-
1Academic Journal
المؤلفون: V. V. Kuts, A. V. Turutin, I. V. Kubasov, A. M. Kislyuk, E. E. Maksumova, A. A. Temirov, N. A. Sobolev, M. D. Malinkovich, Yu. N. Parkhomenko, В. В. Куц, А. В. Турутин, И. В. Кубасов, А. М. Кислюк, Э. Э. Максумова, А. А. Темиров, Н. А. Соболев, М. Д. Малинкович, Ю. Н. Пархоменко
المساهمون: The study was performed with financial support from the Russian Science Foundation (grant No. 22-19-00808, https://rscf.ru/project/22-19-00808/), Российский научный фонд (https://rscf.ru/project/22-19-00808/).
المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 26, № 4 (2023); 279-289 ; Известия высших учебных заведений. Материалы электронной техники; Том 26, № 4 (2023); 279-289 ; 2413-6387 ; 1609-3577
مصطلحات موضوعية: неоднородное магнитное поле, composite structures, biasing layer, bidomain lithium niobate, metglas, nickel, inhomogeneous magnetic field, композитные структуры, подмагничивающий слой, бидоменный ниобат лития, метглас, никель
Relation: Turutin A.V., Kubasov I.V., Kislyuk A.M., Kuts V.V., Malinkovich M.D., Parkhomenko Y.N., Sobolev N.A. Ultra-sensitive magnetoelectric sensors of magnetic fields for biomedical applications. Nanobiotechnology Reports. 2022; 17(3): 261—289. https://doi.org/10.1134/S2635167622030223; Li M., Matyushov A., Dong C., Chen H., Lin H., Nan T., Qian Z., Rinaldi M., Lin Y., Sun N.X. Ultra-sensitive NEMS magnetoelectric sensor for picotesla DC magnetic field detection. Applied Physics Letters. 2017; 110(14): 143510. https://doi.org/10.1063/1.4979694; Jovičević Klug M., Thormählen L., Toxværd S.D., Höft M., Knöchel R., Quandt E., Meyners D., Röbisch V., McCord J. Antiparallel exchange biased multilayers for low magnetic noise magnetic field sensors. Applied Physics Letters. 2019; 114(19): 192410. https://doi.org/10.1063/1.5092942; Jing W.Q., Fang F. A flexible multiferroic composite with high self-biased magnetoelectric coupling. Composites Science and Technology. 2017; 153: 145—150. https://doi.org/10.1016/j.compscitech.2017.10.010; Yang Sh.-Y., Xu J., Zhang X., Fan S., Zhang Ch.-Y., Huang Y., Li Q., Wang X., Cao D., Xu J., Li S. Self-biased metglas/PVDF/Ni magnetoelectric laminate for AC magnetic sensors with a wide frequency range. Journal of Physics D: Applied Physics. 2022; 55(17): 175002. https://doi.org/10.1088/1361-6463/ac4cf5; Turutin A.V., Skryleva E.A., Kubasov I.V., Milovich F.O., Temirov A.A., Raketov K.V., Kislyuk A.M., Zhukov R.N., Senatulin B.R., Kuts V.V., Malinkovich M.D., Parkhomenko Y.N., Sobolev N.A. Magnetoelectric MEMS magnetic field sensor based on a laminated heterostructure of bidomain lithium niobate and metglas. Materials (Basel). 2023; 16(2): 484. https://doi.org/10.3390/ma16020484; Elzenheimer E., Hayes P., Thormählen L., Engelhardt E., Zaman A., Quandt E., Frey N., Höft M., Schmidt G. Investigation of converse magnetoelectric thin-film sensors for magnetocardiography. IEEE Sensors Journal. 2023; 23(6): 5660—5669. https://doi.org/10.1109/JSEN.2023.3237910; Reermann J., Elzenheimer E., Schmidt G. Real-time biomagnetic signal processing for uncooled magnetometers in cardiology. IEEE Sensors Journal. 2019; 19(11): 4237—4249. https://doi.org/10.1109/JSEN.2019.2893236; Ma J.N., Xin C.Z., Ma J., Lin Y.H., Nan C.W. Design and analysis of a self-biased broadband magnetoelectric cantilever operated at multi-frequency windows. AIP Advances. 2017; 7(3): 035013. https://doi.org/10.1063/1.4978872; Greve H., Woltermann E., Quenzer H.-J., Wagner B., Quandt E. Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites. Applied Physics Letters. 2010; 96(18): 182501. https://doi.org/10.1063/1.3377908; Hayes P., Schell V., Salzer S., Burdin D., Yarar E., Piorra A., Knöchel R., Fetisov Y.K., Quandt E. Electrically modulated magnetoelectric AlN/FeCoSiB film composites for DC magnetic field sensing. Journal of Physics D: Applied Physics. 2018; 51(35): 354002. https://doi.org/10.1088/1361-6463/aad456; Su J., Niekiel F., Fichtner S., Thormaehlen L., Kirchhof C., Meyners D., Quandt E., Wagner B., Lofink F. AlScN-based MEMS magnetoelectric sensor. Applied Physics Letters. 2020; 117(13): 132903. https://doi.org/10.1063/5.0022636; Huang D., Lu C., Han B., Wang X., Li C., Xu C., Gui J., Lin C. Giant self-biased magnetoelectric coupling characteristics of three-phase composite with end-bonding structure. Applied Physics Letters. 2014; 105(26): 263502. https://doi.org/10.1063/1.4904799; Mandal S.K., Sreenivasulu G., Petrov V.M., Srinivasan G. Magnetization-graded multiferroic composite and magnetoelectric effects at zero bias. Physical Review B. 2011; 84(1): 014432. https://doi.org/10.1103/PhysRevB.84.014432; Li M., Wang Z., Wang Y., Li J., Viehland D. Giant magnetoelectric effect in self-biased laminates under zero magnetic field. Applied Physics Letters. 2013; 102(8): 082404 https://doi.org/10.1063/1.4794056; Deka B., Lee Y.-W., Yoo I.-R., Gwak D.-W., Cho J., Song H.-C., Choi J.-J., Hahn B.-D., Ahn C.-W., Cho K.-H. Designing ferroelectric/ferromagnetic composite with giant self-biased magnetoelectric effect. Applied Physics Letters. 2019; 115(19): 192901. https://doi.org/0.1063/1.5128163; Huang D., Lu C., Bing H. Multipeak self-biased magnetoelectric coupling characteristics in four-phase Metglas/Terfenol-D/Be-bronze/PMN-PT structure. AIP Advances. 2015; 5(4): 047140. https://doi.org/10.1063/1.4919248; Zhang H., Lu C., Sun Z. Large self-biased magnetoelectric response in four-phase Heterostructure with multiple low-frequency peaks. Applied Physics Letters. 2015; 106(3): 033505. https://doi.org/10.1063/1.4906414; Fetisov L.Y., Dzhaparidze M.V., Savelev D.V., Burdin D.A., Turutin A.V., Kuts V.V., Milovich F.O., Temirov A.A., Parkhomenko Y.N., Fetisov Y.K. Magnetoelectric effect in amorphous ferromagnetic FeCoSiB/langatate monolithic heterostructure for magnetic field sensing. Sensors (Basel). 2023; 23(9): 4523. https://doi.org/10.3390/s23094523; Bichurin M.I., Sokolov O.V., Leontiev V.S., Petrov R.V., Tatarenko A.S., Semenov G.A., Ivanov S.N., Turutin A.V., Kubasov I.V., Kislyuk A.M., Malinkovich M.D., Parkhomenko Y.N., Kholkin A.L., Sobolev N.A. Magnetoelectric effect in the bidomain lithium niobate/nickel/metglas gradient structure. Physica Status Solidi (B): Basic Solid State Physics. 2020; 257(3): 1900398. https://doi.org/10.1002/pssb.201900398; Yang S.-C., Park C.-S., Cho K.-H., Priya S. Self-biased magnetoelectric response in three-phase laminates. Journal of Applied Physics. 2010: 108(9): 093706. https://doi.org/10.1063/1.3493154; Kumar A., Arockiarajan A. Temperature dependent magnetoelectric (ME) response in press-fit FeNi/PZT/Ni self-biased ring composite. Journal of Applied Physics. 2019; 126(9): 094102. https://doi.org/10.1063/1.5108708; Bichurin M.I., Petrov R.V., Leontiev V.S., Sokolov O.V., Turutin A.V., Kuts V.V., Kubasov I.V., Kislyuk A.M., Temirov A.A., Malinkovich M.D., Parkhomenko Y.N. Self-biased bidomain LiNbO3/Ni/metglas magnetoelectric current sensor. Sensors (Basel). 2020; 20(24): 7142. https://doi.org/10.3390/s20247142; Turutin A.V., Vidal J.V., Kubasov I.V., Kislyuk A.M., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Kholkin A.L., Sobolev N.A. Low-frequency magnetic sensing by magnetoelectric metglas/bidomain LiNbO3 long bars. Journal of Physics D: Applied Physics. 2018; 51(21): 214001. https://doi.org/10.1088/1361-6463/aabda4; Huo Y., Sofronici S., Wang X., D’Agati M.J., Finkel P., Bussmann K., Mion T., Staruch M., Jones N.J., Wheeler B., McLaughlin K.L., Allen M.G., Olsson R.H. Low noise, strain modulated, multiferroic magnetic field sensor systems. IEEE Sensors Journal. 2023; 23(13): 14025—14040. https://doi.org/10.1109/JSEN.2023.3279229; Özden M.-Ö., Teplyuk A., Gümüs Ö., Meyners D., Höft M., Gerken M. Magnetoelectric cantilever sensors under inhomogeneous magnetic field excitation. AIP Advances. 2020; 10(2): 025132. https://doi.org/10.1063/1.5136239; Friedrich R.-M., Zabel S., Galka A., Lukat N., Wagner J.-M., Kirchhof C., Quandt E., McCord J., Selhuber-Unkel C., Siniatchkin M., Faupel F. Magnetic particle mapping using Magnetoelectric sensors as an imaging modality. Scientific Reports. 2019; 9(1): 2086. https://doi.org/0.1038/s41598-018-38451-0; Isakovic J., Dobbs-Dixon I., Chaudhury D., Mitrecic D. Modeling of inhomogeneous electromagnetic fields in the nervous system: A novel paradigm in understanding cell interactions, disease etiology and therapy. Scientific Reports. 2018; 8(1): 12909. https://doi.org/0.1038/s41598-018-31054-9; Kubasov I.V., Kislyuk A.M., Turutin A.V., Malinkovich M.D., Parkhomenko Y.N. Bidomain ferroelectric crystals: Properties and prospects of application. Russian Microelectronics. 2021; 50(8): 571–616. https://doi.org/10.1134/S1063739721080035; Kuts V.V., Turutin A.V., Kislyuk A.M., Kubasov I.V., Zhukov R.N., Temirov A.A., Malinkovich M.D., Sobolev N.A., Parkhomenko Y.N. Magnetoelectric effect in three-layered gradient LiNbO3/Ni/Metglas composites. Modern Electronic Materials. 2022; 8(4): 141–147. https://doi.org/0.3897/j.moem.8.4.98951; Spetzler B., Bald C., Durdaut P., Reermann J., Kirchhof C., Teplyuk A., Meyners D., Quandt E., Höft M., Schmidt G., Faupel F. Exchange biased delta-E effect enables the detection of low frequency pT magnetic fields with simultaneous localization. Scientific Reports. 2021; 11(1): 5269. https://doi.org/10.1038/s41598-021-84415-2; Gao J., Das J., Xing Z., Li J., Viehland D. Comparison of noise floor and sensitivity for different magnetoelectric laminates. Journal of. Applied Physics. 2010; 108(8): 084509. https://doi.org/10.1063/1.3486483; Vidal J.V., Turutin A.V., Kubasov I.V., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Kholkin A.L., Sobolev N.A. Equivalent magnetic noise in magnetoelectric laminates comprising bidomain LiNbO3 crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2017; 64(7): 1102—1119. https://doi.org/10.1109/TUFFC.2017.2694342; More-Chevalier J., Cibert C., Bouregba R., Poullain G. Eddy currents: A misleading contribution when measuring magnetoelectric voltage coefficients of thin film devices. Journal of. Applied Physics. 2015; 117(15): 154104. https://doi.org/10.1063/1.4917534; https://met.misis.ru/jour/article/view/554
-
2Academic Journal
المؤلفون: A. M. Kislyuk, I. V. Kubasov, A. V. Turutin, A. A. Temirov, A. S. Shportenko, V. V. Kuts, M. D. Malinkovich, А. М. Кислюк, И. В. Кубасов, А. В. Турутин, А. А. Темиров, А. С. Шпортенко, В. В. Куц, М. Д. Малинкович
المساهمون: Исследование выполнено за счет гранта Российского научного фонда № 21-19-00872, https://rscf.ru/project/21-19-00872/.
المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 27, № 1 (2024) ; Известия высших учебных заведений. Материалы электронной техники; Том 27, № 1 (2024) ; 2413-6387 ; 1609-3577
مصطلحات موضوعية: сегнетоэлектрические домены, charged domain wall, memristive effect, resistive switching, ferroelectric domains, заряженная доменная стенка, мемристивный эффект, резистивное переключение
Relation: Vul B.M., Guro G.M., Ivanchik I.I. Encountering domains in ferroelectrics. Ferroelectrics. 1973; 6(1): 29–31. https://doi.org/10.1080/00150197308237691; Meier D., Selbach S.M. Ferroelectric domain walls for nanotechnology. Nature Reviews Materials. 2021; 7(3): 157–173. https://doi.org/10.1038/s41578-021-00375-z; Aristov V.V., Kokhanchik L.S., Voronovskii Y.I. Voltage contrast of ferroelectric domains of lithium niobate in SEM. Physica Status Solidi (a). 1984; 86(1): 133–141. https://doi.org/10.1002/pssa.2210860113; Werner C.S., Herr S.J., Buse K., Sturman B., Soergel E., Razzaghi C., Breunig I. Large and accessible conductivity of charged domain walls in lithium niobate. Scientific Reports. 2017; 7(1): 9862. https://doi.org/10.1038/s41598-017-09703-2; Vasudevan R.K., Wu W., Guest J.R., Baddorf A.P., Morozovska A.N., Eliseev E.A., Balke N., Nagarajan V., Maksymovych P., Kalinin S.V. Domain wall conduction and polarization-mediated transport in ferroelectrics. Advanced Functional Materials. 2013; 23(20): 2592–2616. https://doi.org/10.1002/adfm.201300085; Gureev M.Y., Tagantsev A.K., Setter N. Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric. Physical Review B. Condensed matter. 2011; 83(18): 184104. https://doi.org/10.1103/PhysRevB.83.184104; Kubasov I.V., Kislyuk A.M., Ilina T.S., Shportenko A.S., Kiselev D.A., Turutin A.V., Temirov A.A., Malinkovich M.D., Parkhomenko Y.N. Conductivity and memristive behavior of completely charged domain walls in reduced bidomain lithium niobate. Journal of Materials Chemistry C. 2021; 9(43): 15591–15607. https://doi.org/10.1039/d1tc04170c; Sluka T., Tagantsev A.K., Bednyakov P., Setter N. Free-electron gas at charged domain walls in insulating BaTiO3. Nature Communications. 2013; 4(1): 1808. https://doi.org/10.1038/ncomms2839; Liu S., Cohen R.E. Stable charged antiparallel domain walls in hyperferroelectrics. Journal of Physics: Condensed Matter. 2017; 29(24): 244003. https://doi.org/10.1088/1361-648X/aa6f95; Seidel J., Martin L.W., He Q., Zhan Q., Chu Y.-H., Rother A., Hawkridge M.E., Maksymovych P., Yu P., Gajek M., Balke N., Kalinin S.V., Gemming S., Wang F., Catalan G., Scott J.F., Spaldin N.A., Orenstein J., Ramesh R. Conduction at domain walls in oxide multiferroics. Nature Materials. 2009; 8(30): 229–234. https://doi.org/10.1038/nmat2373; Evans D.M., Garcia V., Meier D., Bibes M. Domains and domain walls in multiferroics. Physical Sciences Reviews. 2020; 5(9). https://doi.org/10.1515/psr-2019-0067; Eliseev E.A., Morozovska A.N., Svechnikov G.S., Gopalan V., Shur V.Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Physical Review B. Condensed Matter and Materials Physics. 2011; 83(23): 235313. https://doi.org/10.1103/PhysRevB.83.235313; Kubasov I.V., Kislyuk A.M., Turutin A.V., Malinkovich M.D., Parkhomenko Y.N. Bidomain ferroelectric crystals: properties and prospects of application. Russian Microelectronics. 2021; 50(8): 571–616. https://doi.org/10.1134/S1063739721080035; Garrity K.F., Rabe K.M., Vanderbilt D. Hyperferroelectrics: Proper ferroelectrics with persistent polarization. Physical Review Letters. 2014; 112(12): 127601. https://doi.org/10.1103/PhysRevLett.112.127601; Cherifi-Hertel S., Voulot C., Acevedo-Salas U., Zhang Y., Crégut O., Dorkenoo K.D., Hertel R. Shedding light on non-Ising polar domain walls: Insight from second harmonic generation microscopy and polarimetry analysis. Journal of Applied Physics. 2021; 129(8): 81101. https://doi.org/10.1063/5.0037286; Lee D., Behera R.K., Wu P., Xu H., Li Y.L., Sinnott S.B., Phillpot S.R., Chen L.Q., Gopalan V. Mixed Bloch-Néel-Ising character of 180° ferroelectric domain walls. Physical Review B. 2009; 80(6): 060102. https://doi.org/10.1103/PhysRevB.80.060102; Gonnissen J., Batuk D., Nataf G.F., Jones L., Abakumov A.M., Van Aert S., Schryvers D., Salje E.K.H. Direct observation of ferroelectric domain walls in LiNbO3: wall-meanders, kinks, and local electric charges. Advanced Functional Materials. 2016; 26(42): 7599–7604. https://doi.org/10.1002/adfm.201603489; Zhang Y., Qian Y., Jiao Y., Wang X., Gao F., Bo F., Xu J., Zhang G. Conductive domain walls in x-cut lithium niobate crystals. Journal of Applied Physics. 2022; 132(4): 0144102. https://doi.org/10.1063/5.0101067; Poberaj G., Hu H., Sohler W., Günter P. Lithium niobate on insulator (LNOI) for micro‐photonic devices. Laser & Photonics Reviews. 2012; 6(4): 488–503. https://doi.org/10.1002/lpor.201100035; Volk T.R., Gainutdinov R.V., Zhang H.H. Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films. Applied Physics Letters. 2017; 110(13): 132905. https://doi.org/10.1063/1.4978857; Lu H., Tan Y., McConville J.P.V., Ahmadi Z., Wang B., Conroy M., Moore K., Bangert U., Shield J.E., Chen L.-Q., Gregg J.M., Gruverman A. Electrical tunability of domain wall conductivity in LiNbO3 thin films. Advanced Materials. 2019; 31(48): e1902890. https://doi.org/10.1002/adma.201902890; Kämpfe T., Wang B., Haußmann A., Chen L.-Q., Eng L.M. Tunable non-volatile memory by conductive ferroelectric domain walls in lithium niobate thin films. Crystals. 2020; 10(9): 804. https://doi.org/10.3390/cryst10090804; Gainutdinov R., Volk T. Effects of the domain wall conductivity on the domain formation under AFM-tip voltages in ion-sliced LiNbO3 films. Crystals. 2020; 10(12): 1160. https://doi.org/110.3390/cryst10121160; Boes A., Corcoran B., Chang L., Bowers J., Mitchell A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser and Photonics Reviews. 2018; 12(4): 1700256. https://doi.org/10.1002/lpor.201700256; Alikin D.O., Ievlev A.V., Turygin A.P., Lobov A.I., Kalinin S.V., Shur V.Y. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals. Applied Physics Letters. 2015; 106(18): 182902. https://doi.org/10.1063/1.4919872; Shur V.Y., Rumyantsev E.L., Nikolaeva E.V., Shishkin E.I. Formation and evolution of charged domain walls in congruent lithium niobate. Applied Physics Letters. 2000; 77(22): 3636–3638. https://doi.org/10.1063/1.1329327; Gopalan V., Dierolf V., Scrymgeour D.A. Defect-domain wall interactions in trigonal ferroelectrics. Annual Review of Materials Research. 2007; 37(1): 449–489. https://doi.org/10.1146/annurev.matsci.37.052506.084247; Shao G., Bai Y., Cui G., Li C., Qiu X., Geng D., Wu D., Lu Y. Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses. AIP Advances. 2016; 6(7): 075011. https://doi.org/10.1063/1.4959197; Bednyakov P.S., Sturman B.I., Sluka T., Tagantsev A.K., Yudin P.V. Physics and applications of charged domain walls. npj Computational Materials. 2018; 4(1): 65. https://doi.org/10.1038/s41524-018-0121-8; Müller M., Soergel E., Buse K. Influence of ultraviolet illumination on the poling characteristics of lithium niobate crystals. Applied Physics Letters. 2003; 83(9): 1824–1826. https://doi.org/10.1063/1.1606504; Shur V.Y., Akhmatkhanov A.R., Baturin I.S. Fatigue effect in ferroelectric crystals: Growth of the frozen domains. Journal of Applied Physics. 2012; 111(12): 124111. https://doi.org/10.1063/1.4729834; Esin A.A., Akhmatkhanov A.R., Shur V.Y. Tilt control of the charged domain walls in lithium niobate. Applied Physics Letters. 2019; 114(9): 092901. https://doi.org/10.1063/1.5079478; Ievlev A.V., Alikin D.O., Morozovska A.N., Varenyk O.V., Eliseev E.A., Kholkin A.L., Shur V.Y., Kalinin S.V. Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals. ACS Nano. 2015; 9(1): 769–777. https://doi.org/10.1021/nn506268g; Turygin A.P., Alikin D.O., Kosobokov M.S., Ievlev A.V., Shur V.Y. Self-organized formation of quasi-regular ferroelectric nanodomain structure on the nonpolar cuts by grounded SPM Tip. ACS Applied Materials & Interfaces. 2018; 10(42): 36211–36217. https://doi.org/10.1021/acsami.8b10220; Ievlev A.V., Morozovska A.N., Shur V.Y., Kalinin S.V. Ferroelectric switching by the grounded scanning probe microscopy Tip. Physical Review B. Condensed Matter and Materials Physics. 2015; 91(21): 214109. https://doi.org/10.1103/PhysRevB.91.214109; Reitzig S., Rüsing M., Zhao J., Kirbus B., Mookherjea S., Eng L.M. “Seeing Is Believing” – In-depth analysis by co-imaging of periodically-poled x-cut lithium niobate thin films. Crystals. 2021; 11(3): 288. https://doi.org/10.3390/cryst11030288; Kubasov I.V., Kislyuk A.M., Turutin A.V., Bykov A.S., Kiselev D.A., Temirov A.A., Zhukov R.N., Sobolev N.A., Malinkovich M.D., Parkhomenko Y.N. Low-frequency vibration sensor with a sub-nm sensitivity using a bidomain lithium niobate crystal. Sensors (Basel). 2019; 19(3): 614. https://doi.org/10.3390/s19030614; Alikin D.O., Shishkina E.I., Nikolaeva E.V., Shur V.Y., Sarmanova M.F., Ievlev A.V., Nebogatikov M.S., Gavrilov N.V. Formation of self-assembled domain structures in lithium niobate modified by ar ions implantation. Ferroelectrics. 2010; 399(1): 35–42. https://doi.org/10.1080/00150193.2010.489855; Ohnishi N. An etching study on a heat-induced layer at the positive-domain surface of LiNbO3. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers. 1977; 16(6): 1069–1070. https://doi.org/10.1143/JJAP.16.1069; Евланова Н.Ф., Рашкович Л.Н. Влияние отжига на доменную структуру монокристаллов метаниобата лития. Физика твердого тела. 1974; 16(2): 555–557.; Nakamura K., Ando H., Shimizu H. Partial domain inversion in LiNbO3 plates and its applications to piezoelectric devices. IEEE 1986 Ultrasonics Symposium. Williamsburg, VA, USA. 17–19 November 1986. IEEE; 1986. P. 719–722. https://doi.org/10.1109/ULTSYM.1986.198828; Kubasov I.V., Timshina M.S., Kiselev D.A., Malinkovich M.D., Bykov A.S., Parkhomenko Y.N. Interdomain region in single-crystal lithium niobate bimorph actuators produced by light annealing. Crystallography Reports. 2015; 60(5): 700–705. https://doi.org/10.1134/S1063774515040136; Kubasov I.V., Kislyuk A.M., Bykov A.S., Malinkovich M.D., Zhukov R.N., Kiselev D.A., Ksenich S.V., Temirov A.A., Timushkin N.G., Parkhomenko Y.N. Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing. Crystallography Reports. 2016; 61(2): 258–262. https://doi.org/10.1134/S1063774516020115; Kugel V.D., Rosenman G. Domain inversion in heat-treated LiNbO3 crystals. Applied Physics Letters. 1993; 62(23): 2902–2904. https://doi.org/10.1063/1.109191; Rosenman G., Kugel V.D., Shur D. Diffusion-induced domain inversion in ferroelectrics. Ferroelectrics. 1995; 172(1): 7–18. https://doi.org/10.1080/00150199508018452; Nakamura K., Ando H., Shimizu H. Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment. Applied Physics Letters. 1987; 50(20): 1413–1414. https://doi.org/10.1063/1.97838; Miyazawa S. Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide. Journal of Applied Physics. 