in Akita mice. J. Diabetes Investig. 2: 104 – 110.; Chen, H., C. Zheng, X. Zhang, et al. 2011. Apelin alleviates diabetes‐associated endoplasmic reticulum stress in the pancreas of Akita mice. Peptides 32: 1634 – 1639.; Shirakawa, J., Y. Togashi, E. Sakamoto, et al. 2013. Glucokinase activation ameliorates ER stress‐induced apoptosis in pancreatic β‐cells. Diabetes 62: 3448 – 3458.; Zhao, L., H. Guo, H. Chen, et al. 2013. Effect of Liraglutide on endoplasmic reticulum stress in diabetes. Biochem. Biophys. Res. Commun. 441: 133 – 138.; Duan, H., J.W. Lee, S.W. Moon, et al. 2016. Discovery, synthesis, and evaluation of 2,4‐diaminoquinazolines as a novel class of pancreatic beta‐cell‐protective agents against endoplasmic reticulum (ER) stress. J. Med. Chem. 59: 7783 – 7800.; Tang, W., Q. Yuan, B. Xu, et al. 2017. Exenatide substantially improves proinsulin conversion and cell survival that augment Ins2+/Akita beta cell function. Mol. Cell. Endocrinol. 439: 297 – 307.; Naito, M., J. Fujikura, K. Ebihara, et al. 2011. Therapeutic impact of leptin on diabetes, diabetic complications, and longevity in insulin‐deficient diabetic mice. Diabetes 60: 2265 – 2273.; Barbetti, F., C. Colombo, L. Haataja, et al. 2016. Hyperglucagonemia in an animal model of insulin‐deficient diabetes: what therapy can improve it ? Clin. Diabetes Endocrinol. 2: 11.; Absood, A., B. Gandomani, A. Zaki, et al. 2013. Insulin therapy for pre‐hyperglycemic beta‐cell endoplasmic reticulum crowding. PLoS One 8: e54351.; Kautz, S., L. van Burck, M. Schuster, et al. 2012. Early insulin therapy prevents beta cell loss in a mouse model for permanent neonatal diabetes (Munich Ins2(C95S)). Diabetologia 55: 382 – 391.; Gong, H., Z. He, A. Peng, et al. 2014. Effects of several quinones on insulin aggregation. Sci. Rep. 4: 5648.; Eisele, Y.S., C. Monteiro, C. Fearns, et al. 2015. Targeting protein aggregation for the treatment of degenerative diseases. Nat. Rev. Drug Discov. 14: 759 – 780.; Preston, G.M. & J.L. Brodsky. 2017. The evolving role of ubiquitin modification in endoplasmic reticulum‐associated degradation. Biochem. J. 474: 445 – 469.; Schoebel, S., W. Mi, A. Stein, et al. 2017. Cryo‐EM structure of the protein‐conducting ERAD channel Hrd1 in complex with Hrd3. Nature 548: 352 – 355.; Qi, L., B. Tsai & P. Arvan. 2017. New insights into the physiological role of endoplasmic reticulum‐associated degradation. Trends Cell Biol. 27: 430 – 440.; Travers, K.J., C.K. Patil, L. Wodicka, et al. 2000. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER‐associated degradation. Cell 101: 249 – 258.

  16. 16

    المصدر: Molecular Metabolism
    Mol. Metab. 6, 931-940 (2017)
    Molecular Metabolism, 6 (8)
    Molecular Metabolism, Vol 6, Iss 8, Pp 931-940 (2017)

    وصف الملف: application/pdf; application/application/pdf

  17. 17
    Academic Journal

    المساهمون: Piccini, Barbara, Artuso, Rosangela, Lenzi, Lorenzo, Guasti, Monica, Braccesi, Giulia, Barni, Federica, Casalini, Emilio, Giglio, SABRINA RITA, Toni, Sonia

    Relation: info:eu-repo/semantics/altIdentifier/pmid/27659712; info:eu-repo/semantics/altIdentifier/wos/WOS:000388283500008; volume:59; issue:11; firstpage:590; lastpage:595; numberofpages:6; journal:EUROPEAN JOURNAL OF MEDICAL GENETICS; http://hdl.handle.net/11584/298088; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84994300010

  18. 18
    Academic Journal

    المساهمون: Russo L, Iafusco D, Brescianini S, Nocerino V, Bizzarri C, Toni S, Cerutti F, Monciotti C, Pesavento R, Iughetti L, Bernardini L, Bonfanti R, Gargantini L, Vanelli M, Aguilar-Bryan L, Stazi MA, Grasso V, Colombo C, Barbetti F, the ISPED Early Diabetes Study Group

    Relation: info:eu-repo/semantics/altIdentifier/pmid/21544516; info:eu-repo/semantics/altIdentifier/wos/WOS:000291392000015; volume:54; issue:7; firstpage:1693; lastpage:1701; numberofpages:9; journal:DIABETOLOGIA; http://hdl.handle.net/2318/85463; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-79959716801

  19. 19
  20. 20
    Dissertation/ Thesis

    المؤلفون: Cunningham, Corey

    المساهمون: Tsai, Billy, Arvan, Peter, Fingar, Diane C, Fuller, Robert S, Lin, Jiandie

    وصف الملف: application/pdf

    Relation: https://hdl.handle.net/2027.42/149827; orcid:0000-0002-1755-4881; Cunningham, Corey; 0000-0002-1755-4881