1979; 50(7): 4599–4603. https://doi.org/10.1063/1.326568; Chen J., Zhou Q., Hong J.F., Wang W.S., Ming N.B., Feng D., Fang C.G. Influence of growth striations on para-ferroelectric phase transitions: Mechanism of the formation of periodic laminar domains in LiNbO3 and LiTaO3. Journal of Applied Physics. 1989; 66(1): 336–341. https://doi.org/10.1063/1.343879; Nakamura K., Shimizu H. Ferroelectric inversion layers formed by heat treatment of proton-exchanged LiTaO3. Applied Physics Letters. 1990; 56(16): 1535–1536. https://doi.org/10.1063/1.103213; Zhu Y.-Y., Zhu S.-N., Hong J.-F., Ming N. Ben domain inversion in LiNbO3 by proton exchange and quick heat treatment. Applied Physics Letters. 1994; 65(5): 558–560. https://doi.org/10.1063/1.112295; Zhang Z.-Y.Y., Zhu Y.-Y.Y., Zhu S.-N.N., Ming N.-B. Ben domain inversion by Li2O out-diffusion or proton exchange followed by heat treatment in LiTaO3 and LiNbO3. Physica Status Solidi (A). Applied Research. 1996; 153(1): 275–279. https://doi.org/10.1002/pssa.2211530128; Åhlfeldt H., Webjörn J., Arvidsson G. Periodic domain inversion and generation of blue light in lithium tantalate waveguides. IEEE Photonics Technology Letters. 1991; 3(7): 638–639. https://doi.org/10.1109/68.87938; Tasson M., Legal H., Peuzin J.C., Lissalde F.C. Mécanismes d′orientation de la polarisation spontanée dans le niobate de lithium au voisinage du point de Curie. Physica Status Solidi (a). 1975; 31(2): 729–737. https://doi.org/10.1002/pssa.2210310246; Tasson M., Legal H., Gay J.C., Peuzin J.C., Lissalde F.C. Piezoelectric study of poling mechanism in lithium niobate crystals at temperature close to the curie point. Ferroelectrics. 1976; 13(1): 479–481. https://doi.org/10.1080/00150197608236646; Luh Y.S., Feigelson R.S., Fejer M.M., Byer R.L. Ferroelectric domain structures in LiNbO3 single-crystal fibers. Journal of Crystal Growth. 1986; 78(1): 135–143. https://doi.org/10.1016/0022-0248(86)90510-5; Bykov A.S., Grigoryan S.G., Zhukov R.N., Kiselev D.A., Ksenich S.V., Kubasov I.V., Malinkovich M.D., Parkhomenko Y.N. Formation of bidomain structure in lithium niobate plates by the stationary external heating method. Russian Microelectronics. 2014; 43(8): 536–542. https://doi.org/10.1134/S1063739714080034; Blagov A.E., Bykov A.S., Kubasov I.V., Malinkovich M.D., Pisarevskii Y.V., Targonskii A.V., Eliovich I.A., Kovalchuk M.V. An electromechanical X-ray optical element based on a hysteresis-free monolithic bimorph crystal. Instruments and Experimental Techniques. 2016; 59(5): 728–732. https://doi.org/10.1134/S0020441216050043; Marchenkov N., Kulikov A., Targonsky A., Eliovich Y., Pisarevsky Y., Seregin A., Blagov A., Kovalchuk M. LiNbO3-based bimorph piezoactuator for fast X-ray experiments: Resonant mode. Sensors and Actuators, A: Physical. 2019; 293: 48–55. https://doi.org/10.1016/j.sna.2019.04.028; Kulikov A., Blagov A., Marchenkov N., Targonsky A., Eliovich Y., Pisarevsky Y., Kovalchuk M. LiNbO3-based bimorph piezoactuator for fast x-ray experiments: Static and quasistatic modes. Sensors and Actuators, A: Physical. 2019; 291: 68–74. https://doi.org/10.1016/j.sna.2019.03.041; Nakamura K., Shimizu H. Hysteresis-free piezoelectric actuators using LiNbO3 plates with a ferroelectric inversion layer. Ferroelectrics. 1989; 93(1): 211–216. https://doi.org/10.1080/00150198908017348; Nakamura K. Antipolarity domains formed by heat treatment of ferroelectric crystals and their applications. Japanese Journal of Applied Physics. 1992; 31(S1): 9–13. https://doi.org/10.7567/JJAPS.31S1.9; Nakamura K., Nakamura T., Yamada K. Torsional actuators using LiNbO3 plates with an inversion layer. Japanese Journal of Applied Physics. 1993; 32(5S): 2415–2417. https://doi.org/10.1143/JJAP.32.2415; Nakamura K., Ando H., Shimizu H. Bending vibrator consisting of a LiNbO3 plate with a ferroelectric inversion layer. Japanese Journal of Applied Physics. 1987; 26(S2): 198–200. https://doi.org/10.7567/JJAPS.26S2.198; Turutin A.V., Vidal J.V., Kubasov I.V., Kislyuk A.M., Kiselev D.A., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Kholkin A.L., Sobolev N.A. Highly sensitive magnetic field sensor based on a metglas/bidomain lithium niobate composite shaped in form of a tuning fork. Journal of Magnetism and Magnetic Materials. 2019; 486: 165209. https://doi.org/10.1016/j.jmmm.2019.04.061; Kubasov I.V., Kislyuk A.M., Malinkovich M.D., Temirov A.A., Ksenich S.V., Kiselev D.A., Bykov A.S., Parkhomenko Y.N. Vibrational power harvester based on lithium niobate bidomain plate. Acta Physica Polonica A. 2018; 134(1): 90–92. https://doi.org/10.12693/APhysPolA.134.90; Vidal J.V., Turutin A.V., Kubasov I.V., Kislyuk A.M., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Pakhomov O.V., Sobolev N.A., Kholkin A.L. Low-frequency vibration energy harvesting with bidomain LiNbO3 single crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2019; 66(9): 1480–1487. https://doi.org/10.1109/TUFFC.2019.2908396; Vidal J.V., Turutin A.V., Kubasov I.V., Kislyuk A.M., Kiselev D.A., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Sobolev N.A., Kholkin A.L. Dual vibration and magnetic energy harvesting with bidomain LiNbO3-based composite. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2020; 67(6): 1219–1229. https://doi.org/10.1109/TUFFC.2020.2967842; Webjorn J., Laurell F., Arvidsson G., Webjörn J., Laurell F., Arvidsson G., Webjorn J., Laurell F., Arvidsson G. Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation. Journal of Lightwave Technology. 1989; 7(10): 1597–1600. https://doi.org/10.1109/50.39103; Kugel V.D., Rosenman G. Ferroelectric domain switching in heat-treated LiNbO3 crystals. Ferroelectrics Letters Section. 1993; 15(3-4): 55–60. https://doi.org/10.1080/07315179308204239; Soergel E. Piezoresponse force microscopy (PFM). Journal of Physics D: Applied Physics. 2011; 44(46): 464003. https://doi.org/10.1088/0022-3727/44/46/464003; Kalinin S.V., Bonnell D.A. Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Physical Review B. Condensed Matter and Materials Physics. 2002; 65(12): 1–11. https://doi.org/10.1103/PhysRevB.65.125408; Yin Q.R., Zeng H.R., Yu H.F., Li G.R., Xu Z.K. Near-field acoustic microscopy of ferroelectrics and related materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 2003; 99(1-3): 2–5. https://doi.org/10.1016/S0921-5107(02)00438-5; Yin Q.R., Zeng H.R., Yu H.F., Li G.R., Lang S., Chan H.L.W.Near-field acoustic and piezoresponse microscopy of domain structures in ferroelectric material. Journal of Materials Science. 2006; 41(1): 259–270. https://doi.org/10.1007/s10853-005-7244-2; Berth G., Hahn W., Wiedemeier V., Zrenner A., Sanna S., Schmidt W.G. Imaging of the ferroelectric domain structures by confocal raman spectroscopy. Ferroelectrics. 2011; 420(1): 44–48. https://doi.org/10.1080/00150193.2011.594774; Rüsing M., Neufeld S., Brockmeier J., Eigner C., Mackwitz P., Spychala K., Silberhorn C., Schmidt W.G., Berth G., Zrenner A., Sanna S. Imaging of 180 ferroelectric domain walls in uniaxial ferroelectrics by confocal Raman spectroscopy: Unraveling the contrast mechanism. Physical Review Materials. 2018; 2(10): 103801. https://doi.org/110.1103/PhysRevMaterials.2.103801; Dierolf V., Sandmann C., Kim S., Gopalan V., Polgar K. Ferroelectric domain imaging by defect-luminescence microscopy. Journal of Applied Physics. 2003; 93(4): 2295–2297. https://doi.org/10.1063/1.1538333; Otto T., Grafström S., Chaib H., Eng L.M. Probing the nanoscale electro-optical properties in ferroelectrics. Applied Physics Letters. 2004; 84(7): 1168–1170. https://doi.org/10.1063/1.1647705; Pei S.-C., Ho T.-S., Tsai C.-C., Chen T.-H., Ho Y., Huang P.-L., Kung A. H., Huang S.-L. Non-invasive characterization of the domain boundary and structure properties of periodically poled ferroelectrics. Optics Express. 2011; 19(8): 7153. https://doi.org/10.1364/oe.19.007153; Bozhevolnyi S.I., Pedersen K., Skettrup T., Zhang X., Belmonte M. Far- and near-field second-harmonic imaging of ferroelectric domain walls. Optics Communications. 1998; 152(4-6): 221–224. https://doi.org/10.1016/S0030-4018(98)00176-X; Neacsu C.C., Van Aken B.B., Fiebig M., Raschke M.B. Second-harmonic near-field imaging of ferroelectric domain structure of YMnO3. Physical Review B. Condensed Matter and Materials Physics. 2009; 79(10): 100107. https://doi.org/10.1103/PhysRevB.79.100107; Sheng Y., Best A., Butt H.-J., Krolikowski W., Arie A., Koynov K. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation. Optics Express. 2010; 18(16): 16539. https://doi.org/10.1364/oe.18.016539; Kämpfe T., Reichenbach P., Schröder M., Haußmann A., Eng L. M., Woike T., Soergel E. Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation. Physical Review B. Condensed Matter and Materials Physics. 2014; 89(3): 035314. https://doi.org/10.1103/PhysRevB.89.035314; Cherifi-Hertel S., Bulou H., Hertel R., Taupier G., Dorkenoo K.D.H., Andreas C., Guyonnet J., Gaponenko I., Gallo K., Paruch P. Non-ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy. Nature Communications. 2017; 8(1): 15768. https://doi.org/10.1038/ncomms15768; Irzhak D.V., Kokhanchik L.S., Punegov D.V., Roshchupkin D.V. Study of the specific features of lithium niobate crystals near the domain walls. Physics of the Solid State. 2009; 51(7): 1500–1502. https://doi.org/10.1134/s1063783409070452; Tikhonov Y., Maguire J.R., McCluskey C.J., McConville J.P.V., Kumar A., Lu H., Meier D., Razumnaya A., Gregg J.M., Gruverman A., Vinokur V.M., Luk’yanchuk I. Polarization topology at the nominally charged domain walls in uniaxial ferroelectrics. Advanced Materials. 2022; 34(45): 2203028. https://doi.org/10.1002/adma.202203028; Steffes J.J., Ristau R.A., Ramesh R., Huey B.D. Thickness scaling of ferroelectricity in BiFeO3 by tomographic atomic force microscopy. Proceedings of the National Academy of Sciences. 2019; 116(7): 2413–2418. https://doi.org/10.1073/pnas.1806074116; Alikin Y.M., Turygin A.P., Alikin D.O., Shur V.Y. Tilt control of the charged domain walls created by local switching on the non-polar cut of MgO doped lithium niobate single crystals. Ferroelectrics. 2021; 574(1): 16–22. https://doi.org/10.1080/00150193.2021.1888044; Eyben P., Bisiaux P., Schulze A., Nazir A., Vandervorst W. Fast fourier transform scanning spreading resistance microscopy: a novel technique to overcome the limitations of classical conductive AFM techniques. Nanotechnology. 2015; 26(35): 355702. https://doi.org/10.1088/0957-4484/26/35/355702; Shportenko A.S., Kislyuk A.M., Turutin A.V., Kubasov I.V., Malinkovich M.D., Parkhomenko Y.N. Effect of contact phenomena on the electrical conductivity of reduced lithium niobate. Modern Electronic Materials. 2021; 7(4): 167–175. https://doi.org/10.3897/j.moem.7.4.78569; Zhang W.J., Shen B.W., Fan H.C., Hu D., Jiang A.Q., Jiang J. Nonvolatile ferroelectric LiNbO3 domain wall crossbar memory. IEEE Electron Device Letters. 2023; 44(3): 420–423. https://doi.org/10.1109/LED.2023.3240762; McConville J.P.V., Lu H., Wang B., Tan Y., Cochard C., Conroy M., Moore K., Harvey A., Bangert U., Chen L., Gruverman A., Gregg J.M. Ferroelectric domain wall memristor. Advanced Functional Materials. 2020; 30(28): 2000109. https://doi.org/10.1002/adfm.202000109; Zahn M., Beyreuther E., Kiseleva I., Lotfy A.S., McCluskey C.J., Maguire J.R., Suna A., Rüsing M., Gregg J.M., Eng L.M. R2D2 – An equivalent-circuit model that quantitatively describes domain wall conductivity in ferroelectric LiNbO3. Condensed Matter. 2023. https://doi.org/10.48550/arXiv.2307.10322; Schröder M., Haußmann A., Thiessen A., Soergel E., Woike T., Eng L.M. Conducting domain walls in lithium niobate single crystals. Advanced Functional Materials. 2012; 22(18): 3936–3944. https://doi.org/110.1002/adfm.201201174; Godau C., Kämpfe T., Thiessen A., Eng L.M., Haußmann A. Enhancing the domain wall conductivity in lithium niobate single crystals. ACS Nano. 2017; 11(5): 4816–4824. https://doi.org/10.1021/acsnano.7b01199; Chai X., Lian J., Wang C., Hu X., Sun J., Jiang J., Jiang A. Conductions through head-to-head and tail-to-tail domain walls in LiNbO3 nanodevices. Journal of Alloys and Compounds. 2021; 873: 159837. https://doi.org/10.1016/j.jallcom.2021.159837; Wang C., Wang T., Zhang W., Jiang J., Chen L., Jiang A. Analog ferroelectric domain-wall memories and synaptic devices integrated with Si substrates. Nano Research. 2022; 15(4): 3606–3613. https://doi.org/10.1007/s12274-021-3899-5; Chaudhary P., Lu H., Lipatov A., Ahmadi Z., McConville J.P.V., Sokolov A., Shield J.E., Sinitskii A., Gregg J.M., Gruverman A. Low-voltage domain-wall LiNbO3 memristors. Nano Letters. 2020; 20(8): 5873–5878. https://doi.org/10.1021/acs.nanolett.0c01836; Kislyuk A.M., Ilina T.S., Kubasov I.V., Kiselev D.A., Temirov A.A., Turutin A.V., Shportenko A.S., Malinkovich M.D., Parkhomenko Y.N. Degradation of the electrical conductivity of charged domain walls in reduced lithium niobate crystals. Modern Electronic Materials. 2022; 8(1): 15–22. https://doi.org/10.3897/j.moem.8.1.85251; Shur V.Ya., Baturin I.S., Akhmatkhanov A.R., Chezganov D.S., Esin A.A. Time-dependent conduction current in lithium niobate crystals with charged domain walls. Applied Physics Letters. 2013; 103(10): 102905. https://doi.org/10.1063/1.4820351; Schröder M., Chen X., Haußmann A., Thiessen A., Poppe J., Bonnell D.A., Eng L.M. Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals. Materials Research Express. 2014; 1(3): 035012. https://doi.org/10.1088/2053-1591/1/3/035012; Gerson R., Kirchhoff J.F., Halliburton L.E., Bryan D.A. Photoconductivity parameters in lithium niobate. Journal of Applied Physics. 1986; 60(10): 3553–3557. https://doi.org/10.1063/1.337611; Singh E., Beccard H., Amber Z.H., Ratzenberger J., Hicks C.W., Rüsing M., Eng L.M. Tuning domain wall conductivity in bulk lithium niobate by uniaxial stress. Physical Review B. 2022; 106(14): 144103. https://doi.org/10.1103/PhysRevB.106.144103; Qian Y., Zhang Y., Xu J., Zhang G. Domain-wall p-n junction in lithium niobate thin film on an insulator. Physical Review Applied. 2022; 17(4): 044011. https://doi.org/10.1103/PhysRevApplied.17.044011; McCluskey C.J., Colbear M.G., McConville J.P.V., McCartan S.J., Maguire J.R., Conroy M., Moore K., Harvey A., Trier F., Bangert U., Gruverman A., Bibes M., Kumar A., McQuaid R.G.P., Gregg J.M. Ultrahigh carrier mobilities in ferroelectric domain wall corbino cones at room temperature. Advanced Materials. 2022; 34(32): e2204298. https://doi.org/10.1002/adma.202204298; Beccard H., Beyreuther E., Kirbus B., Seddon S.D., Rüsing M., Eng L.M. Hall mobilities and sheet carrier densities in a single LiNbO3 onductive ferroelectric domain wall. https://doi.org/10.48550/arXiv.2308.00061; Pawlik A.-S., Kämpfe T., Haußmann A., Woike T., Treske U., Knupfer M., Büchner B., Soergel E., Streubel R., Koitzsch A., Eng L.M. Polarization driven conductance variations at charged ferroelectric domain walls. Nanoscale. 2017; 9(30): 10933–10939. https://doi.org/10.1039/c7nr00217c; Ohmori Y., Yamaguchi M., Yoshino K., Inuishi Y. Electron hall mobility in reduced LiNbO3. Japanese Journal of Applied Physics. 1976; 15(11): 2263–2264. https://doi.org/10.1143/JJAP.15.2263; Palatnikov M., Makarova O., Kadetova A., Sidorov N., Teplyakova N., Biryukova I., Tokko O. Structure, optical properties and physicochemical features of LiNbO3:Mg,B crystals grown in a single technological cycle: an optical material for converting laser radiation. Materials. 2023; 16(13): 4541. https://doi.org/10.3390/ma16134541; Volk T., Wöhlecke M., Reichert A., Jermann F., Rubinina N. The peculiar impurity concentration ranges in damage-resistant LiNbO3 crystals doped with Mg, Zn, In and Sn. Ferroelectrics Letters Section. 1995; 20(3-4): 97–103. https://doi.org/10.1080/07315179508204289; Hu M.-L., Hu L.-J., Chang J.-Y. Polarization switching of pure and MgO-doped lithium niobate crystals. Japanese Journal of Applied Physics. 2003; 42(12, Pt 1): 7414–7417. https://doi.org/10.1143/JJAP.42.7414; Yatsenko A.V., Evdokimov S.V., Palatnikov M.N., Sidorov N.V. Analysis of the conductivity and current-voltage characteristics nonlinearity in LiNbO3 crystals of various compositions at temperatures 300–450 K. Solid State Ionics. 2021; 365(2): 115651. https://doi.org/10.1016/j.ssi.2021.115651; Yatsenko A.V., Evdokimov S.V., Shul’gin V.F., Palatnikov M.N., Sidorov N.V., Makarova O.V. Effect of magnesium impurity concentration on electrical properties of LiNbO3 crystals. Physics of the Solid State. 2021; 63(12): 1851–1856. https://doi.org/10.1134/S1063783421100401; Li Y., Zheng Y., Tu X., Xiong K., Lin Q., Shi E. The high temperature resistivityof lithium niobate and related crystals. In: Proceed. of the 2014 Symposium on piezoelectricity, acoustic waves, and device applications (SPAWDA). Beijing, China. 30 October 2014 – 02 November 2014. IEEE; 2014. P. 283–286. https://doi.org/10.1109/SPAWDA.2014.6998581; Polgár K., Kovács L., Földvári I., Cravero I. Spectroscopic and electrical conductivity investigation of Mg doped LiNbO3 single crystals. Solid State Communications. 1986; 59(6): 375–379. https://doi.org/10.1016/0038-1098(86)90566-1; Schirmer O.F., Imlau M., Merschjann C., Schoke B. Electron small polarons and bipolarons in LiNbO3. Journal of Physics: Condensed Matter. 2009; 21(12): 123201. https://doi.org/10.1088/0953-8984/21/12/123201; Guilbert L., Vittadello L., Bazzan M., Mhaouech I., Messerschmidt S., Imlau M. The elusive role of Nb Li bound polaron energy in hopping charge transport in Fe: LiNbO3. Journal of Physics: Condensed Matter. 2018; 30(12): 125701. https://doi.org/10.1088/1361-648X/aaad34; Faust B., Muller H., Schirmer O.F. Free small polarons in LiNbO3. Ferroelectrics. 1994; 153(1): 297–302. https://doi.org/10.1080/00150199408016583; García-Cabaes A., Sanz-García J.A., Cabrera J.M., Agulló-López F., Zaldo C., Pareja R., Polgár K., Raksányi K., Fölvàri I. Influence of stoichiometry on defect-related phenomena in LiNbO3. Physical Review B. 1988; 37(11): 6085–6091. https://doi.org/10.1103/PhysRevB.37.6085; Kislyuk A.M., Ilina T.S., Kubasov I.V., Kiselev D.A., Temirov A.A., Turutin A.V., Malinkovich M.D., Polisan A.A., Parkhomenko Y.N. Tailoring of stable induced domains near a charged domain wall in lithium niobate by probe microscopy. Modern Electronic Materials. 2019; 5(2): 51–60. https://doi.org/10.3897/j.moem.5.2.51314; Jiang J., Chai X., Wang C., Jiang A. High temperature ferroelectric domain wall memory. Journal of Alloys and Compounds. 2021; 856: 158155. https://doi.org/10.1016/j.jallcom.2020.158155; Niu L., Qiao X., Lu H., Fu W., Liu Y., Bi K., Mei L., You Y., Chou X., Geng W. Diode-like behavior based on conductive domain wall in LiNbO ferroelectric single-crystal thin film. IEEE Electron Device Letters. 2023; 44(1): 52–55. https://doi.org/10.1109/LED.2022.3224915; Suna A., McCluskey C.J., Maguire J. R., Kumar A., McQuaid R.G.P., Gregg J.M. Ferroelectric domain wall logic gates. https://doi.org/10.48550/arXiv.2209.08133; Wang J., Ma J., Huang H., Ma J., Jafri H.M., Fan Y., Yang H., Wang Y., Chen M., Liu D., Zhang J., Lin Y.-H., Chen L.-Q., Yi D., Nan C.-W. Ferroelectric domain-wall logic units. Nature Communications. 2022; 13(1): 3255. https://doi.org/10.1038/s41467-022-30983-4; Park B.-E., Ishiwara H., Okuyama M., Sakai S., Yoon S.-M. (eds.). Ferroelectric-gate field effect transistor memories : Device physics and applications (Topics in applied physics book 131). Dordrecht: Springer Netherlands; 2016. 350 p. https://doi.org/10.1007/978-94-024-0841-6; Lupascu D.C. Fatigue in ferroelectric ceramics and related issues. Berlin, Heidelberg: Springer Berlin Heidelberg; 2004. Vol. 61. 228 p. https://doi.org/10.1007/978-3-662-07189-2; Baeumer C., Saldana-Greco D., Martirez J.M.P., Rappe A.M., Shim M., Martin L.W. Ferroelectrically driven spatial carrier density modulation in graphene. Nature Communications. 2015; 6(1): 6136. https://doi.org/10.1038/ncomms7136; Chai X., Jiang J., Zhang Q., Hou X., Meng F., Wang J., Gu L., Zhang D. W., Jiang A. Q. Nonvolatile ferroelectric field-effect transistors. Nature Communications. 2020; 11(1): 2811. https://doi.org/10.1038/s41467-020-16623-9; Sun J., Li Y., Zhang B., Jiang A. High-power LiNbO3 domain-wall nanodevices. ACS Applied Materials & Interfaces. 2023; 15(6): 8691–8698. https://doi.org/110.1021/acsami.2c20579; https://met.misis.ru/jour/article/view/565
-
3Academic Journal
المؤلفون: A. A. Temirov, I. V. Kubasov, A. V. Turutin, T. S. Ilina, A. M. Kislyuk, D. A. Kiselev, E. A. Skryleva, N. A. Sobolev, I. A. Salimon, N. V. Batrameev, M. D. Malinkovich, Yu. N. Parkhomenko, А. А. Темиров, И. В. Кубасов, А. В. Турутин, Т. С. Ильина, А. М. Кислюк, Д. А. Киселев, Е. А. Скрылева, Н. А. Соболев, И. А. Салимон, Н. В. Батрамеев, М. Д. Малинкович, Ю. Н. Пархоменко
المساهمون: The study was carried out with financial support from the Russian Science Foundation (grant No. 21-19-00872, https://rscf.ru/project/21-19-00872/). N.A.S. was supported by the project i3N (UIDB/50025/2020, UIDP/50025/2020 and LA/P/0037/2020) which was financed by national funds through the Fundação para a Ciência e Tecnologia (FCT) and the Ministério da Educação e Ciência (MEC) of Portugal. The authors are grateful to Carlos Rosário for his help in current-voltage characteristic measurements., Исследование выполнено за счет гранта Российского научного фонда № 21-19-00872, https://rscf.ru/project/21-19-00872/. Авторы выражают признательность Carlos Rosário за помощь в измерениях вольт-амперных характеристик.
المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 27, № 1 (2024) ; Известия высших учебных заведений. Материалы электронной техники; Том 27, № 1 (2024) ; 2413-6387 ; 1609-3577
مصطلحات موضوعية: технологии тонких пленок, diamond-like materials, plasma chemical deposition, thin film technology, алмазоподобные материалы, плазмохимическое осаждение
وصف الملف: application/pdf
Relation: https://met.misis.ru/jour/article/view/564/451; Meškinis Š., Tamulevičienė A. Structure, properties and applications of diamond like nanocomposite (SiOx containing DLC) films: A review. Materials Science. 2011; 17(4): 358—370. https://doi.org/10.5755/j01.ms.17.4.770; Горшунов Б.П., Шупегин М.Л., Иванов В.Ю., Прохоров А.С., Спектор И.Е., Волков А.А. Инфракрасная спектроскопия алмазоподобных кремний-углеродных пленок. Журнал технической физики. 2008; 78(5): 111—116.; Yu S. Neuro-inspired computing with emerging nonvolatile memorys. Proceedings of the IEEE. 2018; 106(2): 260—285. https://doi.org/10.1109/JPROC.2018.2790840; Wan J.Z., Pollak F.H., Dorfman B.F. Micro-Raman study of diamondlike atomic-scale composite films modified by continuous wave laser annealing. Journal of Applied Physics. 1997; 81(9): 6407—6414. https://doi.org/10.1063/1.364421; Gao X., Zhang X., Wan C., Wang J., Tan X., Zeng D. Temperature-dependent resistive switching of amorphous carbon/silicon heterojunctions. Diamond and Related Materials. 2012; 22: 37—41. https://doi.org/10.1016/j.diamond.2011.12.012; Ren B., Wang L., Wang Lin., Huang J., Tang Ke, Lou Y., Yuan D., Pan Zh., Xia Y. Investigation of resistive switching in graphite-like carbon thin film for non-volatile memory applications. Vacuum. 2014; 107: 1—5. https://doi.org/10.1016/j.vacuum.2014.03.021; Santini C.A., Sebastian A., Marchiori Ch., Jonnalagadda V.P., Dellmann L., Koelmans W.W., Rossell M.D., Rossel Ch.P., Eleftheriou Ev. Oxygenated amorphous carbon for resistive memory applications. Nature Communications. 2015; 6(1): 8600. https://doi.org/10.1038/ncomms9600; Liao Y.-Y., Liao W.-B., Jaing C.-C., Chang Y.-C., Lee C.-C., Kuo C.-C. Optical properties of transparent diamond-like carbon thin films. In: Optical Interference Coatings 2016. Tucson, Arizona United States 19–24 June 2016. Washington, D.C.: OSA; 2016. P. TD.10. https://doi.org/10.1364/OIC.2016.TD.10; Grill A. Diamond-like carbon: state of the art. Diamond and Related Materials. 199; 8(2-5): 428—434. https://doi.org/10.1016/S0925-9635(98)00262-3; Белогорохов А.И., Додонов А.М., Малинкович М.Д., Пархоменко Ю.Н., Смирнов А.П., Шупегин М.Л. Исследование молекулярной структуры матрицы алмазоподобных кремний-углеродных нанокомпозитов. Известия высших учебных заведений. Материалы электронной техники. 2007; 1: 69—71.; Jana S., Das S., Gangopadhyay U., Mondal A., Ghosh P. A clue to understand environmental influence on friction and wear of diamond-like nanocomposite thin film. Advances in Tribology. 2013; (1-4): 1—7. https://doi.org/10.1155/2013/352387; Hofmann D., Kunkel S., Bewilogua K., Wittorf R. From DLC to Si-DLC based layer systems with optimized properties for tribological applications. Surface and Coatings Technology. 2013; 215: 357—363. https://doi.org/10.1016/j.surfcoat.2012.06.094; Venkatraman C., Brodbeck C., Lei R. Tribological properties of diamond-like nanocomposite coatings at high temperatures. Surface and Coatings Technology. 1999; 115(2-3): 215—221. https://doi.org/10.1016/S0257-8972(99)00241-8; Barve S.A., Chopade S., Kar R., Chand N., Deo M.N., Biswas A., Patel N., Rao G.M., Patil D.S., Sinha S. SiOx containing diamond like carbon coatings: Effect of substrate bias during deposition. Diamond and Related Materials. 2017; 71: 63—72. https://doi.org/10.1016/j.diamond.2016.12.003; Nakazawa H., Kamata R., Miura S., Okuno S. Effects of frequency of pulsed substrate bias on structure and properties of silicon-doped diamond-like carbon films by plasma deposition. Thin Solid Films. 2015; 574: 93—98. https://doi.org/10.1016/j.tsf.2014.11.078; Batory D., Jedrzejczak A., Kaczorowski W., Kolodziejczyk L., Burnat B. The effect of Si incorporation on the corrosion resistance of a-C:H:SiOx coatings. Diamond and Related Materials. 2016; 67: 1—7. https://doi.org/10.1016/j.diamond.2015.12.002; Lazauskas A., Grigaliunas V., Guobienė A., Puišo J., Prosyčevas I., Baltrusaitis J. Polyvinylpyrrolidone surface modification with SiOx containing amorphous hydrogenated carbon (a-C:H/SiOx) and nitrogen-doped a-C:H/SiOx films using Hall-type closed drift ion beam source. Thin Solid Films. 2013; 538: 25—31. https://doi.org/10.1016/j.tsf.2012.11.109; Santra T.S., Bhattacharyya T.K., Patel P., Tseng F.G., Barik T.K. Structural and tribological properties of diamond-like nanocomposite thin films. Surface and Coatings Technology. 2011; 206(2-3): 228—233. https://doi.org/10.1016/j.surfcoat.2011.06.057; Dorfman B.F. Stabilized sp2/sp3 carbon and metal-carbon composites of atomic scale as interface and surface-controlling dielectric and conducting materials. In: Handbook of Surfaces and Interfaces of Materials. 2001; 1(8): 447—508. https://doi.org/10.1016/B978-012513910-6/50015-3; Yang W.J., Sekino T., Shim K.B., Niihara K., Auh K.H. Microstructure and tribological properties of SiOx/DLC films grown by PECVD. Surface and Coatings Technology. 2005; 194(1): 128—135. https://doi.org/10.1016/j.surfcoat.2004.05.023; Lanza M., Philip Wong H.-S., Pop E., Ielmini D., Strukov D., Regan B.C., Larcher L., Villena M.A., Yang J.J., Goux L., Belmonte A., Yang Y., Puglisi F.M., Kang J., Magyari-Kope B., Yalon E., Kenyon A., Buckwell M., Mehonic A., Shluger A.L., Li H., Hou T.-H. A., Hudec B., Akinwande D., Ge R., Ambrogio S., Roldan J.B., Miranda E., Sune J., Pey K.L., Wu X., Raghavan N., Wu E., Lu W.D., Navarro G., Zhang W., Wu H., Li R., Holleitner A., Wurstbauer U., Lemme M.Ch., Liu M., Long Sh., Liu Q., Lv H., Padovani A., Pavan P., Valov Il., Jing X., Han T., Zhu K., Chen Sh., Hui F., Shi Y. Recommended methods to study resistive switching devices. Advanced Electronic Materials. 2019; 5(1): 1800143. https://doi.org/10.1002/aelm.201800143; Robertson J. Diamond-like amorphous carbon. Materials Science and Engineering: R: Reports. 2002; 37(4-6): 129—281. https://doi.org/10.1016/S0927-796X(02)00005-0; https://met.misis.ru/jour/article/view/564
-
4Academic Journal
المؤلفون: V. V. Kuts, A. V. Turutin, A. M. Kislyuk, I. V. Kubasov, R. N. Zhukov, A. A. Temirov, M. D. Malinkovich, N. A. Sobolev, Yu. N. Parkhomenko, В. В. Куц, А. В. Турутин, А. М. Кислюк, И. В. Кубасов, Р. Н. Жуков, А. А. Темиров, М. Д. Малинкович, Н. А. Соболев, Ю. Н. Пархоменко
المساهمون: The study was supported by the Russian Science Foundation grant No. 22-19-00808, https://rscf.ru/project/22-19-00808/, Исследование выполнено за счет гранта Российского научного фонда № 22-19-00808
المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 26, № 1 (2023); 26-35 ; Известия высших учебных заведений. Материалы электронной техники; Том 26, № 1 (2023); 26-35 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2023-1
مصطلحات موضوعية: никель, composite structures, magnetising layer, bidomain lithium niobate, metglas, nickel, композитные структуры, подмагничивающий слой, бидоменный ниобат лития, метглас
وصف الملف: application/pdf
Relation: https://met.misis.ru/jour/article/view/504/408; Eerenstein W., Mathur N.D., Scott J.F. Multiferroic and magnetoelectric materials. Nature. 2006; 442: 759-765. https://doi.org/10.1038/nature05023; Vopson M.M. Fundamentals of multiferroic materials and their possible applications. Critical Reviews in Solid State and Materials Sciences. 2015; 40: 223-250. https://doi.org/10.1080/10408436.2014.992584; Nan C.W., Bichurin M.I., Dong S., Viehland D., Srinivasan G. Multiferroic magnetoelectric composites: historical perspective, status, and future directions. Journal of Applied Physics. 2008; 103(3): 031101-031136. https://doi.org/10.1063/1.2836410; Bichurin M., Viehland D., Srinivasan G. Magnetoelectric Interactions in ferromagnetic-piezoelectric layered structures: Phenomena and devices. Journal of Electroceramics. 2007; 19(4): 243-250. https://doi.org/10.1007/s10832-007-9058-x; Tu C., Chu Z.-Q., Spetzler B., Hayes P., Dong C.-Z., Liang X.-F., Chen H.-H., He Y.-F., Wei Y.-Y., Lisenkov I., Lin H., Lin Y.-H., McCord J., Faupel F., Quandt E., Sun N.-X. mechanical-resonance-enhanced thin-film magnetoelectric heterostructures for magnetometers, mechanical antennas, tunable RF inductors, and filters. Materials (Basel). 2019; 12(14): 22-52. https://doi.org/10.3390/ma12142259; Fiebig M. Revival of the magnetoelectric effect. Journal of Physics D: Applied Physics. 2005: 38(8): 123-152. https://doi.org/10.1088/0022-3727/38/8/R01; Palneedi H., Annapureddy V., Priya S., Ryu J. Status and perspectives of multiferroic magnetoelectric composite materials and applications. Actuators. 2016; 5(1): 9-40. https://doi.org/10.3390/act5010009; Yang S., Xu J., Zhang X., Fan S., Zhang C., Huang Y., Li Q., Wang X., Cao D., Xu J. Self-biased Metglas/PVDF/Ni magnetoelectric laminate for AC magnetic sensors with a wide frequency range. Journal of Physics D: Applied Physics. 2022; 55(17): 175002-175003. https://doi.org/10.1088/1361-6463/ac4cf5; Jing W.Q., Fang F. Stress-induced self-biasing of magnetoelectric coupling in embedded Ni/PZT/FeNi composite. Applied Physics Letters. 2015; 106(21): 212901-212902. https://doi.org/10.1063/1.4921743; Pourhosseiniasl M., Yu Z., Chu Z., Yang J., Xu J., Hou Y., Dong S. Enhanced self-bias magnetoelectric effect in locally heat-treated ME laminated composite. Applied Physics Letters. 2019; 115(11): 112901-112902. https://doi.org/10.1063/1.5116625; Mandal S.K., Sreenivasulu G., Petrov V.M., Srinivasan G. Magnetization-graded multiferroic composite and magnetoelectric effects at zero bias. Physical Review B: Condensed Matter and Materials Physics. 2011; 84(1): 011432-014440. https://doi.org/10.1103/PhysRevB.84.014432; Lage E., Kirchhof C., Hrkac V., Kienle L., Jahns R., Knöchel R., Quandt E., Meyners D. Biasing of magnetoelectric composites. Nature Materials. 2012; 11(6): 523-529. https://doi.org/10.1038/nmat3306; Kubasov I.V., Kislyuk A.M., Turutin A.V., Malinkovich M.D., Parkhomenko Y.N. Bidomain ferroelectric crystals: properties and prospects of application. Russian Microelectronics. 2021; 50(8): 571-616. https://doi.org/10.1134/S1063739721080035; Turutin A.V., Kubasov I.V., Kislyuk A.M., Kuts V.V., Malinkovich M.D., Parkhomenko Y.N., Sobolev N.A. Ultra-sensitive magnetoelectric sensors of magnetic fields for biomedical applications. Nanobiotechnology Reports. 2022; 17: 261-289. https://doi.org/10.1134/S2635167622030223; Turutin A.V., Vidal J.V., Kubasov I.V., Kislyuk A.M., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Pakhomov O.V., Kholkin A.L., Sobolev N.A. Magnetoelectric metglas/bidomain y +140°-cut lithium niobate composite for sensing FT magnetic fields. Applied Physics Letters. 2018; 112(26): 262906-263100. https://doi.org/10.1063/1.5038014; Turutin A.V., Vidal J.V., Kubasov I.V., Kislyuk A.M., Kiselev D.A., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Kholkin A.L., Sobolev N.A. Highly sensitive magnetic field sensor based on a metglas/bidomain lithium niobate composite shaped in form of a tuning fork. Journal of Magnetism and Magnetic Materials. 2019; 486: 165209-165253. https://doi.org/10.1016/j.jmmm.2019.04.061; Liang X., Matyushov A., Hayes P., Schell V., Dong C., Chen H., He Y., Will-Cole A., Quandt E., Martins P., Mccord J., Medarde M., Lanceros-Méndez S., Van Dijken S., Sun N., Sort J. Roadmap on magnetoelectric materials and devices. IEEE Transactions of Magnetics. 2021; 57(8): 4000157-400400213. https://doi.org/10.1109/TMAG.2021.3086635; Huang D., Lu C., Han B., Wang X., Li C., Xu C., Gui J., Lin C. Giant self-biased magnetoelectric coupling characteristics of three-phase composite with end-bonding structure. Applied Physics Letters. 2014; 105(1): 0263502-0263507. https://doi.org/10.1063/1.4904799; Zhang H., Lu C., Sun Z. Large self-biased magnetoelectric response in four-phase heterostructure with multiple low-frequency peaks. Applied Physics Letters. 2015; 106(3): 033505-0335101. https://doi.org/10.1063/1.4906414; Kumar A., Arockiarajan A. Temperature dependent magnetoelectric (ME) response in press-fit FeNi/PZT/Ni self-biased ring composite. Journal of Applied Physics. 2019; 106(9): 094102-094103. https://doi.org/10.1063/1.5108708; Deka B., Lee Y.W., Yoo I.R., Gwak D.W., Cho J., Song H.C., Choi J.J., Hahn B.D., Ahn C.W., Cho K.H. Designing ferroelectric/ferromagnetic composite with giant self-biased magnetoelectric effect. Applied Physics Letters. 2019; 115(19): 192901-192903. https://doi.org/10.1063/1.5128163; Pourhosseiniasl M.J., Yu Z., Chu Z., Yang J., Xu J.J., Hou Y., Dong S. Enhanced self-bias magnetoelectric effect in locally heat-treated ME laminated composite. Applied Physics Letters. 2019; 115(11): 112901-112902. https://doi.org/10.1063/1.5116625; Jing W.Q., Fang F. A flexible multiferroic composite with high self-biased magnetoelectric coupling. Composites Science and Technology. 2017; 153: 145-150. https://doi.org/10.1016/j.compscitech.2017.10.010; Yang S.C., Park C.S., Cho K.H., Priya S. Self-biased magnetoelectric response in three-phase laminates. Journal of Applied Physics. 2010; 108(9): 093706-6. https://doi.org/10.1063/1.3493154; Huang D., Lu C., Bing H. Multipeak self-biased magnetoelectric coupling characteristics in four-phase Metglas/Terfenol-D/Be-bronze/PMN-PT structure. AIP Advances. 2015; 5(4): 047140-047147. https://doi.org/10.1063/1.4919248; Jovičević K.M., Thormählen L., Röbisch V., Toxværd S.D., Höft M., Knöchel R., Quandt E., Meyners D., McCord J. Antiparallel exchange biased multilayers for low magnetic noise magnetic field sensors. Applied Physics Letters. 2019; 114(19): 192410-192429. https://doi.org/10.1063/1.5092942; Ma J.N., Xin C.Z., Ma J., Lin Y.H., Nan C.W. A cost-effective self-biased magnetoelectric effect in SrFe12O19/Metglas/Pb(Zr,Ti)O3 laminates. Journal of Physics D: Applied Physics. 2016; 49(40): 405002-405007. http://dx.doi.org/10.1088/0022-3727/49/40/405002; Yang S., Xu J., Zhang X., Fan S., Zhang Ch.-Y., Huang Y.-С., Li Q., Wang X., Cao D., Li Sh. Self-biased Metglas/PVDF/Ni magnetoelectric laminate for AC magnetic sensors with a wide frequency range. Journal of Physics D: Applied Physics. 2022;55(17): 175002-175003. https://doi.org/10.1088/1361-6463/ac4cf5; Chen L., Li P., Wen Y., Zhu Y. Near-flat self-biased magnetoelectric response in three-phase Metglas/Terfenol-D/PZT-laminated composites. IEEE Transactions on Magnetics. 2015; 51(11). https://doi.org/10.1109/TMAG.2015.2451140; Li M., Wang Z., Wang Y., Li J., Viehland D. Giant magnetoelectric effect in self-biased laminates under zero magnetic field. Applied Physics Letters. 2013; 102(8): 082404-082601. https://doi.org/10.1063/1.4794056; Mandal S.K., Sreenivasulu G., Petrov V.M., Srinivasan G. Flexural deformation in a compositionally stepped ferrite and magnetoelectric effects in a composite with piezoelectrics. Applied Physics Letters. 2010; 96(19): 192502-192503-3. https://doi.org/10.1063/1.3428774; https://met.misis.ru/jour/article/view/504
-
5Academic Journal
المؤلفون: A. M. Kislyuk, T. S. Ilina, I. V. Kubasov, D. A. Kiselev, A. A. Temirov, A. V. Turutin, A. S. Shportenko, M. D. Malinkovich, Yu. N. Parkhomenko, А. М. Кислюк, Т. С. Ильина, И. В. Кубасов, Д. А. Киселев, А. А. Темиров, А. В. Турутин, А. С. Шпортенко, М. Д. Малинкович, Ю. Н. Пархоменко
المساهمون: The reported study was funded by RFBR, project number 20-32-90141 on equipment of Materials Science and Metallurgy Joint Use Center in the NUST MISiS with financial support from the Ministry of Education and Science of the Russian Federation (No. 075-15-2021-696). The Authors acknowledges the Ministry of Education and Science of the Russian Federation for the support in the framework of the State Assignment (basic research, Project No. 0718-2020-0031)., Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-32-90141 и на оборудовании Центра совместного использования материаловедения и металлургии НИТУ «МИСиС» при финансовой поддержке Министерства образования и науки Российской Федерации (№ 075-15-2021-696). Авторы благодарят Министерство образования и науки Российской Федерации за поддержку в рамках Государственного задания (фундаментальные исследования, проект № 0718-2020-0031 «Новые магнитоэлектрические композитные материалы на основе оксидных сегнетоэлектриков с упорядоченной доменной структурой: производство и свойства»).
المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 25, № 1 (2022); 39-51 ; Известия высших учебных заведений. Материалы электронной техники; Том 25, № 1 (2022); 39-51 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2022-1
مصطلحات موضوعية: восстановительный отжиг, bidomain crystal, charged domain wall, diffusion annealing, piezoresponse force microscopy, surface potential, reduction annealing, бидоменный кристалл, заряженная доменная стенка, диффузионный отжиг, силовая микроскопия пьезоотклика
وصف الملف: application/pdf
Relation: https://met.misis.ru/jour/article/view/448/364; Eliseev E.A., Morozovska A.N., Svechnikov G.S., Gopalan V., Shur V.Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Physical Review B: Condensed Matter and Materials Physics. 2011; 83(23): 235313. https://doi.org/10.1103/PhysRevB.83.235313; Wolba B., Seidel J., Cazorla C., Godau C., Haußmann A., Eng L.M. Resistor network modeling of conductive domain walls in lithium niobate. Advanced Electronic Materials. 2018; 4(1): 1700242. https://doi.org/10.1002/aelm.201700242; Schröder M., Haußmann A., Thiessen A., Soergel E., Woike T., Eng L.M. Conducting domain walls in lithium niobate single crystals. Advanced Functional Materials. 2012; 22(18): 3936—3944. https://doi.org/10.1002/adfm.201201174; Werner C.S., Herr S.J., Buse K., Sturman B., Soergel E., Razzaghi C., Breunig I. Large and accessible conductivity of charged domain walls in lithium niobate. Scientific Reports. 2017; 7(1): 9862. https://doi.org/10.1038/s41598-017-09703-2; Vasudevan R.K., Wu W., Guest J.R., Baddorf A.P., Morozovska A.N., Eliseev E.A., Balke N., Nagarajan V., Maksymovych P., Kalinin S.V. Domain wall conduction and polarization-mediated transport in ferroelectrics. Advanced Functional Materials. 2013; 23(20): 2592—2616. https://doi.org/10.1002/adfm.201300085; Gureev M.Y., Tagantsev A.K., Setter N. Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric. Physical Review B: Condensed Matter and Materials Physics. 2011; 83(18): 184104. https://doi.org/10.1103/PhysRevB.83.184104; Kubasov I.V., Kislyuk A.M., Ilina T.S., Shportenko A.S., Kiselev D.A., Turutin A.V., Temirov A.A., Malinkovich M.D., Parkhomenko Y.N. Conductivity and memristive behavior of completely charged domain walls in reduced bidomain lithium niobate. Journal of Materials Chemistry C. 2021; 9(43): 15591—15607. https://doi.org/10.1039/d1tc04170c; Sluka T., Tagantsev A.K., Bednyakov P., Setter N. Free-electron gas at charged domain walls in insulating BaTiO3. Nature Communications. 2013; 4(1): 1808. https://doi.org/10.1038/ncomms2839; Vul B.M., Guro G.M., Ivanchik I.I. Encountering domains in ferroelectrics. Ferroelectrics. 1973; 6(1): 29—31. https://doi.org/10.1080/00150197308237691; Кислюк А.М., Ильина Т.С., Кубасов И.В., Киселев Д.А., Темиров А.А., Турутин А.В., Малинкович М.Д., Полисан А.А., Пархоменко Ю.Н. Формирование стабильных индуцированных доменов в области заряженной междоменной границы в ниобате лития с помощью зондовой микроскопии. Известия высших учебных заведений. Материалы электронной техники. 2019; 22(1): 5—17. https://doi.org/10.17073/1609-3577-2019-1-5-17; Alikin D.O., Ievlev A.V., Turygin A.P., Lobov A.I., Kalinin S.V., Shur V.Y. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals. Applied Physics Letters. 2015; 106(18): 182902. https://doi.org/10.1063/1.4919872; Schultheiß J., Rojac T., Meier D. Unveiling alternating current electronic properties at ferroelectric domain walls. Advanced Electronic Materials. 2022; 8(6): 2100996. https://doi.org/10.1002/aelm.202100996; Jiang A.-Q., Geng W.P., Lv P., Hong J., Jiang J., Wang C., Chai X.J., Lian J.W., Zhang Y., Huang R., Zhang D.W., Scott J.F., Hwang C.S. Ferroelectric domain wall memory with embedded selector realized in LiNbO3 single crystals integrated on Si wafers. Nature Materials. 2020; 19(11): 1188—1194. https://doi.org/10.1038/s41563-020-0702-z; Wang C., Jiang J., Chai X., Lian J., Hu X., Jiang A.Q. Energy-efficient ferroelectric domain wall memory with controlled domain switching dynamics. ACS Applied Materials & Interfaces. 2020; 12(40): 44998—45004. https://doi.org/10.1021/acsami.0c13534; Qian Y., Zhang Z., Liu Y., Xu J., Zhang G. Graphical direct writing of macroscale domain structures with nanoscale spatial resolution in nonpolar-cut lithium niobate on insulators. Journal of Applied Physics. 2022; 17: 054049. https://doi.org/10.1103/PhysRevApplied.17.054049; Krestinskaya O., James A.P., Chua L.O. Neuromemristive circuits for edge computing: A review. IEEE Transactions on Neural Networks and Learning Systems. 2020; 31(1): 4—23. https://doi.org/10.1109/tnnls.2019.2899262; Chaudhary P., Lu H., Lipatov A., Ahmadi Z., McConville J.P.V., Sokolov A., Shield J.E., Sinitskii A., Gregg J.M., Gruverman A. Low-voltage domain-wall LiNbO3 memristors. Nano Letters. 2020; 20(8): 5873—5878. https://doi.org/10.1021/acs.nanolett.0c01836; McConville J.P.V., Lu H., Wang B., Tan Y., Cochard C., Conroy M., Moore K., Harvey A., Bangert U., Chen L., Gruverman A., Gregg J.M. Ferroelectric domain wall memristor. Advanced Functional Materials. 2020; 30(28): 2000109. https://doi.org/10.1002/adfm.202000109; Jiang J., Wang C., Chai X., Zhang Q., Hou X., Meng F., Gu L., Wang J., Jiang A.Q. Surface-bound domain penetration and large wall current. Advanced Electronic Materials. 2021; 7(3): 2000720. https://doi.org/10.1002/aelm.202000720; Maksymovych P., Seidel J., Chu Y.H., Wu P., Baddorf A.P., Chen L.-Q.Q., Kalinin S.V., Ramesh R. Dynamic conductivity of ferroelectric domain walls in BiFeO3. Nano Letters. 2011; 11(5): 1906—1912. https://doi.org/10.1021/nl104363x; Lu H., Tan Y., McConville J.P.V., Ahmadi Z., Wang B., Conroy M., Moore K., Bangert U., Shield J.E., Chen L.Q., Gregg J.M., Gruverman A. Electrical tunability of domain wall conductivity in LiNbO3 thin films. Advanced Materials. 2019; 31(48): 1902890. https://doi.org/10.1002/adma.201902890; Shur V.Y., Rumyantsev E.L., Nikolaeva E.V., Shishkin E.I. Formation and evolution of charged domain walls in congruent lithium niobate. Applied Physics Letters. 2000; 77(22): 3636—3638. https://doi.org/10.1063/1.1329327; Ievlev A.V., Alikin D.O., Morozovska A.N., Varenyk O.V., Eliseev E.A., Kholkin A.L., Shur V.Y., Kalinin S.V. Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals. ACS Nano. 2015; 9(1): 769—777. https://doi.org/10.1021/nn506268g; Turygin A.P., Alikin D.O., Kosobokov M.S., Ievlev A.V., Shur V.Y. Self-organized formation of quasi-regular ferroelectric nanodomain structure on the nonpolar cuts by grounded SPM tip. ACS Applied Materials & Interfaces. 2018; 10(42): 36211—36217. https://doi.org/10.1021/acsami.8b10220; Ievlev A.V., Morozovska A.N., Shur V.Y., Kalinin S.V. Ferroelectric switching by the grounded scanning probe microscopy tip. Physical Review B: Condensed Matter and Materials Physics. 2015; 91(21): 214109. https://doi.org/10.1103/PhysRevB.91.214109; Kubasov I.V., Kislyuk A.M., Turutin A.V., Malinkovich M.D., Parkhomenko Y.N. Bidomain ferroelectric crystals: properties and prospects of application. Russian Microelectronics. 2021; 50(8): 571—616. https://doi.org/10.1134/S1063739721080035; Evlanova N.L., Rashkovich L.N. Annealing effect on domain-structure of lithium meta-niobate single-crystals. Soviet Physics, Solid State. 1974; 16: 354.; Ohnishi N. An etching study on a heat-induced layer at the positive-domain surface of LiNbO3. Japanese Journal of Applied Physics. 1977; 16(6): 1069—1070. https://doi.org/10.1143/jjap.16.1069; Kubasov I.V., Timshina M.S., Kiselev D.A., Malinkovich M.D., Bykov A.S., Parkhomenko Y.N. Interdomain region in single-crystal lithium niobate bimorph actuators produced by light annealing. Crystallography Reports. 2015; 60(5): 700—705. https://doi.org/10.1134/S1063774515040136; Kubasov I.V., Kislyuk A.M., Bykov A.S., Malinkovich M.D., Zhukov R.N., Kiselev D.A., Ksenich S.V., Temirov A.A., Timushkin N.G., Parkhomenko Y.N. Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing. Crystallography Reports. 2016; 61(2): 258—262. https://doi.org/10.1134/S1063774516020115; Kugel V.D., Rosenman G. Domain inversion in heat-treated LiNbO3 crystals. Applied Physics Letters. 1993; 62(23): 2902—2904. https://doi.org/10.1063/1.109191; Rosenman G., Kugel V.D., Shur D. Diffusion-induced domain inversion in ferroelectrics. Ferroelectrics. 1995; 172(1): 7—18. https://doi.org/10.1080/00150199508018452; Nakamura K., Ando H., Shimizu H. Partial domain inversion in LiNbO3 plates and its applications to piezoelectric devices. In: IEEE 1986 Ultrasonics Symposium. Williamsburg, VA, USA. 17–19 November 1986. USA: IEEE; 2005:719—722. https://doi.org/10.1109/ultsym.1986.198828; Nakamura K., Ando H., Shimizu H. Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment. Applied Physics Letters. 1987; 50(20): 1413—1414. https://doi.org/10.1063/1.97838; Nakamura K., Shimizu H. Ferroelectric inversion layers formed by heat treatment of proton-exchanged LiTaO3. Applied Physics Letters. 1990; 56(16): 1535—1536. https://doi.org/10.1063/1.103213; Zhu Y.Y., Zhu S.N., Hong J.F., Ming N. Ben domain inversion in LiNbO3 by proton exchange and quick heat treatment. Applied Physics Letters. 1994; 65(5): 558—560. https://doi.org/10.1063/1.112295; Zhang Z.Y., Zhu Y.Y., Zhu S.N., Ming N. Ben domain inversion by Li2O out-diffusion or proton exchange followed by heat treatment in LiTaO3 and LiNbO3. Physica Status Solidi A: Applied Research. 1996; 153(1): 275—279. https://doi.org/10.1002/pssa.2211530128; Åhlfeldt H., Webjörn J., Arvidsson G. Periodic domain inversion and generation of blue light in lithium tantalate waveguides. IEEE Photonics Technology Letters. 1991; 3(7): 638—639. https://doi.org/10.1109/68.87938; Bykov A.S., Grigoryan S.G., Zhukov R.N., Kiselev D.A., Ksenich S.V., Kubasov I.V., Malinkovich M.D., Parkhomenko Y.N. Formation of bidomain structure in lithium niobate plates by the stationary external heating method. Russian Microelectronics. 2014; 43(8): 536—542. https://doi.org/10.1134/S1063739714080034; Tasson M., Legal H., Peuzin J.C., Lissalde F.C. Mécanismes d′orientation de la polarisation spontanée dans le niobate de lithium au voisinage du point de Curie. Physica Status Solidi A: Applied Research. 1975; 31(2): 729—737. https://doi.org/10.1002/pssa.2210310246; Tasson M., Legal H., Gay J.C., Peuzin J.C., Lissalde F.C. Piezoelectric study of poling mechanism in lithium niobate crystals at temperature close to the curie point. Ferroelectrics. 1976; 13(1): 479—481. https://doi.org/10.1080/00150197608236646; Luh Y.S., Feigelson R.S., Fejer M.M., Byer R.L. Ferroelectric domain structures in LiNbO3 single-crystal fibers. Journal of Crystal Growth. 1986; 78(1): 135—143. https://doi.org/10.1016/0022-0248(86)90510-5; Blagov A.E., Bykov A.S., Kubasov I.V., Malinkovich M.D., Pisarevskii Y.V., Targonskii A.V., Eliovich I.A., Kovalchuk M.V. An electromechanical X-ray optical element based on a hysteresis-free monolithic bimorph crystal. Instruments and Experimental Techniques. 2016; 59(5): 728—732. https://doi.org/10.1134/S0020441216050043; Marchenkov N., Kulikov A., Targonsky A., Eliovich Y., Pisarevsky Y., Seregin A., Blagov A., Kovalchuk M. LiNbO3-based bimorph piezoactuator for fast X-ray experiments: Resonant mode. Sensors and Actuators A: Physical. 2019; 293(10): 48—55. https://doi.org/10.1016/j.sna.2019.04.028; Kulikov A., Blagov A., Marchenkov N., Targonsky A., Eliovich Y., Pisarevsky Y., Kovalchuk M. LiNbO3-based bimorph piezoactuator for fast X-ray experiments: Static and quasistatic modes. Sensors and Actuators A: Physical. 2019; 291(6): 68—74. https://doi.org/10.1016/j.sna.2019.03.041; Nakamura K., Ando H., Shimizu H. Bending vibrator consisting of a LiNbO3 plate with a ferroelectric inversion layer. Japanese Journal of Applied Physics. 1987; 26(S2): 198. https://doi.org/10.7567/JJAPS.26S2.198; Nakamura K., Shimizu H. Hysteresis-free piezoelectric actuators using LiNbO3 plates with a ferroelectric inversion layer. Ferroelectrics. 1989; 93(1): 211—216. https://doi.org/10.1080/00150198908017348; Nakamura K. Antipolarity domains formed by heat treatment of ferroelectric crystals and their applications. Japanese Journal of Applied Physics. 1992; 31(S1): 9—13. https://doi.org/10.7567/jjaps.31s1.9; Nakamura K., Nakamura T., Yamada K. Torsional actuators using LiNbO3 plates with an inversion layer. Japanese Journal of Applied Physics. 1993; 32(5S): 2415—2417. https://doi.org/10.1143/jjap.32.2415; Kubasov I.V., Kislyuk A.M., Turutin A.V., Bykov A.S., Kiselev D.A., Temirov A., Zhukov R.N., Sobolev N.A., Malinkovich M.D., Parkhomenko Y.N. Low-frequency vibration sensor with a sub-nm sensitivity using a bidomain lithium niobate crystal. Sensors (Switzerland). 2019; 19(3): 614. https://doi.org/10.3390/s19030614; Turutin A.V., Vidal J.V., Kubasov I.V., Kislyuk A.M., Kiselev D.A., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Kholkin A.L., Sobolev N.A. Highly sensitive magnetic field sensor based on a metglas/bidomain lithium niobate composite shaped in form of a tuning fork. Journal of Magnetism and Magnetic Materials. 2019; 486. https://doi.org/10.1016/j.jmmm.2019.04.061; Vidal J.V., Turutin A.V., Kubasov I.V., Kislyuk A.M., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Pakhomov O.V., Sobolev N.A., Kholkin A.L. Low-frequency vibration energy harvesting with bidomain LiNbO3 single crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2019; 66(9): 1480—1487. https://doi.org/10.1109/tuffc.2019.2908396; Vidal J.V., Turutin A.V., Kubasov I.V., Kislyuk A.M., Kiselev D.A., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Sobolev N.A., Kholkin A.L. Dual vibration and magnetic energy harvesting with bidomain LiNbO3-based composite. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2020; 67(6): 1219—1229. https://doi.org/10.1109/tuffc.2020.2967842; Godau C., Kämpfe T., Thiessen A., Eng L.M., Haußmann A. Enhancing the domain wall conductivity in lithium niobate single crystals. ACS Nano. 2017; 11(5): 4816—4824. https://doi.org/10.1021/acsnano.7b01199; Volk T.R., Gainutdinov R.V., Zhang H.H. Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films. Applied Physics Letters. 2017; 110(13): 1—6. https://doi.org/10.1063/1.4978857; Schröder M., Chen X., Haußmann A., Thiessen A., Poppe J., Bonnell D.A., Eng L.M. Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals. Materials Research Express. 2014; 1(3): 035012. https://doi.org/10.1088/2053-1591/1/3/035012; Jorgensen P.J., Bartlett R.W. High temperature transport processes in lithium niobate. Journal of Physics and Chemistry of Solids. 1969; 30(12): 2639—2648. https://doi.org/10.1016/0022-3697(69)90037-7; Limb Y., Cheng K.W., Smyth D.M. Composition and electrical properties in LiNbO3. Ferroelectrics. 1981; 38(1): 813—816. https://doi.org/10.1080/00150198108209546; Schirmer O.F., Thiemann O., Wöhlecke M. Defects in LiNbO3–I. Experimental aspects. Journal of Physics and Chemistry of Solids. 1991; 52(1): 185—200. https://doi.org/10.1016/0022-3697(91)90064-7; Garcia-Cabanes A., Dieguez E., Cabrera J.M., Agullo-Lopez F. Contributing bands to the optical absorption of reduced LiNbO3 : thermal and optical excitation. Journal of Physics: Condensed Matter. 1989; 1(36): 6453—6462. https://doi.org/10.1088/0953-8984/1/36/013; Bordui P.F., Jundt D.H., Standifer E.M., Norwood R.G., Sawin R.L., Galipeau J.D. Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance. Journal of Applied Physics. 1999; 85(7): 3766—3769. https://doi.org/10.1063/1.369775; Arizmendi L., Cabrera J.M., Agullo-Lopez F. Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction. Journal of Physics C: Solid State Physics. 1984; 17(3): 515—529. https://doi.org/10.1088/0022-3719/17/3/021; Shi J., Fritze H., Weidenfelder A., Swanson C., Fielitz P., Borchardt G., Becker K.-D. Optical absorption of electronic defects and chemical diffusion in vapor transport equilibrated lithium niobate at high temperatures. Solid State Ionics. 2014; 262: 904—907. https://doi.org/10.1016/j.ssi.2013.11.025; Esin A.A., Akhmatkhanov A.R., Shur V.Y. The electronic conductivity in single crystals of lithium niobate and lithium tantalate family. Ferroelectrics. 2016; 496(1): 102—109. https://doi.org/10.1080/00150193.2016.1157438; Shportenko A.S., Kislyuk A.M., Turutin A.V., Kubasov I.V., Malinkovich M.D., Parkhomenko Y.N. Effect of contact phenomena on the electrical conductivity of reduced lithium niobate. Modern Electronic Materials. 2021; 7(4): 167—175. https://doi.org/10.3897/j.moem.7.4.78569; Kislyuk A.M., Ilina T.S., Kubasov I.V., Kiselev D.A., Temirov A.A., Turutin A.V., Malinkovich M.D., Polisan A.A., Parkhomenko Y.N. Tailoring of stable induced domains near a charged domain wall in lithium niobate by probe microscopy. Modern Electronic Materials. 2019; 5(2): 51—60. https://doi.org/10.3897/j.moem.5.2.51314; Lushkin A.Y., Nazarenko V.B., Pilipchak K.N., Shnyukov V.F., Naumovets A.G. The impact of annealing and evaporation of crystals on their surface composition. Journal of Physics D: Applied Physics. 1999; 32(1): 9—15. https://doi.org/10.1088/0022-3727/32/1/003; Schirmer O.F., Imlau M., Merschjann C., Schoke B. Electron small polarons and bipolarons in LiNbO3. Journal of Physics: Condensed Matter. 2009; 21(12): 123201. https://doi.org/10.1088/0953-8984/21/12/123201; Dutt D.A., Feigl F.J., DeLeo G.G. Optical absorption and electron paramagnetic resonance studies of chemically reduced congruent lithium niobate. Journal of Physics and Chemistry of Solids. 1990; 51(5): 407—415. https://doi.org/10.1016/0022-3697(90)90175-F; Jhans H., Honig J.M., Rao C.N.R. Optical properties of reduced LiNbO3. Journal of Physics C: Solid State Physics. 1986; 19(19): 3649—3658. https://doi.org/10.1088/0022-3719/19/19/019; Imlau M., Badorreck H., Merschjann C. Optical nonlinearities of small polarons in lithium niobate. Applied Physics Reviews. 2015; 2(4): 040606. https://doi.org/10.1063/1.4931396; https://met.misis.ru/jour/article/view/448
-
6Academic Journal
المؤلفون: A. S. Shportenko, I. V. Kubasov, A. M. Kislyuk, A. V. Turutin, M. D. Malinkovich, Yu. N. Parkhomenko, А. С. Шпортенко, И. В. Кубасов, А. М. Кислюк, А. В. Турутин, М. Д. Малинкович, Ю. Н. Пархоменко
المساهمون: The study was conducted with financial support from the Russian Research Foundation (Grant No. 21-19-00872, https://rscf.ru/project/21-19-00872/) for specimen preparation and reduced lithium niobate electrophysical measurements. The Authors are grateful to the Ministry of Education and Science of the Russian Federation for support within State Assignment (Fundamental Research Project No. 0718-2020-0031 “New Ferroelectric Composite Materials on the Basis of Oxide Ferroelectrics with Ordered Domain Structure: Production and Properties”).Impedance spectroscopic studies were carried out on equipment of the Collective Use Center “Materials Science and Metallurgy” of the MISiS National Research and Technology University with financial support from the Ministry of Education and Science of the Russian Federation (No. 075-15-2021-696)., Исследование выполнено при финансовой поддержке Российского научного фонда (грант № 21-19-00872, https://rscf.ru/project/21-19-00872/) в части подготовки образцов и измерения электрофизический свойств восстановленного НЛ. Авторы благодарят Министерство образования и науки Российской Федерации за поддержку в рамках Государственного задания (фундаментальные исследования, проект № 0718-2020-0031 «Новые магнитоэлектрические композитные материалы на основе оксидных сегнетоэлектриков с упорядоченной доменной структурой: производство и свойства»). Исследование импедансной спектроскопии проводились на оборудовании Центра коллективного пользования «Материаловедение и металлургия» НИТУ «МИСиС» при финансовой поддержке Министерства образования и науки Российской Федерации (№. 075-15-2021-696).
المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 24, № 3 (2021); 199-210 ; Известия высших учебных заведений. Материалы электронной техники; Том 24, № 3 (2021); 199-210 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2021-3
مصطلحات موضوعية: импеданс, lithium niobate, monodomain crystal, reduction annealing, electrical conductivity, contact phenomena, chromium, indium-tin oxide, impedance, ниобат лития, монодоменный кристалл, восстановительный отжиг, электропроводность, контактные явления, хром, оксид индия-олова
وصف الملف: application/pdf
Relation: https://met.misis.ru/jour/article/view/451/353; Kubasov I.V., Kislyuk A.M., Turutin A.V., Bykov A.S., Kiselev D.A., Temirov A.A., Zhukov R.N., Sobolev N.A., Malinkovich M.D., Parkhomenko Y.N. Low-frequency vibration sensor with a sub-nm sensitivity using a bidomain lithium niobate crystal. Sensors (Basel). 2019; 19(3): 614. https://doi.org/10.3390/s19030614; Turutin A.V., Vidal J.V., Kubasov I.V., Kislyuk A.M., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Pakhomov O.V., Kholkin A.L., Sobolev N.A. Magnetoelectric metglas/bidomain y + 140°-cut lithium niobate composite for sensing fT magnetic fields. Appl. Kubasov I.V, Kislyuk A.M., Turutin A.V, Malinkovich M.D., Parkhomenko Y.N. Bidomain Ferroelectric Crystals: Properties and Prospects of Application. Phys. Lett. 2018; 112(26): 262906. https://doi.org/10.1063/1.5038014; Kubasov I.V., Kislyuk A.M., Ilina T.S., Shportenko A.S., Kiselev D.A., Turutin A.V., Temirov A.A., Malinkovich M.D., Parkhomenko Y.N. Conductivity and memristive behavior of completely charged domain walls in reduced bidomain lithium niobate. J. Mater. Chem. C. 2021; 9(43). https://doi.org/10.1039/d1tc04170C; Кубасов И.В., Кислюк А.М., Турутин А.В., Малинкович М.Д., Пархоменко Ю.Н. Бидоменные сегнетоэлектрические кристаллы: свойства и перспективы применения. Известия вузов. Материалы электронной техники. 2020; 23(1): 5—56. https://doi.org/10.17073/1609-3577-2020-1-5-56; Standifer E.M., Jundt D.H., Norwood R.G., Bordui P.F. Chemically reduced lithium niobate single crystals: processing, properties and improvements in SAW device fabrication and performance. In: Proc. IEEE International Frequency Control Symposium. 1998: 470—472. https://doi.org/10.1109/FREQ.1998.717939; Jen S., Bobkowski R. Black lithium niobate SAW device fabrication and performance evaluation. In: Proc. IEEE Ultrasonics Symposium. 2000: 269—273. https://doi.org/10.1109/ultsym.2000.922554; Кузьминов Ю.С. Электрооптический и нелинейнооптический кристалл ниобата лития: монография. М.: Наука; 1987. 264 с.; Palatnikov M.N., Sandler V.A., Sidorov N.V., Makarova O.V., Manukovskaya D.V. Conditions of application of LiNbO3 based piezoelectric resonators at high temperatures. Phys. Lett. A. 2020; 384(14): 126289. https://doi.org/10.1016/j.physleta.2020.126289; Yatsenko A.V., Pritulenko A.S., Yagupov S.V., Sugak D.Y., Sol’skii I.M. Investigation of the stability of electrical properties of reduced LiNbO3 crystals. Tech. Phys. 2017; 62(7): 1065—1068. https://doi.org/10.1134/s1063784217070271; Dhar A., Singh N., Singh R.K., Singh R. Low temperature dc electrical conduction in reduced lithium niobate single crystals. J. Phys. Chem. Solids. 2013; 74(1): 146—151. https://doi.org/10.1016/j.jpcs.2012.08.011; Volk T., Wöhlecke M. Lithium niobate: defects, photorefraction and ferroelectric switching. Berlin: Springer Science & Business Media; 2008. 249 p.; Singh K. Electrical conductivity of non-stoichiometric LiNbO3 single crystals. Ferroelectrics. 2004; 306(1): 79—92. https://doi.org/10.1080/00150190490457348; Yatsenko A.V., Yevdokimov S.V., Pritulenko A.S., Sugak D.Y., Solskii I.M. Electrical properties of LiNbO3 crystals reduced in a hydrogen atmosphere. Phys. Solid State. 2012; 54(11): 2231—2235. https://doi.org/10.1134/S1063783412110339; Bordui P.F., Jundt D.H., Standifer E.M., Norwood R.G., Sawin R.L., Galipeau J.D. Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance. J. Appl. Phys. 1999; 85(7): 3766—3769. https://doi.org/10.1063/1.369775; Yatsenko A.V., Pritulenko A.S., Yevdokimov S.V., Sugak D.Y., Syvorotka I.I., Suhak Y.D., Solskii I.M., Vakiv M.M. The influence of annealing in saturated water vapor on LiNbO3 crystals optical and electrical properties. Solid State Phenomena. 2015; 230: 233—237. https://doi.org/10.4028/www.scientific.net/SSP.230.233; Ахмадуллин И.Ш., Голенищев-Кутузов В.А., Мигачев С.А., Миронов С.П. Низкотемпературная электропроводность кристаллов ниобата лития конгруэнтного состава. Физика твердого тела. 1998; 40(7): 1307—1309.; Schröder M., Haußmann A., Thiessen A., Soergel E., Woike T., Eng L. M. Conducting domain walls in lithium niobate single crystals. Adv. Funct. Mater. 2012; 22(18): 3936—3944. https://doi.org/10.1002/adfm.201201174; Esin A.A., Akhmatkhanov A.R., Shur V.Y. The electronic conductivity in single crystals of lithium niobate and lithium tantalate family. Ferroelectrics. 2016; 496(1): 102—109. https://doi.org/10.1080/00150193.2016.1157438; Wang C., Sun J., Ni W., Yue B., Hong F., Liu H., Cheng Z. Tuning oxygen vacancy in LiNbO3 single crystals for prominent memristive and dielectric behaviors. J. Am. Ceram. Soc. 2019; 102(11): 6705—6712. https://doi.org/10.1111/jace.16522; Blistanov A.A., Kozlova N.S., Geras’kin V.V. The phenomenon of electrochemical self-decomposition in polar dielectrics. Ferroelectrics. 1997; 198(1-4): 61—66. https://doi.org/10.1080/00150199708228338; Козлова Н.С., Забелина Е.В., Быкова М.Б., Козлова А.П. Особенности проявления прверхностных электрохимических процессов в сегнетоэлектрических кристаллах с низкотемпературными фазовыми переходами. Известия вузов. Материалы электронной техники. 2018; 21(3): 146—155. https://doi.org/10.17073/1609-3577-2018-3-146-155; Buzanov O.A., Zabelina E.V., Kozlova N.S., Sagalova T.B. Near-electrode processes in lanthanum-gallium tantalate crystals. Crystallogr. Rep. 2008; 53(5): 853—857. https://doi.org/10.1134/S1063774508050210; Kozlova N.S., Zabelina E.V., Bykova M.B., Kozlova A.P. Features of the manifestation of surface electrochemical processes in ferroelectric crystals with low-temperature phase transitions. Russ. Microelectron. 2019; 48(8): 545—552. https://doi.org/10.1134/S1063739719080092; Емельянова Ю.В., Морозова М.В., Михайловская З.А., Буянова Е.С. Импедансная спектроскопия: теория и применение: учеб. пособие. Екатеринбург: Уральский федеральный университет имени первого Президента России Б.Н. Ельцина; 2017. 156 с.; https://met.misis.ru/jour/article/view/451
-
7
المؤلفون: Y. A. Eliovich, A. E. Blagov, A. G. Kulikov, A. V. Targonskii, Yu. V. Pisarevsky, A. I. Protsenko, V. I. Akkuratov, V. A. Korzhov, I. I. Petrov, I. V. Kubasov, A. M. Kislyuk, A. V. Turutin, M. D. Malinkovich, Yu. N. Parkhomenko, S. V. Salikhov, A. S. Machikhin, M. V. Kovalchuk
المصدر: Crystallography Reports. 67:1041-1060
مصطلحات موضوعية: General Materials Science, General Chemistry, Condensed Matter Physics
-
8Academic Journal
المؤلفون: I. V. Kubasov, A. M. Kislyuk, A. V. Turutin, M. D. Malinkovich, Yu. N. Parkhomenko, И. В. Кубасов, А. М. Кислюк, А. В. Турутин, М. Д. Малинкович, Ю. Н. Пархоменко
المساهمون: Ministry of Science and Higher Education of the Russian Federation, Russian Science Foundation, Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации в рамках Государственного задания (фундаментальные исследования, проект № 0718-2020-0031 «Новые магнитоэлектрические композитные материалы на основе оксидных сегнетоэлектриков с упорядоченной доменной структурой: получение и свойства». Авторы благодарят Российский научный фонд за финансовую поддержку в части подготовки глав обзора, посвященных прикладному применению бидоменных кристаллов, оказанную в рамках проекта № 19-19-00626 «Разработка высокоскоростного сканирующего ион-проводящего микроскопа для изучения динамических процессов мембран живых клеток».
المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 23, № 1 (2020); 5-56 ; Известия высших учебных заведений. Материалы электронной техники; Том 23, № 1 (2020); 5-56 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2020-1
مصطلحات موضوعية: ниобат лития, танталат лития, бидоменный кристалл, диффузионный отжиг, кристаллографический срез, актюаторы, сенсоры, магнетоэлектрический эффект, пьезоэлектричество, одноосный сегнетоэлектрик, инверсный домен
وصف الملف: application/pdf
Relation: https://met.misis.ru/jour/article/view/383/340; Wong K. K. (Ed.) Properties of Lithium Niobate. London: The Institution of Electrical Engineers, 2002. 429 p.; Volk T., Wöhlecke M. Lithium Niobate. V. 115. Berlin; Heidelberg: Springer, 2008. DOI:10.1007/978-3-540-70766-0; Wooten E. L., Kissa K. M., Yi-Yan A., Murphy E. J., Lafaw D. A., Hallemeier P. F., Maack D., Attanasio D. V., Fritz D. J., McBrien G. J., Bossi D. E. A review of lithium niobate modulators for fiber-optic communications systems // IEEE J. Sel. Top. Quantum Electron. 2000. V. 6, N 1. P. 69—82. DOI:10.1109/2944.826874; Turner R. C., Fuierer P. A., Newnham R. E., Shrout T. R. Materials for high temperature acoustic and vibration sensors: A review // Appl. Acoust. 1994. V. 41, N 4. P. 299—324. DOI:10.1016/0003-682X(94)90091-4; Ruppel C. C. W. Acoustic Wave Filter Technology. A Review // IEEE Tran. Ultrason. Ferroelectr. Freq. Control. 2017. V. 64, N 9. P. 1390—1400. DOI:10.1109/TUFFC.2017.2690905; Passaro V. M. N., Magno F. Holographic gratings in photorefractive materials: A review // Laser Phys. 2007. V. 17, N 3. P. 231—243. DOI:10.1134/S1054660X07030012; Kwak C. H., Kim G. Y., Javidi B. Volume holographic optical encryption and decryption in photorefractive LiNbO3: Fe crystal // Opt. Commun. 2019. V. 437. P. 95—103. DOI:10.1016/j.optcom.2018.12.049; Chauvet M., Henrot F., Bassignot F., Devaux F., Gauthier-Manuel L., Pêcheur V., Maillotte H., Dahmani B. High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon // J. Opt. 2016. V. 18, N 8. P. 085503. DOI:10.1088/2040-8978/18/8/085503; Tomita I. Highly efficient cascaded difference-frequency generation in periodically poled LiNbO3 devices with resonators // IEEJ Trans. Electr. Electron. Eng. 2018. V. 13, N 8. P. 1214—1215. DOI:10.1002/tee.22687; Sharapova P. R., Luo K. H., Herrmann H., Reichelt M., Meier T., Silberhorn C. Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits // New J. Phys. 2017. V. 19, N 12. P. 123009. DOI:10.1088/1367-2630/aa9033; Zaltron A., Bettella G., Pozza G., Zamboni R., Ciampolillo M., Argiolas N., Sada C., Kroesen S., Esseling M., Denz C. Integrated optics on Lithium Niobate for sensing applications // Proc. SPIE. Optical Sensors. 2015. V. 9506. P. 950608. DOI:10.1117/12.2178457; Janaideh M. Al, Rakheja S., Su C.-Y. Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator // Mechatronics. 2009. V. 19, N 5. P. 656—670. DOI:10.1016/j.mechatronics.2009.02.008; Devasia S., Eleftheriou E., Moheimani S. O. R. A Survey of control issues in nanopositioning // IEEE Trans. Control Syst. Technol. 2007. V. 15, N 5. P. 802—823. DOI:10.1109/TCST.2007.903345; Hall D. A. Nonlinearity in piezoelectric ceramics // J. Mater. Sci. 2001. V. 36, N 19. P. 4575—4601. DOI:10.1023/A:1017959111402; Zhou D., Kamlah M. Room-temperature creep of soft PZT under static electrical and compressive stress loading // Acta Mater. 2006. V. 54, N 5. P. 1389—1396. DOI:10.1016/j.actamat.2005.11.010; Zhao X., Zhang C., Liu H., Zhang G., Li K. Analysis of Hysteresis-Free Creep of the Stack Piezoelectric Actuator // Math. Probl. Eng. 2013. V. 2013. P. 1—10. DOI:10.1155/2013/187262; Croft D., Shed G., Devasia S. Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application // J. Dynamic Systems, Measurement and Control. 2001. V. 123, N 1. P. 35—43. DOI:10.1115/1.1341197; Rosenman G., Kugel V. D., Shur D. Diffusion-induced domain inversion in ferroelectrics // Ferroelectrics. 1995. V. 172, N 1. P. 7—18. DOI:10.1080/00150199508018452; Kubasov I. V., Kislyuk A. M., Turutin A. V., Bykov A. S., Kiselev D. A., Temirov A. A., Zhukov R. N., Sobolev N. A., Malinkovich M. D., Parkhomenko Y. N. Low-frequency vibration sensor with a sub-nm sensitivity using a bidomain lithium niobate crystal // Sensors. 2019. V. 19, N 3. P. 614. DOI:10.3390/s19030614; Palatnikov M. N., Sandler V. A., Sidorov N. V., Makarova O. V., Manukovskaya D. V. Conditions of application of LiNbO3 based piezoelectric resonators at high temperatures // Phys. Lett. A. 2020. V. 384, N 14. P. 126289. DOI:10.1016/j.physleta.2020.126289; Islam M. S., Beamish J. Piezoelectric creep in LiNbO3, PMN-PT and PZT-5A at low temperatures // J. Appl. Phys. 2019. V. 126, N 20. P. 204101. DOI:10.1063/1.5119351; Nakamura K., Shimizu H. Local domain inversion in ferroelectric crystals and its application to piezoelectric devices // Proc. IEEE Ultrasonics Symposium. P. 309—318. DOI:10.1109/ULTSYM.1989.67000; Nakamura K. antipolarity domains formed by heat treatment of ferroelectric crystals and their applications // Jpn. J. Appl. Phys. 1992. V. 31, N S1. P. 9. DOI:10.7567/JJAPS.31S1.9; Zhang Z.-Y., Zhu Y., Wang H., Wang L., Zhu S., Ming N. Domain inversion in LiNbO3 and LiTaO3 induced by proton exchange // Phys. B: Condensed Matter. 2007. V. 398, N 1. P. 151—158. DOI:10.1016/j.physb.2007.05.011; Кузьминов Ю. С. Ниобат и танталат лития: материалы для нелинейной оптики. М.: Наука, 1975. 224 c.; Weis R. S., Gaylord T. K. Lithium niobate: Summary of physical properties and crystal structure // Appl. Phys. A.: Solids and Surfaces. 1985. V. 37, N 4. P. 191—203. DOI:10.1007/BF00614817; Toyoura K., Ohta M., Nakamura A., Matsunaga K. First-principles study on phase transition and ferroelectricity in lithium niobate and tantalate // J. Appl. Phys. 2015. V. 118, N 6. P. 064103. DOI:10.1063/1.4928461; Zhang Z.-G., Abe T., Moriyoshi C., Tanaka H., Kuroiwa Y. Synchrotron-radiation X-ray diffraction evidence of the emergence of ferroelectricity in LiTaO3 by ordering of a disordered Li ion in the polar direction // Appl. Phys. Express. 2018. V. 11, N 7. P. 071501. DOI:10.7567/APEX.11.071501; Sanna S., Schmidt W. G. Lithium niobate X -cut, Y-cut, and Z-cut surfaces from ab initio theory // Phys. Rev. B. 2010. V. 81, N 21. P. 214116. DOI:10.1103/PhysRevB.81.214116; IEEE 176-1987 Standard on Piezoelectricity. New York: IEEE, 1988. DOI:10.1109/IEEESTD.1988.79638; Abrahams S. C., Buehler E., Hamilton W. C., Laplaca S. J. Ferroelectric lithium tantalate - 3. Temperature dependence of the structure in the ferroelectric phase and the para-electric structure at 940°K // J. Phys. Chem. Solids. 1973. V. 34, N 3. P. 521—532. DOI:10.1016/0022-3697(73)90047-4; Nakamura K., Hosoya M., Shimizu H. estimation of thickness of ferroelectric inversion layers in LiTaO3 plates by measuring piezoelectric responses // Jpn. J. Appl. Phys. 1990. V. 29, N S1. P. 95. DOI:10.7567/JJAPS.29S1.95; Nakamura K., Ando H., Shimizu H. Partial domain inversion in LiNbO3 plates and its applications to piezoelectric devices // IEEE Ultrasonics Symposium, 1986. P. 719—722 DOI:10.1109/ULTSYM.1986.198828; Boyd G. D., Miller R. C., Nassau K., Bond W. L., Savage A. LiNbO3: an efficient phase matchable nonlinear optical material // Appl. Phys. Lett. 1964. V. 5, N 11. P. 234—236. DOI:10.1063/1.1723604; Kugel V. D., Rosenman G. Ferroelectric domain switching in heat-treated LiNbO3 crystals // Ferroelectr. Lett. Section. 1993. V. 15, N 3–4. P. 55—60. DOI:10.1080/07315179308204239; Малинкович М. Д., Кубасов И. В., Темиров А. А., Кислюк А. М., Игнатьева Я. В., Гончарова Ю. В., Jachalke S., Stöcker H., Пархоменко Ю. Н. Пироэлектрические свойства бидоменных кристаллов ниобата лития // Фундаментальные проблемы радиоэлектронного приборостроения. 2018. Т. 18, № 2. С. 426–429.; Nassau K., Levinstein H. J., Loiacono G. M. The domain structure and etching of ferroelectric lithium niobate // Appl. Phys. Lett. 1965. V. 6, N 11. P. 228—229. DOI:10.1063/1.1754147; Yamada T., Niizeki N., Toyoda H. Piezoelectric and elastic properties of lithium niobate single crystals // Jpn. J. Appl. Phys. 1967. V. 6, N 2. P. 151—155. DOI:10.1143/JJAP.6.151; Sones C. L., Mailis S., Brocklesby W. S., Eason R. W., Owen J. R. Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations // J. Mater. Chem. 2002. V. 12, N 2. P. 295—298. DOI:10.1039/b106279b; Webjorn J., Laurell F., Arvidsson G. Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation // J. Lightwave Technology. 1989. V. 7, N 10. P. 1597—1600. DOI:10.1109/50.39103; Niizeki N., Yamada T., Toyoda H. Growth ridges, etched hillocks, and crystal structure of lithium niobate // Jpn. J. Appl. Phys. 1967. V. 6, N 3. P. 318—327. DOI:10.1143/JJAP.6.318; Sones C. L. Domain engineering techniques and devices in lithium niobate. Doctoral Thesis. University of Southampton, 2003, 167 p. URL: https://eprints.soton.ac.uk/15474/1/Sones_2003_thesis_2744.pdf; Güthner P., Dransfeld K. Local poling of ferroelectric polymers by scanning force microscopy // Appl. Phys. Lett. 1992. V. 61, N 9. P. 1137—1139. DOI:10.1063/1.107693; Soergel E. Piezoresponse force microscopy (PFM) // J. Phys. D: Appl. Phys. 2011. V. 44, N 46. P. 464003. DOI:10.1088/0022-3727/44/46/464003; Kalinin S. V., Bonnell D. A. Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces // Phys. Rev. B. 2002. V. 65, N 12. P. 125408. DOI:10.1103/PhysRevB.65.125408; Kubasov I. V., Timshina M. S., Kiselev D. A., Malinkovich M. D., Bykov A. S., Parkhomenko Y. N. Interdomain region in single-crystal lithium niobate bimorph actuators produced by light annealing // Crystallogr. Rep. 2015. V. 60, N 5. P. 700—705. DOI:10.1134/S1063774515040136; Kubasov I. V., Kislyuk A. . M., Bykov A. S., Malinkovich M. D., Zhukov R. N., Kiselev D. A., Ksenich S. V., Temirov A. A., Timushkin N. G., Parkhomenko Y. N. Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing // Crystallogr. Rep. 2016. V. 61, N 2. P. 258—262. DOI:10.1134/S1063774516020115; Kislyuk A. M., Ilina T. S., Kubasov I. V., Kiselev D. A., Temirov A. A., Turutin A. V., Malinkovich M. D., Polisan A. A., Parkhomenko Y. N. Tailoring of stable induced domains near a charged domain wall in lithium niobate by probe microscopy // Mod. Electron. Mater. 2019. V. 5, N 2. P. 51—60. DOI:10.3897/j.moem.5.2.51314; Кислюк А. М., Ильина Т. С., Кубасов И. В., Киселев Д. А., Темиров А. А., Турутин А. В., Малинкович М. Д., Полисан А. А., Пархоменко Ю. Н. Формирование стабильных индуцированных доменов в области заряженной междоменной границы в ниобате лития с помощью зондовой микроскопии // Известия вузов. Материалы электронной техники. 2019. Т. 22, № 1. С. 5—17. DOI:10.17073/1609-3577-2019-1-5-17; Yin Q. R., Zeng H. R., Li G. R., Xu Z. K. Near-field acoustic microscopy of ferroelectrics and related materials // Mater. Sci. Eng. B. 2003. V. 99, N 1–3. P. 2—5. DOI:10.1016/S0921-5107(02)00438-5; Yin Q. R., Zeng H. R., Yu H. F., Li G. R. Near-field acoustic and piezoresponse microscopy of domain structures in ferroelectric material // J. Mater. Sci. 2006. V. 41, N 1. P. 259—270. DOI:10.1007/s10853-005-7244-2; Berth G., Hahn W., Wiedemeier V., Zrenner A., Sanna S., Schmidt W. G. Imaging of the ferroelectric domain structures by confocal raman spectroscopy // Ferroelectrics. 2011. V. 420, N 1. P. 44—48. DOI:10.1080/00150193.2011.594774; Rüsing M., Neufeld S., Brockmeier J., Eigner C., Mackwitz P., Spychala K., Silberhorn C., Schmidt W. G., Berth G., Zrenner A., Sanna S. Imaging of 180° ferroelectric domain walls in uniaxial ferroelectrics by confocal Raman spectroscopy: Unraveling the contrast mechanism // Phys. Rev. Mater. 2018. V. 2, N 10. P. 103801. DOI:10.1103/PhysRevMaterials.2.103801; Dierolf V., Sandmann C., Kim S., Gopalan V., Polgar K. Ferroelectric domain imaging by defect-luminescence microscopy // J. Appl. Phys. 2003. V. 93, N 4. P. 2295—2297. DOI:10.1063/1.1538333; Otto T., Grafström S., Chaib H., Eng L. M. Probing the nanoscale electro-optical properties in ferroelectrics // Appl. Phys. Lett. 2004. V. 84, N 7. P. 1168—1170. DOI:10.1063/1.1647705; Pei S.-C., Ho T.-S., Tsai C.-C., Chen T.-H., Ho Y., Huang P.-L., Kung A. H., Huang S.-L. Non-invasive characterization of the domain boundary and structure properties of periodically poled ferroelectrics // Opt. Express. 2011. V. 19, N 8. P. 7153. DOI:10.1364/OE.19.007153; Bozhevolnyi S. I., Pedersen K., Skettrup T., Zhang X., Belmonte M. Far- and near-field second-harmonic imaging of ferroelectric domain walls // Opt. Commun. 1998. V. 152, N 4–6. P. 221—224. DOI:10.1016/S0030-4018(98)00176-X; Neacsu C. C., van Aken B. B., Fiebig M., Raschke M. B. Second-harmonic near-field imaging of ferroelectric domain structure of YMnO3 // Phys. Rev. B. 2009. V. 79, N 10. P. 100107. DOI:10.1103/PhysRevB.79.100107; Sheng Y., Best A., Butt H.-J., Krolikowski W., Arie A., Koynov K. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation // Opt. Express. 2010. V. 18, N 16. P. 16539. DOI:10.1364/OE.18.016539; Kämpfe T., Reichenbach P., Schröder M., Haußmann A., Eng L. M., Woike T., Soergel E. Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation // Phys. Rev. B. 2014. V. 89, N 3. P. 035314. DOI:10.1103/PhysRevB.89.035314; Cherifi-Hertel S., Bulou H., Hertel R., Taupier G., Dorkenoo K. D., Andreas C., Guyonnet J., Gaponenko I., Gallo K., Paruch P. Non-ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy // Nature Commun. 2017. V. 8, N 1. P. 15768. DOI:10.1038/ncomms15768; Irzhak D. V., Kokhanchik L. S., Punegov D. V., Roshchupkin D. V. Study of the specific features of lithium niobate crystals near the domain walls // Phys. Solid State. 2009. V. 51, N 7. P. 1500—1502. DOI:10.1134/S1063783409070452; Tasson M., Legal H., Peuzin J. C., Lissalde F. C. Mécanismes d′orientation de la polarisation spontanée dans le niobate de lithium au voisinage du point de Curie // Phys. Status Solidi (a). 1975. V. 31, N 2. P. 729—737. DOI:10.1002/pssa.2210310246; Ballman A. A., Brown H. Ferroelectric domain reversal in lithium metatantalate // Ferroelectrics. 1972. V. 4, N 1. P. 189—194. DOI:10.1080/00150197208235761; Shur V. Y. Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3 // J. Mater. Sci. 2006. V. 41, N 1. P. 199—210. DOI:10.1007/s10853-005-6065-7; Rosenman G., Urenski P., Agronin A., Rosenwaks Y., Molotskii M. Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy // Appl. Phys. Lett. 2003. V. 82, N 1. P. 103—105. DOI:10.1063/1.1534410; Shur V. Y., Chezganov D. S., Smirnov M. M., Alikin D. O., Neradovskiy M. M., Kuznetsov D. K. Domain switching by electron beam irradiation of Z+-polar surface in Mg-doped lithium niobate // Appl. Phys. Lett. 2014. V. 105, N 5. P. 052908. DOI:10.1063/1.4891842; Kuroda A., Kurimura S., Uesu Y. Domain inversion in ferroelectric MgO : LiNbO3 by applying electric fields // Appl. Phys. Lett. 1996. V. 69, N 11. P. 1565—1567. DOI:10.1063/1.117031; Volk T. R., Kokhanchik L. S., Gainutdinov R. V., Bodnarchuk Y. V., Lavrov S. D. Domain formation on the nonpolar lithium niobate surfaces under electron-beam irradiation: A review // J. Advanced Dielectrics. 2018. V. 08, N 02. P. 1830001. DOI:10.1142/S2010135X18300013; Makio S., Nitanda F., Ito K., Sato M. Fabrication of periodically inverted domain structures in LiTaO3 and LiNbO3 using proton exchange // Appl. Phys. Lett. 1992. V. 61, N 26. P. 3077—3079. DOI:10.1063/1.107990; Pendergrass L. L. Ferroelectric microdomain reversal at room temperature in lithium niobate // J. Appl. Phys. 1987. V. 62, N 1. P. 231—236. DOI:10.1063/1.339186; Bermúdez V., Dutta P. S., Serrano M. D., Diéguez E. In situ poling of LiNbO3 bulk crystal below the Curie temperature by application of electric field after growth // J. Crystal Growth. 1996. V. 169, N 2. P. 409—412. DOI:10.1016/S0022-0248(96)00742-7; Malinkovich M. D., Bykov A. S., Kubasov I. V., Kiselev D. A., Ksenich S. V., Zhukov R. N., Temirov A. A., Timushkin N. G., Parkhomenko Y. N. Formation of a bidomain structure in lithium niobate wafers for beta-voltaic alternators // Russ. Microelectron. 2016. V. 45, N 8–9. P. 582—586. DOI:10.1134/S1063739716080096; Tasson M., Legal H., Gay J. C., Peuzin J. C., Lissalde F. C. Piezoelectric study of poling mechanism in lithium niobate crystals at temperature close to the curie point // Ferroelectrics. 1976. V. 13, N 1. P. 479—481. DOI:10.1080/00150197608236646; Luh Y. S., Feigelson R. S., Fejer M. M., Byer R. L. Ferroelectric domain structures in LiNbO3 single-crystal fibers // J. Crystal Growth. 1986. V. 78, N 1. P. 135—143. DOI:10.1016/0022-0248(86)90510-5; Luh Y. S., Fejer M. M., Byer R. L., Feigelson R. S. Stoichiometric LiNbO3 single-crystal fibers for nonlinear optical applications // J. Crystal Growth. 1987. V. 85, N 1–2. P. 264—269. DOI:10.1016/0022-0248(87)90233-8; Bykov A. S., Grigoryan S. G., Zhukov R. N., Kiselev D. A., Ksenich S. V., Kubasov I. V., Malinkovich M. D., Parkhomenko Y. N. Formation of bidomain structure in lithium niobate plates by the stationary external heating method // Russ. Microelectron. 2014. V. 43, N 8. P. 536—542. DOI:10.1134/S1063739714080034; Быков А. С., Григорян С. Г., Жуков Р. Н., Киселев Д. А., Кубасов И. В., Малинкович М. Д., Пархоменко Ю. Н. Формирование бидоменной структуры в пластинах монокристаллических сегнетоэлектриков стационарным распределением температурных полей // Известия вузов. Материалы электронной техники. 2013. Т. 16, № 1. С. 11—17.; Nakamura K., Ando H., Shimizu H. Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment // Appl. Phys. Lett. 1987. V. 50, N 20. P. 1413—1414. DOI:10.1063/1.97838; Barns R. L., Carruthers J. R. Lithium tantalate single crystal stoichiometry // J. Appl. Crystallogr. 1970. V. 3, N 5. P. 395—399. DOI:10.1107/s0021889870006490; Fukuma M., Noda J. Li in- and out-diffusion processes in LiNbO3 // Jpn. J. Appl. Phys. 1981. V. 20, N 10. P. 1861—1865. DOI:10.1143/JJAP.20.1861; Carruthers J. R., Kaminow I. P., Stulz L. W. diffusion kinetics and optical waveguiding properties of outdiffused layers in lithium niobate and lithium tantalate // Appl. Opt. 1974. V. 13, N 10. P. 2333. DOI:10.1364/AO.13.002333; Kaminow I. P., Carruthers J. R. Optical waveguiding layers in LiNbO3 and LiTaO3 // Appl. Phys. Lett. 1973. V. 22, N 7. P. 326—328. DOI:10.1063/1.1654657; Svaasand L. O., Eriksrud M., Nakken G., Grande A. P. Solid-solution range of LiNbO3 // J. Crystal Growth. 1974. V. 22, N 3. P. 230—232. DOI:10.1016/0022-0248(74)90099-2; Allemann J. A., Xia Y., Morriss R. E., Wilkinson A. P., Eckert H., Speck J. S., Levi C. G., Lange F. F., Anderson S. Crystallization behavior of Li1-5xTa1+xO3 glasses synthesized from liquid precursors // J. Mater. Res. 1996. V. 11, N 09. P. 2376—2387. DOI:10.1557/JMR.1996.0301; Bordui P. F., Norwood R. G., Bird C. D., Carella J. T. Stoichiometry issues in single-crystal lithium tantalate // J. Appl. Phys. 1995. V. 78, N 7. P. 4647—4650. DOI:10.1063/1.359811; Holman R. L. Novel uses of gravimetry in the processing of crystalline ceramics / In: Processing of Crystalline Ceramics (Materials Science Research, V. 11), H. (III) Palmour, R. F. Davis and T. M. Hare, Eds. New York: Plenum Press, 1978. P. 343—357.; Евланова Н. Ф., Рашкович Л. Н. Влияние отжига на доменную структуру монокристаллов метаниобата лития // Физика твердого тела. 1974. Т. 16, № 2. С. 555—557.; Evlanova N. L., Rashkovich L. N. Annealing Effect on domain-structure of lithium meta-niobate single-crystals // Sov. Phys. Solid State. 1974. V. 16. P. 354; Ohnishi N. An etching study on a heat-induced layer at the positive-domain surface of LiNbO3 // Jpn. J. Appl. Phys. 1977. V. 16, N 6. P. 1069—1070. DOI:10.1143/JJAP.16.1069; Hsu W.-Y., Gupta M. C. Domain inversion in MgO-diffused LiNbO3 // Appl. Opt. 1993. V. 32, N 12. P. 2049. DOI:10.1364/AO.32.002049; Kugel V. D., Rosenman G. Domain inversion in heat-treated LiNbO3 crystals // Appl. Phys. Lett. 1993. V. 62, N 23. P. 2902—2904. DOI:10.1063/1.109191; Kugel V. D., Rosenman G. Polarization reversal in LiNbO3 crystals under asymmetric diffusion conditions // Appl. Phys. Lett. 1994. V. 65, N 19. P. 2398—2400. DOI:10.1063/1.112687; Åhlfeldt H. Single-domain layers formed in heat-treated LiTaO3 // Appl. Phys. Lett. 1994. V. 64, N 24. P. 3213—3215. DOI:10.1063/1.111340; Pryakhina V. I., Greshnyakov E. D., Lisjikh B. I., Akhmatkhanov A. R., Alikin D. O., Shur V. Y., Bartasyte A. As-grown domain structure in lithium tantalate with spatially nonuniform composition // Ferroelectrics. 2018. V. 525, N 1. P. 47—53. DOI:10.1080/00150193.2018.1432926; Rosenman G., Kugel V. D., Angert N. Domain inversion in LiNbO3 optical waveguides // Ferroelectrics. 1994. V. 157, N 1. P. 111—116. DOI:10.1080/00150199408229491; Kubasov I., Kislyuk A., Ilina T., Shportenko A. Kiselev D., Turutin A., Temirov A., Malinkovich M., Parhomenko Yu. Charged domain walls in reduced bidomain lithium niobate single crystals. 2020. DOI:10.13140/RG.2.2.15387.00804; Yamamoto K., Mizuuchi K., Takeshige K., Sasai Y., Taniuchi T. Characteristics of periodically domain-inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation // J. Appl. Phys. 1991. V. 70, N 4. P. 1947—1951. DOI:10.1063/1.349477; Fujimura M., Suhara T., Nishihara H. Ferroelectric-domain inversion induced by SiO2 cladding for LiNbO3 waveguide SHG // Electronics Lett. 1991. V. 27, N 13. P. 1207. DOI:10.1049/el:19910752; Fujimura M., Suhara T., Nishihara H. LiNbO3 waveguide SHG devices based on a ferroelectric domain-inverted grating induced by SiO2 cladding // Electron. Commun. Jpn. (Pt II: Electronics). 1992. V. 75, N 12. P. 40—49. DOI:10.1002/ecjb.4420751205; Webjorn J., Laurell F., Arvidsson G. Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide // IEEE Photonics Technol. Lett. 1989. V. 1, N 10. P. 316–318. DOI:10.1109/68.43360; Jackel J. L. Suppression of outdiffusion in titanium diffused LiNbO3: A review // J. Opt. Commun. 1982. V. 3, N 3. P. 82—85. DOI:10.1515/JOC.1982.3.3.82; Naumova I. I., Evlanova N. F., Gliko O. A., Lavrichev S. V. Czochralski-grown lithium niobate with regular domain structure // Ferroelectrics. 1997. V. 190, N 1. P. 107—112. DOI:10.1080/00150199708014101; Kracek F. C. The binary system Li2O–SiO2 // J. Phys. Chem. 1930. V. 34, N 12. P. 2641—2650. DOI:10.1021/j150318a001; Duan Y., Pfeiffer H., Li B., Romero-Ibarra I. C., Sorescu D. C., Luebke D. R., Halley J. W. CO2 capture properties of lithium silicates with different ratios of Li2O/SiO2: an ab initio thermodynamic and experimental approach // Phys. Chem. Chem. Phys. 2013. V. 15, N 32. p. 13538—13558. DOI:10.1039/c3cp51659h; Migge H. Estimation of free energies for Li8SiO6 and Li4SiO4 and calculation of the phase diagram of the Li-Si-O system // J. Nuclear Mater. 1988. V. 151, N 2. P. 101—107. DOI:10.1016/0022-3115(88)90061-X; Kulkarni N. S., Besmann T. M., Spear K. E. Thermodynamic optimization of lithia-alumina // J. Am. Ceram. Soc. 2008. V. 91, N 12. P. 4074—4083. DOI:10.1111/j.1551-2916.2008.02753.x; Zuev M. G. Subsolidus phase relations in the Al2O3-Li2O-Ta2O5 (Nb2O5) systems // Russ. J. Inorg. Chem. 2007. V. 52, N 3. P. 424—426. DOI:10.1134/S0036023607030217; Konar B., Van Ende M.-A., Jung I.-H. Critical evaluation and thermodynamic optimization of the Li2O-Al2O3 and Li2O-MgO-Al2O3 systems // Metall. Mater. Trans. B. 2018. V. 49, N 5. P. 2917—2944. DOI:10.1007/s11663-018-1349-x; Konar B., Kim D.-G., Jung I.-H. Coupled phase diagram experiments and thermodynamic optimization of the binary Li2O-MgO and Li2O-CaO systems and ternary Li2O-MgO-CaO system // Ceram. Int. 2017. V. 43, N 16. P. 13055—13062. DOI:10.1016/j.ceramint.2017.06.143; Ferriol M., Dakki A., Cohen-Adad M. T., Foulon G., Brenier A., Boulon G. Growth and characterization of MgO-doped single-crystal fibers of lithium niobate in relation to high temperature phase equilibria in the ternary system Li2O-Nb2O5-MgO // J. Crystal Growth. 1997. V. 178, N 4. P. 529—538. DOI:10.1016/S0022-0248(97)00002-X; Caccavale F., Chakraborty P., Mansour I., Gianello G., Mazzoleni M., Elena M. A secondary-ion-mass spectrometry study of magnesium diffusion in lithium niobate // J. Appl. Phys. 1994. V. 76, N 11. P. 7552—7558. DOI:10.1063/1.357988; Bremer T., Hertel P., Oelschig S., Sommerfeldt R., Heiland W. Depth profiling of magnesium- and titanium-doped LiNbO3 waveguides // Thin Solid Films. 1989. V. 175. P. 235—239. DOI:10.1016/0040-6090(89)90833-X; Koyama C., Nozawa J., Fujiwara K., Uda S. Effect of point defects on Curie temperature of lithium niobate // J. Am. Ceram. Soc. 2017. V. 100, N 3. P. 1118—1124. DOI:10.1111/jace.14701; Palatnikov M. N., Biryukova I. V., Makarova O. V., Efremov V. V., Kravchenko O. E., Skiba V. I., Sidorov N. V., Efremov I. N. Growth of heavily doped LiNbO3 crystals // Inorganic Mater. 2015. V. 51, N 4. P. 375—379. DOI:10.1134/S0020168515040123; Paul M., Tabuchi M., West A. R. Defect structure of Ni,Co-doped LiNbO3 and LiTaO3 // Chem. Mater. 1997. V. 9, N 12. P. 3206—3214. DOI:10.1021/cm970511t; Grabmaier B. C., Otto F. Growth and investigation of MgO-doped LiNbO3 // J. Crystal Growth. 1986. V. 79, N 1–3. P. 682—688. DOI:10.1016/0022-0248(86)90537-3; Hao L., Li Y., Zhu J., Wu Z., Deng J., Liu X., Zhang W. Fabrication and electrical properties of LiNbO3/ZnO/n-Si heterojunction // AIP Advances. 2013. V. 3, N 4. P. 042106. DOI:10.1063/1.4800705; Gupta V., Bhattacharya P., Yuzyuk Y. I., Katiyar R. S., Tomar M., Sreenivas K. Growth and characterization of c-axis oriented LiNbO3 film on a transparent conducting Al : ZnO inter-layer on Si // J. Mater. Res. 2004. V. 19, N 8. P. 2235—2239. DOI:10.1557/JMR.2004.0322; Lau C.-S., Wei P.-K., Su C.-W., Wang W.-S. Fabrication of magnesium-oxide-induced lithium outdiffusion waveguides // IEEE Photonics Technol. Lett. 1992. V. 4, N 8. P. 872—875. DOI:10.1109/68.149892; Ohlendorf G., Richter D., Sauerwald J., Fritze H. High-temperature electrical conductivity and electro-mechanical properties of stoichiometric lithium niobate // Diffusion Fundamentals. 2008. V. 8. P. 6.1—6.7. URL: https://diffusion.uni-leipzig.de/pdf/volume8/diff_fund_8(2008)6.pdf; Schmidt R. V., Kaminow I. P. Metal-diffused optical waveguides in LiNbO3 // Appl. Phys. Lett. 1974. V. 25, N 8. P. 458—460. DOI:10.1063/1.1655547; Miyazawa S. Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide // J. Appl. Phys. 1979. V. 50, N 7. P. 4599—4603. DOI:10.1063/1.326568; Thaniyavarn S., Findakly T., Booher D., Moen J. Domain inversion effects in Ti-LiNbO3 integrated optical devices // Appl. Phys. Lett. 1985. V. 46, N 10. P. 933—935. DOI:10.1063/1.95825; Nozawa T., Miyazawa S. Ferroelectric microdomains in Ti-diffused LiNbO3 optical devices // Jpn. J. Appl. Phys. 1996. V. 35, N 1R. P. 107—113. DOI:10.1143/JJAP.35.107; Lim E. J., Fejer M. M., Byer R. L. Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide // Electron. Lett. 1989. V. 25, N 3. P. 174. DOI:10.1049/el:19890127; Lim E. J., Hertz H. M., Bortz M. L., Fejer M. M. Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled lithium niobate waveguide // Appl. Phys. Lett. 1991. V. 59, N 18. P. 2207—2209. DOI:10.1063/1.106071; Cao X., Srivastava R., Ramaswamy R. V. Efficient quasi-phase-matched blue second-harmonic generation in LiNbO3 channel waveguides by a second-order grating // Opt. Lett. 1992. V. 17, N 8. P. 592. DOI:10.1364/OL.17.000592; Hua P.-R., Dong J.-J., Ren K., Chen Z.-X. Erasure of ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide by Li-rich vapor-transport equilibration // J. Alloys Compd. 2015. V. 626. P. 203—207. DOI:10.1016/j.jallcom.2014.12.001; Guenais B., Baudet M., Minier M., Le Cun M. Phase equilibria and curie temperature in the LiNbO3-xTiO2 system, investigated by DTA and x-ray diffraction // Mater. Res. Bull. 1981. V. 16, N 6. P. 643—653. DOI:10.1016/0025-5408(81)90263-4; Bordui P. F., Norwood R. G., Jundt D. H., Fejer M. M. Preparation and characterization of off-congruent lithium niobate crystals // J. Appl. Phys. 1992. V. 71, N 2. P. 875—879. DOI:10.1063/1.351308; Caccavale F., Chakraborty P., Quaranta A., Mansour I., Gianello G., Bosso S., Corsini R., Mussi G. Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides // J. Appl. Phys. 1995. V. 78, N 9. P. 5345—5350. DOI:10.1063/1.359713; Izquierdo G., West A. R. Phase equilibria in the system Li2O-TiO2 // Mater. Res. Bull. 1980. V. 15, N 11. P. 1655—1660. DOI:10.1016/0025-5408(80)90248-2; Villafuerte-Castrejón M. E., Aragón-Piña A., Valenzuela R., West A. R. Compound and solid-solution formation in the system Li2O-Nb2O5-TiO2 // J. Solid State Chem. 1987. V. 71, N 1. P. 103—108. DOI:10.1016/0022-4596(87)90147-2; Rice C. E., Holmes R. J. A new rutile structure solid-solution phase in the LiNb3O8-TiO2 system, and its role in Ti diffusion into LiNbO3 // J. Appl. Phys. 1986. V. 60, N 11. P. 3836—3839. DOI:10.1063/1.337777; Jackel J. L., Ramaswamy V., Lyman S. P. Elimination of out-diffused surface guiding in titanium-diffused LiNbO3 // Appl. Phys. Lett. 1981. V. 38, N 7. P. 509—511. DOI:10.1063/1.92433; Ranganath T. R., Wang S. Suppression of Li2O out-diffusion from Ti-diffused LiNbO3 optical waveguides // Appl. Phys. Lett. 1977. V. 30, N 8. P. 376—379. DOI:10.1063/1.89438; Chen B., Pastor A. C. Elimination of Li2O out-diffusion waveguide in LiNbO3 and LiTaO3 // Appl. Phys. Lett. 1977. V. 30, N 11. P. 570—571. DOI:10.1063/1.89263; Baron C., Cheng H., Gupta M. C. Domain inversion in LiTaO3 and LiNbO3 by electric field application on chemically patterned crystals // Appl. Phys. Lett. 1995. V. 481, N 1996. P. 481. DOI:10.1063/1.116420; Burns W. K., Bulmer C. H., West E. J. Application of Li2O compensation techniques to Ti-diffused LiNbO3 planar and channel waveguides // Appl. Phys. Lett. 1978. V. 33, N 1. P. 70—72. DOI:10.1063/1.90149; Miyazawa S., Guglielmi R., Carenco A. A simple technique for suppressing Li2O out-diffusion in Ti:LiNbO3 optical waveguide // Appl. Phys. Lett. 1977. V. 31, N 11. P. 742—744. DOI:10.1063/1.89523; Tangonan G. L., Barnoski M. K., Lotspeich J. F., Lee A. High optical power capabilities of Ti-diffused LiTaO3 waveguide modulator structures // Appl. Phys. Lett. 1977. V. 30, N 5. P. 238—239. DOI:10.1063/1.89348; Rice C. E., Jackel J. L. HNbO3 and HTaO3: New cubic perovskites prepared from LiNbO3 and LiTaO3 via ion exchange // J. Solid State Chem. 1982. V. 41, N 3. P. 308—314. DOI:10.1016/0022-4596(82)90150-5; Jackel J. L., Rice C. E. Variation in waveguides fabricated by immersion of LiNbO3 in AgNO3 and TlNO3: The role of hydrogen // Appl. Phys. Lett. 1982. V. 41, N 6. P. 508—510. DOI:10.1063/1.93589; Jackel J. L., Rice C. E., Veselka J. J. Proton exchange for high-index waveguides in LiNbO3 // Appl. Phys. Lett. 1982. V. 41, N 7. P. 607—608. DOI:10.1063/1.93615; Jackel J. L., Rice C. E. Topotactic LiNbO3 to cubic perovskite structural transformation in LiNbO3 and LiTaO3 // Ferroelectrics. 1981. V. 38, N 1. P. 801—804. DOI:10.1080/00150198108209543; Bazzan M., Sada C. Optical waveguides in lithium niobate: Recent developments and applications // Appl. Phys. Rev. 2015. V. 2, N 4. P. 040603. DOI:10.1063/1.4931601; Ganshin V. A., Korkishko Y. N. H:LiNbO3 waveguides: effects of annealing // Opt. Commun. 1991. V. 86, N 6. P. 523—530. DOI:10.1016/0030-4018(91)90156-8; Nakamura K., Shimizu H. Ferroelectric inversion layers formed by heat treatment of proton-exchanged LiTaO3 // Appl. Phys. Lett. 1990. V. 56, N 16. P. 1535—1536. DOI:10.1063/1.103213; Tourlog A., Nakamura K. Influence of proton-exchange conditions on ferroelectric domain inversion caused in LiTaO3 crystals // Proc. IEEE International Symposium on Applications of Ferroelectrics, 1994. P. 222—225. DOI:10.1109/ISAF.1994.522343; Åhlfeldt H., Webjörn J., Arvidsson G., Ahlfeldt H., Webjorn J., Arvidsson G. Periodic domain inversion and generation of blue light in lithium tantalate waveguides // IEEE Photonics Technol. Lett. 1991. V. 3, N 7. P. 638—639. DOI:10.1109/68.87938; Mizuuchi K., Yamamoto K. Characteristics of periodically domain-inverted LiTaO3 // J. Appl. Phys. 1992. V. 72, N 11. P. 5061—5069. DOI:10.1063/1.352035; Mizuuchi K., Yamamoto K., Taniuchi T. Second-harmonic generation of blue light in a LiTaO3 waveguide // Appl. Phys. Lett. 1991. V. 58, N 24. P. 2732. DOI:10.1063/1.104769; Mizuuchi K., Yamamoto K., Taniuchi T. Fabrication of first-order periodically domain-inverted structure in LiTaO3 // Appl. Phys. Lett. 1991. V. 59, N 13. P. 1538—1540. DOI:10.1063/1.106275; Yamamoto K., Mizuuchi K. Blue-light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide // IEEE Photonics Technol. Lett. 1992. V. 4, N 5. P. 435—437. DOI:10.1109/68.136477; Åhlfeldt H., Webjörn J. Single-domain layers formed in multidomain LiTaO3 by proton exchange and heat treatment // Appl. Phys. Lett. 1994. V. 64, N 1. P. 7—9. DOI:10.1063/1.110875; Mizuuchi K., Yamamoto K., Sato H. Domain inversion in LiTaO3 using proton exchange followed by heat treatment // J. Appl. Phys. 1994. V. 75, N 3. P. 1311—1318. DOI:10.1063/1.356409; Zhu Y.-Y., Zhu S.-N., Hong J.-F., Ming N.-B. Domain inversion in LiNbO3 by proton exchange and quick heat treatment // Appl. Phys. Lett. 1994. V. 65, N 5. P. 558—560. DOI:10.1063/1.112295; Zhu S.-N., Zhu Y.-Y., Zhang Z.-Y., Shu H., Hong J.-F., Ge C.-Z., Ming N.-B. The mechanism for domain inversion in LiNbO3 by proton exchange and rapid heat treatment // J. Phys.: Condensed Matter. 1995. V. 7, N 7. P. 1437—1440. DOI:10.1088/0953-8984/7/7/023; Zhang Z.-Y., Zhu Y.-Y., Zhu S.-N., Shu H., Wang H.-F., Hong J.-F., Ge C.-Z., Ming N.-B. Study on the formation mechanism of a complex domain structure in LiNbO3 // J. Appl. Phys. 1995. V. 77, N 8. P. 4136—4138. DOI:10.1063/1.359502; Zhu Y., Zhu S., Zhang Z., Shu H., Hong J., Ge C., Ming N. Formation of single-domain layers in multidomain LiNbO3 crystals by proton exchange and quick heat treatment // Appl. Phys. Lett. 1995. V. 66, N 4. P. 408—409. DOI:10.1063/1.114038; Zhang Z.-Y., Zhu Y.-Y., Zhu S.-N., Ming N.-B. Domain inversion by Li2O out-diffusion or proton exchange followed by heat treatment in LiTaO3 and LiNbO3 // Phys. Status Solidi (a). 1996. V. 153, N 1. P. 275—279. DOI:10.1002/pssa.2211530128; Kawaguchi T., Kitayama H., Imaeda M., Fukuda T. Domain-inverted growth of LiNbO3 films by liquid-phase epitaxy // J. Crystal Growth. 1997. V. 178, N 4. P. 524—528. DOI:10.1016/S0022-0248(97)00003-1; Tamada H., Yamada A., Saitoh M. LiNbO3 thin-film optical waveguide grown by liquid phase epitaxy and its application to second-harmonic generation // J. Appl. Phys. 1991. V. 70, N 5. P. 2536—2541. DOI:10.1063/1.349409; Ming N.-B., Hong J.-F., Feng D. The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals // J. Mater. Sci. 1982. V. 17, N 6. P. 1663—1670. DOI:10.1007/BF00540793; Bender G., Meisen S., Herres N., Wild C., Koidl P. Deformation-induced ferroelectric domain pinning in chromium doped LiNbO3 // J. Crystal Growth. 1995. V. 152, N 4. P. 307—313. DOI:10.1016/0022-0248(95)00150-6; Uda S., Tiller W. A. The influence of an interface electric field on the distribution coefficient of chromium in LiNbO3 // J. Crystal Growth. 1992. V. 121, N 1–2. P. 93—110. DOI:10.1016/0022-0248(92)90179-M; Bermúdez V., Callejo D., Caccavale F., Segato F., Agulló-Rueda F., Diéguez E. On the compositional nature of bulk doped periodic poled lithium niobate crystals // Solid State Commun. 2000. V. 114, N 10. P. 555—559. DOI:10.1016/S0038-1098(00)00086-7; Bermúdez V., Serrano M. D., Dutta P. S., Diéguez E. On the opposite domain nature of Er-doped lithium niobate crystals // Solid State Commun. 1999. V. 109, N 9. P. 605—609. DOI:10.1016/S0038-1098(98)00589-4; Capmany J., Montoya E., Bermúdez V., Callejo D., Diéguez E., Bausá L. E. Self-frequency doubling in Yb3+ doped periodically poled LiNbO3:MgO bulk crystal // Appl. Phys. Lett. 2000. V. 76, N 11. P. 1374—1376. DOI:10.1063/1.126036; Chen J., Zhou Q., Hong J. F., Wang W. S., Ming N. B., Feng D., Fang C. G. Influence of growth striations on para-ferroelectric phase transitions: Mechanism of the formation of periodic laminar domains in LiNbO3 and LiTaO3 // J. Appl. Phys. 1989. V. 66, N 1. P. 336—341. DOI:10.1063/1.343879; Sorokin N. G., Antipov V. V., Blistanov A. A. The regular domain structure in LiNbO3 and LiTaO3 // Ferroelectrics. 1995. V. 167, N 1. P. 267—274. DOI:10.1080/00150199508232322; Antipov V. V., Bykov A. S., Malinkovich M. D., Parkhomenko Y. N. Formation of bidomain structure in lithium niobate single crystals by electrothermal method // Ferroelectrics. 2008. V. 374, N 1. P. 65—72. DOI:10.1080/00150190802427127; Miyazawa S. Response to "Comment on “Domain inversion effects in Ti-LiNbO3 integrated optical devices”" // Appl. Phys. Lett. 1986. V. 48, N 16. P. 1104—1105. DOI:10.1063/1.96612; Glass A. M. Dielectric, thermal, and pyroelectric properties of ferroelectric LiTaO3 // Phys. Rev. 1968. V. 172, N 2. P. 564—571. DOI:10.1103/PhysRev.172.564; Savage A. Pyroelectricity and spontaneous polarization in LiNbO3 // J. Appl. Phys. 1966. V. 37, N 8. P. 3071—3072. DOI:10.1063/1.1703164; Seibert H., Sohler W. Ferroelectric microdomain reversal on Y-cut LiNbO3 surfaces // Proc. SPIE, Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications. 1991. V. 1362. P. 370. DOI:10.1117/12.24553; Pendergrass L. L. Ferroelectric Microdomains in Lithium Niobate // IEEE Ultrasonics Symposium, 1987. P. 231—236. DOI:10.1109/ULTSYM.1987.198960; Jorgensen P. J., Bartlett R. W. High temperature transport processes in lithium niobate // J. Phys. Chem. Solids. 1969. V. 30, N 12. P. 2639—2648. DOI:10.1016/0022-3697(69)90037-7; Tomeno I., Matsumura S. Elastic and dielectric properties of LiNbO3 // J. Phys. Soc. Jpn. 1987. V. 56, N 1. P. 163—177. DOI:10.1143/JPSJ.56.163; Peuzin J. C. Comment on “Domain inversion effects in Ti-LiNbO3 integrated optical devices” (Appl. Phys. Lett. 1985. V. 46. P. 933) // Appl. Phys. Lett. 1986. V. 48, N 16. P. 1104. DOI:10.1063/1.97016; Huanosta A., West A. R. The electrical properties of ferroelectric LiTaO3 and its solid solutions // J. Appl. Phys. 1987. V. 61, N 12. P. 5386—5391. DOI:10.1063/1.338279; Choi J. K., Auh K. H. Stress induced domain formation in LiNbO3 single crystals // J. Mater. Sci. 1996. V. 31, N 3. P. 643—647. DOI:10.1007/BF00367880; Lehnert H., Boysen H., Frey F., Hewat A., Radaelli P. A neutron powder investigation of the high-temperature structure and phase transition in stoichiometric LiNbO3 // Zeitschrift für Kristallographie – Crystalline Materials. 1997. V. 212, N 10. DOI:10.1524/zkri.1997.212.10.712; Sugii K., Fukuma M., Iwasaki H. A study on titanium diffusion into LiNbO3 waveguides by electron probe analysis and X-ray diffraction methods // J. Mater. Sci. 1978. V. 13, N 3. P. 523—533. DOI:10.1007/BF00541802; Chen F., Kong L., Song W., Jiang C., Tian S., Yu F., Qin L., Wang C., Zhao X. The electromechanical features of LiNbO3 crystal for potential high temperature piezoelectric applications // J. Materiomics. 2019. V. 5, N 1. P. 73—80. DOI:10.1016/j.jmat.2018.10.001; Nye J. F. Physical Properties of Crystals. Oxford: Clarendon Press, 1985. 352 p.; Rice C. E. The structure and properties of Li1-xHxNbO3 // J. Solid State Chem. 1986. V. 64, N 2. P. 188—199. DOI:10.1016/0022-4596(86)90138-6; Åhlfeldt H., Webjörn J., Thomas P. A., Teat S. J. Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3 // J. Appl. Phys. 1995. V. 77, N 9. P. 4467—4476. DOI:10.1063/1.359477; Ueda T., Takai Y., Shimizu R., Yagyu H., Matsushima T., Souma M. Cross-sectional transmission electron microscopic observation of etch hillocks and etch pits in LiTaO3 single crystal // Jpn. J. Appl. Phys. 2000. V. 39, N 3A. P. 1200—1202. DOI:10.1143/JJAP.39.1200; Malovichko G., Cerclier O., Estienne J., Grachev V., Kokanyan E., Boulesteix C. Lattice constants of K- and Mg-doped LiNbO3. Comparison with nonstoichiometric lithium niobate // J. Phys. Chem. Solids. 1995. V. 56, N 9. P. 1285—1289. DOI:10.1016/0022-3697(95)00058-5; Nakamura K., Fukazawa K., Yamada K., Saito S. An ultrasonic transducer for second imaging using a LiNbO3 plate with a local ferroelectric inversion layer // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2006. V. 53, N 3. P. 651—655. DOI:10.1109/TUFFC.2006.1610575; Huang L., Jaeger N. A. F. Discussion of domain inversion in LiNbO3 // Appl. Phys. Lett. 1994. V. 65, N 14. P. 1763—1765. DOI:10.1063/1.112911; Mizuuchi K., Yamamoto K., Sato H. Fabrication of periodic domain inversion in an x-cut LiTaO3 // Appl. Phys. Lett. 1993. V. 62, N 16. P. 1860—1862. DOI:10.1063/1.109524; Gureev M. Y., Tagantsev A. K., Setter N. Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric // Phys. Rev. B. 2011. V. 83, N 18. P. 184104. DOI:10.1103/PhysRevB.83.184104; Wan Z., Xi Y., Wang Q., Lu Y., Zhu Y., Ming N. Growth of LiNbO3 crystal with periodic ferroelectric domain structure by current-induction and its acoustic application // Ferroelectrics. 2001. V. 252, N 1. P. 273—280. DOI:10.1080/00150190108016266; Xi Y., Cross L. E. Lithium niobate bicrystal // Ferroelectrics. 1981. V. 38, N 1. P. 829—832. DOI:10.1080/00150198108209550; Smits J. G., Dalke S. I., Cooney T. K. The constituent equations of piezoelectric bimorphs // Sensors and Actuators A: Phys. 1991. V. 28, N 1. P. 41—61. DOI:10.1016/0924-4247(91)80007-C; Smits J. G., Ballato A. Dynamic admittance matrix of piezoelectric cantilever bimorphs // J. Microelectromechanical Systems. 1994. V. 3, N 3. P. 105—112. DOI:10.1109/84.311560; Goli J., Smits J. G., Ballato A. Dynamic bimorph matrix of end-loaded bimorphs // Proc. IEEE International Frequency Control Symposium (49th Annual Symposium), 1995. P. 794—797. DOI:10.1109/FREQ.1995.484086; Malinkovich M. D., Kubasov I. V., Kislyuk A. M., Turutin A. V., Bykov A. S., Kiselev D. A., Temirov A. A., Zhukov R. N., Sobolev N. A., Teixeira B. M. S., Parkhomenko Y. N. Modelling of vibration sensor based on bimorph structure // J. Nano- Electron. Phys. 2019. V. 11, N 2. P. 02033-1—02033-8. DOI:10.21272/jnep.11(2).02033; Uchino K. Piezoelectric ceramics for transducers / In: Ultrasonic Transducers, K. Nakamura (Ed.) Cambridge: Woodhead Publishing, 2012. P. 70—116. DOI:10.1533/9780857096302.1.70; Nakamura K., Ando H., Shimizu H. Bending vibrator consisting of a LiNbO3 plate with a ferroelectric inversion layer // Jpn. J. Appl. Phys. 1987. V. 26, N S2. P. 198. DOI:10.7567/JJAPS.26S2.198; Kubasov I. V., Popov A. V., Bykov A. S., Temirov A. A., Kislyuk A. M., Zhukov R. N., Kiselev D. A., Chichkov M. V., Malinkovich M. D., Parkhomenko Yu. N. Deformation anisotropy of Y+128°-cut single crystalline bidomain wafers of lithium niobate // Russ. Microelectron. 2017. V. 46, N 8. P. 557—563. DOI:10.1134/S1063739717080108; Warner A. W., Onoe M., Coquin G. A. determination of elastic and piezoelectric constants for crystals in class (3m) // J. Acoust. Soc. Am. 1967. V. 42, N 6. P. 1223—1231. DOI:10.1121/1.1910709; Nakamura K., Nakamura T., Yamada K. Torsional actuators using LiNbO3 plates with an inversion layer // Jpn. J. Appl. Phys. 1993. V. 32, N 5B. P. 2415—2417. DOI:10.1143/JJAP.32.2415; Buryy O., Sugak D., Syvorotka I., Yakhnevych U., Suhak Y., Ubizskii S., Fritze H. Simulation, making and testing of the actuator of precise positioning based on the bimorph plate of lithium niobate // IEEE XVth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), 2019. P. 148—152. DOI:10.1109/MEMSTECH.2019.8817401; Kawamata A., Hosaka H., Morita T. Non-hysteresis and perfect linear piezoelectric performance of a multilayered lithium niobate actuator // Sensors and Actuators A: Phys. 2007. V. 135, N 2. P. 782—786. DOI:10.1016/j.sna.2006.08.025; Nakamura K., Shimizu H. Hysteresis-free piezoelectric actuators using LiNbO3 plates with a ferroelectric inversion layer // Ferroelectrics. 1989. V. 93, N 1. P. 211—216. DOI:10.1080/00150198908017348; Ueda M., Sawada H., Tanaka A., Wakatsuki N. Piezoelectric actuator using a LiNbO3 bimorph for an optical switch // IEEE Symposium on Ultrasonics, 1990. P. 1183—1186. DOI:10.1109/ULTSYM.1990.171548; Nakamura K., Kurosawa Y., Ishikawa K. Tunable optical filters using a LiNbO3 torsional actuator with a Fabry–Perot etalon // Appl. Phys. Lett. 1996. V. 68, N 20. P. 2799—2800. DOI:10.1063/1.116611; Nakamura K. Piezoelectric applications of ferroelectric single crystals // Proc. 13th IEEE International Symposium on Applications of Ferroelectrics, 2002. P. 389–394. DOI:10.1109/ISAF.2002.1195950; Blagov A. E., Bykov A. S., Kubasov I. V., Malinkovich M. D., Pisarevskii Y. V., Targonskii A. V., Eliovich I. A., Kovalchuk M. V. An electromechanical x-ray optical element based on a hysteresis-free monolithic bimorph crystal // Instruments and Experimental Techniques. 2016. V. 59, N 5. DOI:10.1134/S0020441216050043; Blagov A. E., Kulikov A. G., Marchenkov N. V., Pisarevsky Y. V., Kovalchuk M. V. Bimorph actuator: a new instrument for time-resolved x-ray diffraction and spectroscopy // Experimental Techniques. 2017. V. 41, N 5. P. 517—523. DOI:10.1007/s40799-017-0194-1; Kulikov A., Blagov A., Marchenkov N., Targonsky A., Eliovich Y., Pisarevsky Y., Kovalchuk M. LiNbO3-based bimorph piezoactuator for fast X-ray experiments: Static and quasistatic modes // Sensors and Actuators A: Phys. 2019. V. 291. P. 68—74. DOI:10.1016/j.sna.2019.03.041; Marchenkov N., Kulikov A., Targonsky A., Eliovich Y., Pisarevsky Y., Seregin A., Blagov A., Kovalchuk M. LiNbO3-based bimorph piezoactuator for fast X-ray experiments: Resonant mode // Sensors and Actuators A: Phys. 2019. V. 293. P. 48—55. DOI:10.1016/j.sna.2019.04.028; Пат. 196011 (РФ). Трехкоординатное устройство позиционирования / И. В. Кубасов, А. М. Кислюк, А. В. Турутин, А. А. Темиров, М. Д. Малинкович, Ю. Н. Пархоменко, А. А. Полисан, 2019.; Kubasov I. V., Kislyuk A. M., Turutin A. V., Temirov A. A., Ksenich S. V., Malinkovich M. D., Parkhomenko Y. N. Use of ferroelectric single-crystal bimorphs for precise positioning in scanning probe microscope // Microscopy and Microanalysis. 2020. V. 26. DOI:10.1017/S1431927620023417; Kubasov I. V., Kislyuk A. M., Turutin A. V., Shportenko A. S., Temirov A. A., Malinkovich M. D., Parkhomenko Y. N. Cell stretcher based on single-crystal bimorph piezoelectric actuators // Microscopy and Microanalysis. 2020. V. 26. DOI:10.1017/S1431927620022746; Uchino K. Advanced piezoelectric materials. Cambridge: Woodhead Publishing Limited, 2010. 848 p. DOI:10.1533/9781845699758; Ma T., Wang J., Du J., Yuan L., Zhang Z., Zhang C. Effect of the ferroelectric inversion layer on resonance modes of LiNbO3 thickness-shear mode resonators // Appl. Phys. Express. 2012. V. 5, N 11. P. 116501. DOI:10.1143/APEX.5.116501; Kugel V. D., Rosenman G., Shur D. Piezoelectric properties of bidomain LiNbO3 crystals // J. Appl. Phys. 1995. V. 78, N 9. P. 5592—5596. DOI:10.1063/1.359681; Huang D., Yang J. Flexural vibration of a lithium niobate piezoelectric plate with a ferroelectric inversion layer // Mech. Adv. Mater. Struct. 2020. V. 27, N 10. P. 831—839. DOI:10.1080/15376494.2018.1500664; Nakamura K., Tourlog A. Propagation characteristics of leaky surface acoustic waves and surface acoustic waves on LiNbO3 substrates with a ferrroelectric inversion layer // Jpn. J. Appl. Phys. 1995. V. 34, N 9B. P. 5273—5275. DOI:10.1143/JJAP.34.5273; Nakamura K., Fukazawa K., Yamada K., Saito S. Broadband ultrasonic transducers using a LiNbO3 plate with a ferroelectric inversion layer // IEEE Tran. Ultrason. Ferroelectr. Freq. Control. 2003. V. 50, N 11. P. 1558—1562. DOI:10.1109/TUFFC.2003.1251139; Wang Z., Zhao M., Yang J. A piezoelectric gyroscope with self-equilibrated coriolis force based on overtone thickness-shear modes of a lithium niobate plate with an inversion layer // IEEE Sensors J. 2014. P. 1—1. DOI:10.1109/JSEN.2014.2366235; Kubasov I. V., Kislyuk A. M., Malinkovich M. D., Temirov A. A., Ksenich S. V., Kiselev D. A., Bykov A. S., Parkhomenko Y. N. A novel vibration sensor based on bidomain lithium niobate crystal // Acta Phys. Polonica A. 2018. V. 134, N 1. P. 106—108. DOI:10.12693/APhysPolA.134.106; Burdin D. A., Chashin D. V., Ekonomov N. A., Fetisov Y. K., Stashkevich A. A. High-sensitivity dc field magnetometer using nonlinear resonance magnetoelectric effect // J. Magn. Magn. Mater. 2016. V. 405. P. 244—248. DOI:10.1016/j.jmmm.2015.12.079; Vidal J. V., Turutin A. V., Kubasov I. V., Malinkovich M. D., Parkhomenko Y. N., Kobeleva S. P., Kholkin A. L., Sobolev N. A. Equivalent magnetic noise in magnetoelectric laminates comprising bidomain LiNbO3 crystals // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2017. V. 64, N 7. P. 1102—1119. DOI:10.1109/TUFFC.2017.2694342; Turutin A. V., Vidal J. V., Kubasov I. V., Kislyuk A. M., Malinkovich M. D., Parkhomenko Y. N., Kobeleva S. P., Kholkin A. L., Sobolev N. A. Low-frequency magnetic sensing by magnetoelectric metglas/bidomain LiNbO3 long bars // J. Phys. D: Appl. Phys. 2018. V. 51, N 21. P. 214001. DOI:10.1088/1361-6463/aabda4; Bichurin M. I., Sokolov O. V., Leontiev V. S., Petrov R. V., Tatarenko A. S., Semenov G. A., Ivanov S. N., Turutin A. V., Kubasov I. V., Kislyuk A. M., Malinkovich M. D., Parkhomenko Y. N., Kholkin A. L., Sobolev N. A. Magnetoelectric effect in the bidomain lithium niobate/nickel/metglas gradient structure // Phys. Status Solidi (B). 2020. V. 257, N 3. DOI:10.1002/pssb.201900398; Parkhomenko Y. N., Sobolev N. A., Kislyuk A. M., Kholkin A. L., Malinkovich M. D., Turutin A. V., Kobeleva S. P., Vidal J. V., Pakhomov O. V., Kubasov I. V. Magnetoelectric metglas/bidomain y + 140°-cut lithium niobate composite for sensing fT magnetic fields // Appl. Phys. Lett. 2018. V. 112, N 26. P. 262906. DOI:10.1063/1.5038014; Пат. 188677 (РФ). Магнитоэлектрический сенсор магнитных полей / А. В. Турутин, И. В. Кубасов, А. М. Кислюк, М. Д. Малинкович, С. П. Кобелева, Ю. Н. Пархоменко, Н. А. Соболев, 2019.; Turutin A. V., Vidal J. V., Kubasov I. V., Kislyuk A. M., Kiselev D. A., Malinkovich M. D., Parkhomenko Y. N., Kobeleva S. P., Kholkin A. L., Sobolev N. A. Highly sensitive magnetic field sensor based on a metglas/bidomain lithium niobate composite shaped in form of a tuning fork // J. Magn. Magn. Mater. 2019. V. 486. DOI:10.1016/j.jmmm.2019.04.061; Vidal J. V., Turutin A. V., Kubasov I. V., Kislyuk A. M., Malinkovich M. D., Parkhomenko Y. N., Kobeleva S. P., Pakhomov O. V., Sobolev N. A., Kholkin A. L. Low-frequency vibration energy harvesting with bidomain LiNbO3 single crystals // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2019. V. 66, N 9. P. 1480—1487. DOI:10.1109/TUFFC.2019.2908396; Kubasov I. V., Kislyuk A. M., Malinkovich M. D., Temirov A. A., Ksenich S. V., Kiselev D. A., Bykov A. S., Parkhomenko Y. N. Vibrational power harvester based on lithium niobate bidomain plate // Acta Phys. Polonica A. 2018. V. 134, N 1. P. 90—92. DOI:10.12693/APhysPolA.134.90; Vidal J. V., Turutin A. V., Kubasov I. V., Kislyuk A. M., Kiselev D. A., Malinkovich M. D., Parkhomenko Y. N., Kobeleva S. P., Sobolev N. A., Kholkin A. L. Dual vibration and magnetic energy harvesting with bidomain LiNbO3 based composite // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2020. V. 67, N 6. P. 1219—1229. DOI:10.1109/TUFFC.2020.2967842; Пат. 2643151 (РФ). Радиоизотопный механо-электрический генератор / М. Д. Малинкович, А. С. Быков, Р. Н. Жуков, И. В. Кубасов, Ю. Н. Пархоменко, Д. А. Киселев, А. А. Полисан, А. А. Темиров, С. В. Ксенич, 2016.; https://met.misis.ru/jour/article/view/383
-
9
المؤلفون: A. V. Turutin, I. V. Kubasov, A. M. Kislyuk, V. V. Kuts, M. D. Malinkovich, Yu. N. Parkhomenko, N. A. Sobolev
المصدر: Nanobiotechnology Reports. 17:261-289
مصطلحات موضوعية: Biomedical Engineering, General Materials Science, Bioengineering, Electrical and Electronic Engineering, Condensed Matter Physics, Engineering (miscellaneous)
-
10Academic Journal
المؤلفون: A. M. Kislyuk, T. S. Ilina, I. V. Kubasov, D. A. Kiselev, A. A. Temirov, A. A. Turutin, M. D. Malinkovich, A. A. Polisan, Yu. N. Parkhomenko, А. М. Кислюк, Т. С. Ильина, И. В. Кубасов, Д. А. Киселев, А. А. Темиров, А. В. Турутин, М. Д. Малинкович, А. А. Полисан, Ю. Н. Пархоменко
المساهمون: The study was performed with financial support from the Russian Foundation for Basic Research, Project No. 18-32-00941. Atomic force microscopy studies were carried out with financial support from the Ministry of Education and Science of the Russian Federation on premises of the Joint Use Center for Materials Science and Metallurgy of NUST MISiS within State Assignment (basic research, project No. 0718-2020-0031 «New magnetoelectric composite materials based on oxide ferroelectrics having an ordered domain structure: production and properties»)., Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 18-32-00941. Исследования методами атомно-силовой микроскопии выполнены при финансовой поддержке Министерства науки и высшего образования РФ на оборудовании ЦКП «Материаловедение и металлургия» НИТУ «МИСиС» в рамках Государственного задания (проект 11.9706.2017/7.8).
المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 22, № 1 (2019); 5-17 ; Известия высших учебных заведений. Материалы электронной техники; Том 22, № 1 (2019); 5-17 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2019-1
مصطلحات موضوعية: поверхностный потенциал, bidomain crystal, charged domain wall, diffusion annealing, piezoresponse force microscopy, surface potential, бидоменный кристалл, заряженная междоменная граница, диффузионный отжиг, силовая микроскопия пьезоотклика
وصف الملف: application/pdf
Relation: https://met.misis.ru/jour/article/view/286/273; Lengyel K., Péter Á., Kovács L., Corradi G., Pálfalvi L., Hebling J., Unferdorben M., Dravecz G., Hajdara I., Szaller Zs., Polgár K. Growth, defect structure, and THz application of stoichiometric lithium niobate // Appl. Phys. Rev. 2015. V. 2, N 4. P. 040601. DOI:10.1063/1.4929917; Bazzan M., Fontana M. Preface to special topic: Lithium niobate properties and applications: reviews of emerging trends // Appl. Phys. Rev. 2015. V. 2, N 4. P. 040501. DOI:10.1063/1.4928590; Bazzan M., Sada C. Optical waveguides in lithium niobate: Recent developments and applications // Appl. Phys. Rev. 2015. V. 2, N 4. P. 040603. DOI:10.1063/1.4931601; Boes A., Corcoran B., Chang L., Bowers J., Mitchell A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits // Laser & Photonics Rev. 2018. V. 12, N 4. P. 1700256. DOI:10.1002/lpor.201700256; Turutin A. V, Vidal J. V, Kubasov I. V, Kislyuk A. M., Malinkovich M. D., Parkhomenko Y. N., Kobeleva S. P., Kholkin A. L., Sobolev N. A. Low-frequency magnetic sensing by magnetoelectric metglas/bidomain LiNbO3 long bars // J. Phys. D: Appl. Phys. 2018. V. 51, N 21. P. 214001. DOI:10.1088/1361-6463/aabda4; Kubasov I. V., Kislyuk A. M., Malinkovich M. D., Temirov A. A., Ksenich S. V., Kiselev D. A., Bykov A. S., Parkhomenko Y. N. A Novel vibration sensor based on bidomain lithium niobate crystal // Acta Phys. Polonica A. 2018. V. 134, N 1. P. 106—108. DOI:10.12693/APhysPolA.134.106; Zhukov R. N., Ksenich S. V., Kubasov I. V., Timushkin N. G., Temirov A. A., Kiselev D. A., Bykov A. S., Malinkovich M. D., Vygovskaya E. A., Toporova O. V. Studying local conductivity in LiNbO3 films via electrostatic force microscopy // Bull. Russian Academy of Sciences: Physics. 2014. V. 78, N 11. P. 1223—1226. DOI:10.3103/S106287381411029X; Kubasov I. V., Kislyuk A., Turutin A., Bykov A., Kiselev D., Temirov A., Zhukov R., Sobolev N., Malinkovich M., Parkhomenko Y. Low-frequency vibration sensor with a sub-nm sensitivity using a bidomain lithium niobate crystal // Sensors. 2019. V. 19, N 3. P. 614. DOI:10.3390/s19030614; Parkhomenko Y. N., Sobolev N. A., Kislyuk A. M., Kholkin A. L., Malinkovich M. D., Turutin A. V., Kobeleva S. P., Vidal J. V., Pakhomov O. V., Kubasov I. V. Magnetoelectric metglas/bidomain y + 140°-cut lithium niobate composite for sensing fT magnetic fields // Appl. Phys. Lett. 2018. V. 112, N 26. P. 262906. DOI:10.1063/1.5038014; Vidal J. V., Turutin A. V., Kubasov I. V., Malinkovich M. D., Parkhomenko Y. N., Kobeleva S. P., Kholkin A. L., Sobolev N. A. Equivalent magnetic noise in magnetoelectric laminates comprising bidomain LiNbO3 crystals // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2017. V. 64, N 7. P. 1102—1119. DOI:10.1109/TUFFC.2017.2694342; Kubasov I. V., Kislyuk A. M., Malinkovich M. D., Temirov A. A., Ksenich S. V., Kiselev D. A., Bykov A. S., Parkhomenko Y. N. Vibrational power harvester based on lithium niobate bidomain plate // Acta Phys. Polonica A. 2018. V. 134, N 1. P. 90—92. DOI:10.12693/APhysPolA.134.90; Chen F., Kong L., Song W., Jiang C., Tian S., Yu F., Qin L., Wang C., Zhao X. The electromechanical features of LiNbO3 crystal for potential high temperature piezoelectric applications // J. Materiomics. 2019. V. 5, N 1. P. 73—80. DOI:10.1016/j.jmat.2018.10.001; Esin A. A., Akhmatkhanov A. R., Shur V. Y. Tilt control of the charged domain walls in lithium niobate // Appl. Phys. Lett. 2019. V. 114, N 9. P. 092901. DOI:10.1063/1.5079478; Neradovskaia E. A., Neradovskiy M. M., Esin A. A., Chuvakova M. A., Baldil P., De Micheli M. P., Akhmatkhanov A. R., Forget N., Shur V. Y. Domain kinetics during polarization reversal in 36° Y-cut congruent lithium niobate // IOP Conference Series: Materials Science and Engineering. 2018. V. 443. P. 012024. DOI:10.1088/1757-899X/443/1/012024; Campbell M. P., McConville J. P. V., McQuaid R. G. P., Prabhakaran D., Kumar A., Gregg J. M. Hall effect in charged conducting ferroelectric domain walls // Nature Communications. 2016. V. 7, N 1. P. 13764. DOI:10.1038/ncomms13764; Kuroda A., Kurimura S., Uesu Y. Domain inversion in ferroelectric MgO : LiNbO3 by applying electric fields // Appl. Phys. Lett. 1996. V. 69, N 11. P. 1565—1567. DOI:10.1063/1.117031; Wolba B., Seidel J., Cazorla C., Godau C., Haußmann A., Eng L. M. Resistor network modeling of conductive domain walls in lithium niobate // Advanced Electronic Materials. 2018. V. 4, N 1. P. 1700242. DOI:10.1002/aelm.201700242; Gureev M. Y., Tagantsev A. K., Setter N. Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric // Phys. Rev. B. 2011. V. 83, N 18. P. 184104. DOI:10.1103/PhysRevB.83.184104; Strukov B. A., Levanyuk A. P. Ferroelectric phenomena in crystals. Berlin; Heidelberg: Springer, 1998. DOI:10.1007/978-3-642-60293-1; Tasson M., Legal H., Peuzin J. C., Lissalde F. C. Mécanismes d′orientation de la polarisation spontanée dans le niobate de lithium au voisinage du point de Curie // Phys. Status Solidi (a). 1975. V. 31, N 2. P. 729—737. DOI:10.1002/pssa.2210310246; Tasson M., Legal H., Gay J. C., Peuzin J. C., Lissalde F. C. Piezoelectric study of poling mechanism in lithium niobate crystals at temperature close to the curie point // Ferroelectrics. 1976. V. 13, N 1. P. 479—481. DOI:10.1080/00150197608236646; Bykov A. S., Grigoryan S. G., Zhukov R. N., Kiselev D. A., Ksenich S. V., Kubasov I. V., Malinkovich M. D., Parkhomenko Y. N. Formation of bidomain structure in lithium niobate plates by the stationary external heating method // Russian Microelectronics. 2014. V. 43, N 8. P. 536—542. DOI:10.1134/S1063739714080034; Kubasov I. V., Kislyuk A. . M., Bykov A. S., Malinkovich M. D., Zhukov R. N., Kiselev D. A., Ksenich S. V., Temirov A. A., Timushkin N. G., Parkhomenko Y. N. Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing // Crystallography Reports. 2016. V. 61, N 2. P. 258—262. DOI:10.1134/S1063774516020115; Kubasov I. V., Timshina M. S., Kiselev D. A., Malinkovich M. D., Bykov A. S., Parkhomenko Y. N. Interdomain region in single-crystal lithium niobate bimorph actuators produced by light annealing // Crystallography Reports. 2015. V. 60, N 5. P. 700—705. DOI:10.1134/S1063774515040136; Ohnishi N. An etching study on a heat-induced layer at the positive-domain surface of LiNbO3 // Jpn. J. Appl. Phys. 1977. V. 16, N 6. P. 1069—1070. DOI:10.1143/JJAP.16.1069; Nakamura K., Ando H., Shimizu H. Partial domain inversion in LiNbO3 plates and its applications to piezoelectric devices // IEEE 1986 Ultrasonics Symposium. 1986. P. 719—722. DOI:10.1109/ULTSYM.1986.198828; Nakamura K., Ando H., Shimizu H. Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment // Appl. Phys. Lett. 1987. V. 50, N 20. P. 1413—1414. DOI:10.1063/1.97838; Nakamura K., Ando H., Shimizu H. Bending vibrator consisting of a LiNbO3 plate with a ferroelectric inversion layer // Jpn. J. Appl. Phys. 1987. V. 26, N S2. P. 198. DOI:10.7567/JJAPS.26S2.198; Nakamura K., Shimizu H. Hysteresis-free piezoelectric actuators using LiNbO3 plates with a ferroelectric inversion layer // Ferroelectrics. 1989. V. 93, N 1. P. 211—216. DOI:10.1080/00150198908017348; Nakamura K., Nakamura T., Yamada K. Torsional actuators using LiNbO3 plates with an inversion layer // Jpn. J. Appl. Phys. 1993. V. 32, Pt 1. N 5B. P. 2415—2417. DOI:10.1143/JJAP.32.2415; Rosenman G., Kugel V. D., Shur D. Diffusion-induced domain inversion in ferroelectrics // Ferroelectrics. 1995. V. 172, N 1. P. 7—18. DOI:10.1080/00150199508018452; Ievlev A. V., Alikin D. O., Morozovska A. N., Varenyk O. V., Eliseev E. A., Kholkin A. L., Shur V. Y., Kalinin S. V. Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals // ACS Nano. 2015. V. 9, N 1. P. 769—777. DOI:10.1021/nn506268g; Alikin D. O., Ievlev A. V., Turygin A. P., Lobov A. I., Kalinin S. V., Shur V. Y. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals // Appl. Phys. Lett. 2015. V. 106, N 18. P. 182902. DOI:10.1063/1.4919872; Morozovska A. N., Ievlev A. V., Obukhovskii V. V., Fomichov Y., Varenyk O. V., Shur V. Y., Kalinin S. V., Eliseev E. A. Self-consistent theory of nanodomain formation on nonpolar surfaces of ferroelectrics // Phys. Rev. B. 2016. V. 93, N 16. P. 165439. DOI:10.1103/PhysRevB.93.165439; Starkov A. S., Starkov I. A. Dependence of the ferroelectric domain shape on the electric field of the microscope tip // J. Appl. Phys. 2015. V. 118, N 7. P. 072010. DOI:10.1063/1.4927800; Morozovska A. N., Eliseev E. A., Kalinin S. V. Domain nucleation and hysteresis loop shape in piezoresponse force spectroscopy // Appl. Phys. Lett. 2006. V. 89, N 19. P. 192901. DOI:10.1063/1.2378526; Turygin A., Alikin D., Alikin Y., Shur V. The formation of self-organized domain structures at non-polar cuts of lithium niobate as a result of local switching by an SPM tip // Materials. 2017. V. 10, N 10. P. 1143. DOI:10.3390/ma10101143; Strelcov E., Ievlev A. V., Jesse S., Kravchenko I. I., Shur V. Y., Kalinin S. V. Direct probing of charge injection and polarization-controlled ionic mobility on ferroelectric LiNbO3 surfaces // Advanced Materials. 2014. V. 26, N 6. P. 958—963. DOI:10.1002/adma.201304002; Bordui P. F., Jundt D. H., Standifer E. M., Norwood R. G., Sawin R. L., Galipeau J. D. Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance // J. Appl. Phys. 1999. V. 85, N 7. P. 3766—3769. DOI:10.1063/1.369775; Dhar A., Singh N., Singh R. R. K., Singh R. R. K. Low temperature dc electrical conduction in reduced lithium niobate single crystals // J. Phys. Chem. Solids. 2013. V. 74, N 1. P. 146—151. DOI:10.1016/j.jpcs.2012.08.011; Pawlik A.-S., Kämpfe T., Haußmann A., Woike T., Treske U., Knupfer M., Büchner B., Soergel E., Streubel R., Koitzsch A., Eng L. M. Polarization driven conductance variations at charged ferroelectric domain walls // Nanoscale. 2017. V. 9, N 30. P. 10933—10939. DOI:10.1039/C7NR00217C; Ievlev A. V., Morozovska A. N., Shur V. Y., Kalinin S. V. Ferroelectric switching by the grounded scanning probe microscopy tip // Phys. Rev. B. 2015. V. 91, N 21. P. 214109. DOI:10.1103/PhysRevB.91.214109; Turygin A. P., Alikin D. O., Kosobokov M. S., Ievlev A. V., Shur V. Y. Self-organized formation of quasi-regular ferroelectric nanodomain structure on the nonpolar cuts by grounded SPM tip // ACS Applied Materials & Interfaces. 2018. V. 10, N 42. P. 36211—36217. DOI:10.1021/acsami.8b10220; Jösch W., Munser R., Ruppel W., Würfel P. The photovoltaic effect and the charge transport in LiNbO3 // Ferroelectrics. 1978. V. 21, N 1. P. 623—625. DOI:10.1080/00150197808237347; Werner C. S., Herr S. J., Buse K., Sturman B., Soergel E., Razzaghi C., Breunig I. Large and accessible conductivity of charged domain walls in lithium niobate // Scientific Reports. 2017. V. 7, N 1. P. 9862. DOI:10.1038/s41598-017-09703-2; Volk T., Wöhlecke M. Lithium Niobate. Berlin; Heidelberg: Springer, 2008. DOI:10.1007/978-3-540-70766-0; Chien C. L., Westgate C. R. (Eds.) The Hall effect and its applications. Boston (MA) Springe, 1980. DOI:10.1007/978-1-4757-1367-1; Dhar A., Mansingh A. On the correlation between optical and electrical properties in reduced lithium niobate crystals // J. Phys. D: Appl. Phys. 1991. V. 24, N 9. P. 1644—1648. DOI:10.1088/0022-3727/24/9/019; Imlau M., Badorreck H., Merschjann C. Optical nonlinearities of small polarons in lithium niobate // Appl. Phys. Rev. 2015. V. 2, N 4. P. 040606. DOI:10.1063/1.4931396; Yatsenko A. V., Yevdokimov S. V., Pritulenko A. S., Sugak D. Y., Solskii I. M. Electrical properties of LiNbO3 crystals reduced in a hydrogen atmosphere // Phys. Solid State. 2012. V. 54, N 11. P. 2231—2235. DOI:10.1134/S1063783412110339; Saito A., Matsumoto H., Ohnisi S., Akai-Kasaya M., Kuwahara Y., Aono M. Structure of atomically smoothed LiNbO3 (0001) surface // Jpn. J. Appl. Phys. 2004. V. 43, N 4B. P. 2057—2060. DOI:10.1143/JJAP.43.2057; Sanna S., Schmidt W. G. LiNbO3 surfaces from a microscopic perspective // J. Physics: Condensed Matter. 2017. V. 29, N 41. P. 413001. DOI:10.1088/1361-648X/aa818d; https://met.misis.ru/jour/article/view/286
-
11
المؤلفون: I. V. Kubasov, A. V. Stepanov, A. A. Panov, O. V. Chistyakova, I. B. Sukhov, M. G. Dobretsov
المصدر: Journal of Evolutionary Biochemistry and Physiology. 57:1511-1521
مصطلحات موضوعية: Physiology, Biochemistry, Ecology, Evolution, Behavior and Systematics
-
12Academic Journal
المؤلفون: M. D. Malinkovich, A. S. Bykov, I. V. Kubasov, D. A. Kiselev, S. V. Ksenich, R. N. Zhukov, A. A. Temirov, N. G. Timushkin, Yu. N. Parkhomenko, М. Д. Малинкович, А. С. Быков, И. В. Кубасов, Д. А. Киселев, С. В. Ксенич, Р. Н. Жуков, А. А. Темиров, Н. Г. Тимушкин, Ю. Н. Пархоменко
المساهمون: Ministry of Education and Science of the Russian Federation (Project ID RFMEFI57815X0102), Министерство образования и науки Российской Федерации (ID проекта RFMEFI57815X0102).
المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 18, № 4 (2015); 255-260 ; Известия высших учебных заведений. Материалы электронной техники; Том 18, № 4 (2015); 255-260 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2015-4
مصطلحات موضوعية: бета−вольтаический генератор, ferroelectric, domain structure, ferroelectric transducer, betavoltaic generator, сегнетоэлектрик, доменная структура, пьезоэлектрический преобразователь
وصف الملف: application/pdf
Relation: https://met.misis.ru/jour/article/view/223/188; Yurchuk, S. Yu. Simulation the beta power sources characteristics / S. Yu. Yurchuk, S. A. Legotin, V. N. Murashev, A. A. Krasnov, Yu. K. Omel’chenko, Yu. V. Osipov, S. I. Didenko, O. I. Rabinovich // J. Nano− and Electronic Phys. − 2015. − V. 7, N 3. − P. 03014−1—03014−5.; Murashev, V. N. Silicon betavoltaic batteries structures / V. N. Murashev, S. A. Legotin, O. I. Rabinovich, O. R. Abdulaev, U. V. Osipov // J. Nano− and Electronic Phys. − 2015. − V. 7, N 4. − P. 04034−1—04034−3.; Duggirala, R. Radioisotope thin−film fueled microfabricated reciprocating electromechanical power generator / R. Duggirala, R. G. Polcawich, M. Dubey, A. Lal // J. Microelectromechanical Systems. − 2008. − V. 17, N 4. − P. 837—849. DOI:10.1109/JMEMS.2008.924854; Wang, Q.−M. Performance analysis of piezoelectric cantilever bending actuators / Q.−M. Wang, L. E. Cross // Ferroelectrics. − 1998. − V. 215, N 1. − P. 187—213. DOI:10.1080/00150199808229562; Friend, J. A piezoelectric linear actuator formed from a multitude of bimorphs / J. Friend, A. Umeshima, T. Ishii, K. Nakamura, S. Ueha // Sensors and Actuators A: Physical. − 2004. − V. 109, N 3. − P. 242—251. DOI:10.1016/j. sna.2003.10.040; Lal, A. Daintiest dynamos [nuclear microbatteries] / A. Lal, J. Blanchard // IEEE Spectrum. − 2004. − V. 41, N 9. − P. 36—41. DOI:10.1109/MSPEC.2004.1330808; Lal, A. Pervasive power: a radioisotope−powered piezoelectric generator / A. Lal, R. Duggirala, H. Li // IEEE Pervasive Computing. − 2005. − V. 4, N 1. − P. 53—61. DOI:10.1109/MPRV.2005.21; Duggirala, R. High efficiency radioisotope energy conversion using reciprocating electromechanical converters with integrated betavoltaics / R. Duggirala, H. Li, A. Lal // Appl. Phys. Lett. − 2008. − V. 92, N 15. − P. 154104−1−3. DOI:10.1063/1.2912522; Funasaka, T. Piezoelectric generator using a LiNbO3 plate with an inverted domain / T. Funasaka, M. Furuhata, Y. Hashimoto, K. Nakamura // IEEE Ultrasonics Symposium Proceedings. − 1998. − V. 1. − P. 959—962.; Uchino, K. Monomorph characteristics in Pb(Zr,Ti)O3 based ceramics / K. Uchino, M. Yoshizaki, A. Nagao // Ferroelectrics. − 1989. − V. 95, N 1. − P. 161—164. DOI:10.1080/00150198908245196; Nakamura, K. Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment / K. Nakamura, H. Ando, H. Shimizu // Appl. Phys. Lett. − 1987. − V. 50, N 20. − P. 1413—1414. DOI:10.1063/1.97838; Кубасов, И. В. Междоменная область в монокристаллических биморфных актюаторах на основе ниобата лития, полученных методом светового отжига / И. В. Кубасов, М. С. Тимшина, Д. А. Киселев, М. Д. Малинкович, А. С. Быков, Ю. Н. Пархоменко // Кристаллография. − 2015. − Т. 60, № 5. − С. 764—769. DOI:10.7868/ S002347611504013X; Antipov, V. V. Formation of bidomain structure in lithium niobate single crystals by electrothermal method / V. V. Antipov, A. S. Bykov, M. D. Malinkovich, Y. N. Parkhomenko // Ferroelectrics. − 2008. − V. 374, N 1. − P. 65—72. DOI:10.1080/00150190802427127; Gopalan, V. Defect−domain wall interactions in trigonal ferroelectrics / V. Gopalan, V. Dierolf, D. A. Scrymgeour // Annu. Rev. Mater. Res. − 2007. − V. 37. − P. 449—489. DOI:10.1146/annurev. matsci.37.052506.084247; Niizeki, N. Growth ridges, etched hillocks, and crystal structure of lithium niobate / N. Niizeki, T. Yamada, H. Toyoda // Jap. J. Appl. Phys. − 1967. − V. 6, N 3. − P. 318—327.; Bykov, A. S. Formation of bidomain structure in lithium niobate plates by the stationary external heating method / A. S. Bykov, S. G. Grigoryan, R. N. Zhukov, D. A. Kiselev, S. V. Ksenich, I. V. Kubasov, M. D. Malinkovich, Yu. N. Parkhomenko // Russian Microelectronics. − 2014. − V. 43, N 8. − P. 536—542. DOI:10.1134/S1063739714080034; https://met.misis.ru/jour/article/view/223
-
13
المؤلفون: A. M. Kislyuk, Mikhail D. Malinkovich, Andrei V. Turutin, Dmitry A. Kiselev, Andrey S. Shportenko, Yuriy N. Parkhomenko, Aleksandr A. Temirov, Tatiana S. Ilina, I. V. Kubasov
المصدر: Journal of Materials Chemistry C. 9:15591-15607
مصطلحات موضوعية: Materials science, Condensed matter physics, Lithium niobate, Charge density, General Chemistry, Conductivity, Polaron, Electron localization function, Photoexcitation, chemistry.chemical_compound, Nanoelectronics, chemistry, Electrical resistivity and conductivity, Materials Chemistry
-
14
المؤلفون: Aleksandr A. Temirov, A. M. Kislyuk, Sergey Ksenich, I. V. Kubasov, Mikhail D. Malinkovich, Yuriy N. Parkhomenko, Andrei V. Turutin
المصدر: Microscopy and Microanalysis. 26:2980-2983
مصطلحات موضوعية: Scanning probe microscopy, Materials science, business.industry, Optoelectronics, business, Instrumentation, Single crystal, Ferroelectricity
-
15
المؤلفون: Danila Bobkov, I. V. Kubasov, A. A. Panov, M. G. Dobretsov
المصدر: Journal of Evolutionary Biochemistry and Physiology. 56:333-337
مصطلحات موضوعية: 0301 basic medicine, medicine.medical_specialty, Physiology, Chemistry, Stochastic variation, Pipette, Systemin, Rat heart, Biochemistry, 03 medical and health sciences, 030104 developmental biology, 0302 clinical medicine, Negative phase, Confocal imaging, Internal medicine, cardiovascular system, Extracellular, Cardiology, medicine, cardiovascular diseases, 030217 neurology & neurosurgery, Ecology, Evolution, Behavior and Systematics
-
16
المؤلفون: Alexander M. Kislyuk, S. P. Kobeleva, I. V. Kubasov, João V. Vidal, Dmitry A. Kiselev, Mikhail D. Malinkovich, Andrei L. Kholkin, Andrei V. Turutin, Nikolai A. Sobolev, Yuriy N. Parkhomenko
المصدر: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 67:1219-1229
مصطلحات موضوعية: Physics, Acoustics and Ultrasonics, Magnetic energy, Input impedance, 01 natural sciences, Vibration, Magnet, 0103 physical sciences, Metglas, Electrical and Electronic Engineering, Atomic physics, Proof mass, 010301 acoustics, Instrumentation, Voltage, Power density
-
17
المصدر: Journal of Comparative Physiology B. 190:361-370
مصطلحات موضوعية: 030110 physiology, 0106 biological sciences, 0301 basic medicine, Isolated Heart Preparation, animal structures, Physiology, Chick Embryo, In ovo, 010603 evolutionary biology, 01 natural sciences, Biochemistry, Andrology, 03 medical and health sciences, Endocrinology, Acute hypoxia, Heart Rate, Heart rate, medicine, Animals, Hypoxia, Incubation, Ecology, Evolution, Behavior and Systematics, business.industry, Embryo, Hypoxia (medical), embryonic structures, Animal Science and Zoology, medicine.symptom, business, Recovery phase
-
18
المؤلفون: M. G. Dobretsov, O. V. Chistyakova, I. V. Kubasov, I. B. Sukhov
المصدر: Journal of Evolutionary Biochemistry and Physiology. 56:174-177
مصطلحات موضوعية: medicine.medical_specialty, Endocrinology, Physiology, Chemistry, Diabetes mellitus, Internal medicine, medicine, Prediabetes, medicine.disease, Na k atpase activity, Biochemistry, Ecology, Evolution, Behavior and Systematics
-
19Academic Journal
المؤلفون: I. V. Kubasov, A. V. Popov, A. S. Bykov, A. A. Temirov, A. M. Kislyuk, R. N. Zhukov, D. A. Kiselev, M. V. Chichkov, M. D. Malinkovich, Yu. N. Parkhomenko, И. В. Кубасов, А. В. Попов, А. С. Быков, А. А. Темиров, А. М. Кислюк, Р. Н. Жуков, Д. А. Киселев, М. В. Чичков, М. Д. Малинкович, Ю. Н. Пархоменко
المساهمون: Ministry of Education and Science of the Russian Federation ») (Project ID RFMEFI57816X0187), Министерство образования и науки Российской Федерации (RFMEFI57816X0187)
المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 19, № 2 (2016); 95-102 ; Известия высших учебных заведений. Материалы электронной техники; Том 19, № 2 (2016); 95-102 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2016-2
مصطلحات موضوعية: пьезоэлектрические свойства, lithium tantalate, bidomain crystal, anisotropy of deformation, actuator, piezoelectric properties, танталат лития, бидоменный кристалл, анизотропия деформации, актюатор
وصف الملف: application/pdf
Relation: https://met.misis.ru/jour/article/view/268/224; Volk, T. R. Lithium niobate: defects, photorefraction and ferroelectric switching. In: Springer Series in Materials Science. V. 115 / R. Volk, M. Wöhlecke. - Berlin; Heidelberg: Springer, 2009. - 260 p. DOI:10.1007/978-3-540-70766-0; Arizmendi, L. Photonic applications of lithium niobate crystals / L. Arizmendi // Phys. Status Solidi (a). - 2004. - V. 201, N 2. - P. 253—283. DOI:10.1002/pssa.200303911; Wooten, E. L. A review of lithium niobate modulators for fiber-optic communications systems / E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi // IEEE Journal of selected topics in Quantum Electronics. - 2000. - V. 6, N 1. - P. 69—82. DOI:10.1109/2944.826874; Gualtieri, J. G. Piezoelectric materials for acoustic wave applications / J. G. Gualtieri, J. A. Kosinski, A. Ballato // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. - 1994. - V. 41, N 1. - P. 53—59. DOI:10.1109/58.265820; Scott, J. F. Ferroelectric memories In: Springer Series in Advanced Microelectronics. V. 3 / J. F. Scott. - Berlin; Heidelberg: Springer, 2000. - 248 p. DOI:10.1007/978-3-662-04307-3; Cross, L. E. Ferroelectric materials for electromechanical transducer applications / L. E. Cross // Materials Chemistry and Physics. - 1996. - V. 43, N 2. - P. 108—115. DOI:10.1016/02540584(95)01617-4; Lu, Y. L. Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice / Y. L. Lu, Y. Q. Lu, X. F. Cheng, G. P. Luo, C. C. Xue, N. B. Ming // Appl. Phys. Lett. - 1996. - V. 68, N 19. - P. 2642—2644. DOI:10.1063/1.116267; Antipov, V. V. Formation of bidomain structure in lithium niobate single crystals by electrothermal method / V. V. Antipov, A. S. Bykov, M. D. Malinkovich, Yu. N. Parkhomenko // Ferroelectrics. - 2008. - V. 374, N 1. - P. 65—72. DOI:10.1080/00150190802427127; Grilli, S. Investigation on reversed domain structures in lithium niobate crystals patterned by interference lithography / S. Grilli, P. Ferraro, S. de Nicola, A. Finizio, G. Pierattini, P. de Natale, M. Chiarini // Optics Express. - 2003. - V. 11, N 4. - P. 392—405. DOI:10.1364/OE.11.000392; Dierolf, V. Direct-write method for domain inversion patterns in LiNbO3 / V. Dierolf, C. Sandmann // Appl. Phys. Lett. - 2004. - V. 84, N 20. - P. 3987—3989. DOI:10.1063/1.1753057; Zhang, X. Domain switching and surface fabrication of lithium niobate single crystals / X. Zhang, X. Dongfeng, K. Kenji // J. Alloys and Compounds. - 2008. - V. 499, N 1–2. - P. 219—223. DOI:10.1016/j.jallcom.2006.02.091; Nutt, A. C. Domain inversion in LiNbO3 using direct electron — beam writing / A. C. Nutt, V. Gopalan, M. C. Gupta // Appl. Phys. Lett. - 1992. - V. 60, N 23. - P. 2828—2830. DOI:10.1063/1.106837; Miyazawa, S. Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide / S. Miyazawa // J. Appl. Phys. - 1979. - V. 50, N 7. - P. 4599—4603. DOI:10.1063/1.326568; Rosenman, G. Diffusion-induced domain inversion in ferroelectrics / G. Rosenman, V. D. Kugel, D. Shur // Ferroelectrics. - 1995. - V. 172, N 1. - P. 7—18. DOI:10.1080/00150199508018452; Chen, J. Influence of growth striations on para-ferroelectric phase transitions: Mechanism of the formation of periodic laminar domains in LiNbO3 and LiTaO3 / J. Chen, Q. Zhou, J. F. Hong, - V. 66, N 1. - P. 336—341. DOI:10.1063/1.343879; Malinkovich, M. D. Formation of a bidomain structure in lithium niobate wafers for beta-voltaic alternators / M. D. Malinkovich, A. S. Bykov, I. V. Kubasov, D. A. Kiselev, S. V. Ksenich, R. N. Zhukov, A. A. Temirov, N. G. Timushkin, Yu. N. Parkhomenko // Russian Microelectronics. - 2016. - V. 45, N 8. - P. 582—586. DOI:10.1134/S1063739716080096; Kugel, V. D. Domain inversion in heat-treated LiNbO3 crystals / V. D. Kugel, G. Rosenman // Appl. Phys. Lett. - 1993. - V. 62, N 23. - P. 2902—2904. DOI:10.1063/1.109191; Kubasov, I. V. Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing / I. V. Kubasov, A. M. Kislyuk, A. S. Bykov, M. D. Malinkovich, R. N. Zhukov, D. A. Kiselev, S. V. Ksenich, A. A. Temirov, N. G. Timushkin, Yu. N. Parkhomenko // Crystallography Reports. - 2016. - V. 61, N 2. - P. 258—262. DOI:10.7868/S0023476116020120; Bykov, A. S. Formation of bidomain structure in lithium niobate plates by the stationary external heating method / A. S. Bykov, S. G. Grigoryan, R. N. Zhukov, D. A. Kiselev, S. V. Ksenich, I. V. Kubasov, M. D. Malinkovich, Yu. N. Parkhomenko // Russian Microelectronics. - 2014. - V. 43, N 8. - P. 536—542. DOI:10.1134/S1063739714080034; Kubasov, I. Bimorph single crystalline piezoelectric actuators for scanning probe microscopy / I. Kubasov, M. Malinkovich, A. Bykov, D. Kiselev, A. Temirov, S. Ksenich // 24th Internat. Conf. on Materials and Technology. - Portorož (Slovenia), 2016. - P. 124.; Blagov, A. E. An electromechanical X-ray optical element based on a hysteresis-free monolithic bimorph crystal / A. E. Blagov, A. S. Bykov, I. V. Kubasov, M. D. Malinkovich, Yu. V. Pisarevskii, A. V. Targonskii, I. A. Eliovich, M. V. Kovalchuk // Instruments and Experimental Techniques. - 2016. - V. 59, N 5. - P. 728—732. DOI:10.1134/S0020441216050043; Kubasov, I. A novel high-temperature vibration sensor based on bidomain lithium niobate crystal / I. Kubasov, A. Kislyuk, M. Malinkovich, D. Kiselev, M. Chichkov, S. Ksenich, A. Temirov, A. Bykov, Yu. Parkhomenko // 7th International Advances in Applied Physics and Materials Science Congress and Exhibition. - Oludeniz (Turkey), 2017. - P. 147.; Vidal, J. Equivalent magnetic noise in magnetoelectric laminates comprising bidomain LiNbO3 crystals / J. Vidal, A. V. Turutin, I. V. Kubasov, M. D. Malinkovich, Yu. N. Parkhomenko, S. P. Kobeleva, A. L. Kholkin, N. A. Sobolev // IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. - 2017. - V. PP, N 99. P. 1-1. DOI:10.1109/TUFFC.2017.2694342; Kubasov, I. V. Interdomain region in single-crystal lithium niobate bimorph actuators produced by light annealing / I. V. Kubasov, M. S. Timshina, D. A. Kiselev, M. D. Malinkovich, A. S. Bykov, Yu. N. Parkhomenko // Crystallography Reports. - 2015. - V. 60, N 5. - P. 700—705. DOI:10.1134/S1063774515040136; Nakamura, K. Bending vibrator consisting of a LiNbO3 plate with a ferroelectric inversion layer / K. Nakamura, H. Ando, H. Shimizu // Jpn. J. Appl. Phys. - 1987. - V. 26, N S2. - P. 198—200. DOI:10.7567/JJAPS.26S2.198; Nakamura, K. Hysteresis-free piezoelectric actuators using LiNbO3 plates with a ferroelectric inversion layer / K. Nakamura, H. Shimizu // Ferroelectrics. - 1989. - V. 93, N 1. - P. 211—216. DOI:10.1080/00150198908017348; Crawley, E. F. Induced strain actuation of isotropic and anisotropic plates / E. F. Crawley, K. B. Lazarus // AIAA Journal. - 1991. - V. 29, N 6. - P. 944—951. DOI:10.2514/3.10684; Bent, A. A. Anisotropic actuation with piezoelectric fiber composites / A. A. Bent, N. W. Hagood, J. P. Rodgers // J. Intell. Mater. Syst. and Struct. - 1995. - V. 6, N 3. - P. 338—349. DOI:10.1177/1045389X9500600305; Huang, G. L. The dynamic behaviour of a piezoelectric actuator bonded to an anisotropic elastic medium / G. L. Huang, C. T. Sun // Internat. J. Solids and Struct. - 2006. - V. 43, N 5. - P. 1291—1307. DOI:10.1016/j.ijsolstr.2005.03.010; Warner, A. W. Determination of elastic and piezoelectric constants for crystals in class (3m) / A. W. Warner, M. Onoe, G. A. Coquin // The Journal of the Acoustical Society of America. - 1967. - V. 42, N 6. - P. 1223—1231. DOI:10.1121/1.1910709; Shur, V. Y. Hysteresis-free high-temperature precise bimorph actuators produced by direct bonding of lithium niobate wafers / V. Y. Shur, I. S. Baturin, E. A. Mingaliev, D. V. Zorikhin, A. R. Udalov, E. D. Greshnyakov // Appl. Phys. Lett. - 2015. - V. 106, N 5. - P. 053116. DOI:10.1063/1.4907679; Smits, J. G. The constituent equations of piezoelectric bimorphs / J. G. Smits, S. I. Dalke, T. K. Cooney // Sensors and Actuators A: Physical. - 1991. - V. 28, N 1. - P. 41—61. DOI:10.1016/09244247(91)80007-C; Nassau, K. The domain structure and etching of ferroelectric lithium niobate / K. Nassau, H. J. Levinstein, G. M. Loiacono // Appl. Phys. Lett. - 1965. - V. 6, N 11. - P. 228—229. DOI:10.1063/1.1754147; https://met.misis.ru/jour/article/view/268
-
20Academic Journal
المؤلفون: A. S. Bykov, M. D. Malinkovich, I. V. Kubasov, A. M. Kislyuk, D. A. Kiselev, S. V. Ksenich, R. N. Zhukov, A. A. Temirov, M. V. Chichkov, A. A. Polisan, Yu. N. Parkhomenko, А. С. Быков, М. Д. Малинкович, И. В. Кубасов, А. М. Кислюк, Д. А. Киселев, С. В. Ксенич, Р. Н. Жуков, А. А. Темиров, М. В. Чичков, А. А. Полисан, Ю. Н. Пархоменко
المساهمون: Ministry of Education and Science of the Russian Federation, Министерство образования и науки Российской Федерации
المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 19, № 4 (2016); 221-234 ; Известия высших учебных заведений. Материалы электронной техники; Том 19, № 4 (2016); 221-234 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2016-4
مصطلحات موضوعية: изотопы, betavoltaic generators, radioactive radiation, isotopes, бета−вольтаический генератор, радиоактивное излучение
وصف الملف: application/pdf
Relation: https://met.misis.ru/jour/article/view/290/232; Koutitas, G. A review of energy efficiency in telecommunication networks / G. Koutitas, P. Demestichas // Telfor Journal. − 2010. − V. 2, N 1. − P. 2—7. URL:http://journal.telfor.rs/Published/Vol2No1/Vol2No1_A1.pdf; Bose, B. K . Global energy scenario and impact of power electronics in 21st century / B. K. Bose // IEEE Transactions on Industrial Electronics. − 2013. − V. 60, N 7. − P. 2638—2651. DOI:10.1109/TIE.2012.2203771; Paradiso, J. A. Energy scavenging for mobile and wireless electronics / J. A. Paradiso, T. Starner // IEEE Pervasive Computing. − 2005. − V. 4, N 1. − P. 18—27. DOI:10.1109/MPRV.2005.9; Moseley, H. G. J. The Attainment of high potentials by the use of radium / H. G. J. Moseley, J. H. Fellow // Proc. Royal Society of London A. − 1913. − V. 88, N 605. − P. 471—476. DOI:10.1098/rspa.1913.0045; Singh, N. Radioisotopes — Applications in Physical Sciences / N. Singh. − Rijeka (Croatia): InTech, 2011. − 496 p. DOI:10.5772/858; Huffman , F. N. Nuclear −fueled cardiac pacemakers / F. N. Huffman, C. Norman // Chest. − 1974. − V. 65, N 6. − P. 667—672. DOI:10.1378/chest.65.6.667; Wei, X. Power sources and electrical recharging strategies for implantable medical devices / X. Wei, J. Liu // Frontiers of Energy and Power Engineering in China. − 2008. − V. 2. − N 1. − P. 1—13. DOI:10.1007/s11708-008-0016-3; Whalen, S. A. Improving power density and efficiency of miniature radioisotopic thermoelectric generators / S. A. Whalen, C. A. Apblett, T. L. Aselage // J. Power Sources. − 2008. − V. 180, N 1. − P. 657—663. DOI:10.1016/j.jpowsour.2008.01.080; Olsen , L . C . Betavoltaic power sources / L . C . Olsen, P. Cabauy, B. J. Elkind // Physics Today. − 2012. − V. 65, N 12. − P. 35—38. DOI:10.1063/PT.3.1820; Seaborg, G. T. Table of isotopes / G. T. Seaborg // Rev. Modern Phys. − 1944. − V. 16, N 1. − P. 1—32. DOI:10.1103/RevMod-Phys.30.585; Баранов, В. Ю. Изотопы: свойства, получение, применение / В. Ю. Баранов. − М.: Физматлит, 2005. − 600 с.; Ву, Ц. С. Бета−распад / Ц. С. Ву, С. А. Мошковский. − М.: Атомиздат, 1970. − 397 с.; Lewis, V. E . Beta decay of tritium / V. E. Lewis // Nuclear Phys. A. − 1970. − V. 151, N 1. − P. 120—128. DOI:10.1016/0375-9474(70)90972-3; Daris, R. Beta decay of tritium / R. Daris, C. St−Pierre // Nuclear Phys. A. − 1969. − V. 138, N 3. − P. 545—555. DOI:10.1016/0375-9474(69)90237-1; Windle, W. F. Microwatt radioisotope energy converters / W. F. Windle // IEEE Transactions on Aerospace. − 1964. − V. 2, N 2. − P. 646—651. DOI:10.1109/TA.1964.4319649; Rappaport, P. Radioactive charging effects with a dielectric medium / P. Rappaport, E. G. Linder // J. Appl. Phys. − 1953. − V. 24, N 9. − P. 1110—1114. DOI:10.1063/1.1721457; Müller, S. Search for an admixture of a 17 keV neutrino in the β decay of 35S / S. Müller, Ch. Shiping, H. Daniel, O. Dragoun, N. Dragounová, H. Hagn, E. Hechtl, K.−H. Hiddemann, A. Špalek // Zeitschrift für Naturforschung A. − 1994. − V. 49, N 9. − P. 874—884. DOI:10.1515/zna-1994-0910; Thoennessen, M. Discovery of the isotopes with 11 ≤ Z ≤ 19 / M. Thoennessen // Atomic Data and Nuclear Data Tables. − 2012. − V. 98, N 5. − P. 933—959. DOI:10.1016/j.adt.2011.09.002; Bogue, R. Powering tomorrow’s sensor: a review of technologies. Pt 1 / R. Bogue // Sensor Review. − 2010. − V. 30, N 3. − P. 182—186. DOI:10.1108/02602281011051344; Meier, D. E. Production of 35S for a liquid semiconductor betavoltaic / D. E. Meier, A. Y. Garnov, J. D. Robertson, J. W. Kwon, T. Wacharasindhu // J. Radioanalytical and Nuclear Chemistry. − 2009. − V. 282, N 1. − P. 271—274. DOI:10.1007/s10967-009-0157-9; Heim, M. Discovery of the krypton isotopes / M. Heim, A. Fritsch, A. Schuh, A. Shore, M. Thoennessen // Atomic Data and Nuclear Data Tables. − 2010. − V. 96, N 4. − P. 333—340. DOI:10.1016/j.adt.2010.01.001; Collon, P. Tracing noble gas radionuclides in the environment / P. Collon, W. Kutschera, Z.−T. Lu // Annual Review of Nuclear and Particle Science. − 2004. − V. 54. − P. 39—67. DOI:10.1146/annurev.nucl.53.041002.110622; Eiting, C. J. Betavoltaic power cells / C. J. Eiting, V. Krishnamoorthy, E. Romero, S. Jones // Proc. of the 42nd Power Sources Conf. − 2006. Paper 25.5 − P. 601—605.; Thoennessen, M . Discovery of isotopes with Z ≤ 10 / M. Thoennessen // Atomic Data and Nuclear Data Tables. − 2012. − V. 98, N 1. − P. 43—62. DOI:10.1016/j.adt.2011.08.002; Lewis, G. N. A spectroscopic search for H3 in concentrated H2 / G. N. Lewis, F. H. Spedding // Phys. Rev. − 1933. − V. 43, N 12. − P. 964—966. DOI:10.1103/PhysRev.43.964; Eidinoff, M. L. Upper limit to the tritium content of ordinary water / M. L. Eidinoff // The Journal of Chemical Physics. − 1947. − V. 15, N 6. − P. 416. DOI:10.1063/1.1746547; Suhaimi, A. Measurement of 14N(n,t)12C reaction cross section in the energy range of 5.0 to 10.6 MeV / A. Suhaimi, R. Wölfle, S. M. Qaim, P. Warwick, G. Stöcklin // Radiochimica Acta. − 1988. − V. 43, N 3. − P. 133—138. DOI:10.1524/ract.1988.43.3.133; Oliver, B. M . Tritium half−life measured by helium−3 growth / B. M. Oliver, H. Farrar IV, M. M. Bretscher // Applied Radiation and Isotopes. − 1987. − V. 38, N 11. − P. 959—965. DOI:10.1016/0883-2889(87)90268-1; Myers , E . G. Atomic masses of tritium and helium−3 / E. G. Myers, A. Wagner, H. Kracke, B. A. Wesson // Phys. Rev. Lett. − 2015. − V. 114, N 1. − P. 013003—1−5. DOI:10.1103/PhysRev-Lett.114.013003; Oliphant, M. L . E . Transmutation effects observed with heavy hydrogen / M. L. E. Oliphant, P. Harteck, O. M. Rutherford // Proc. of the Royal Society of London A. − 1934. − V. 144, N 853. − P. 692—703. DOI:10.1098/rspa.1934.0077; Morgan, L. Tritium breeding control within liquid metal blankets / L. Morgan, J. Pasley // Fusion Engineering and Design. − 2013. − V. 88, N 3. − P. 107—112. DOI:10.1016/j.fusengdes.2012.11.011; Matsuura, H. Evaluation of tritium production rate in a gas−cooled reactor with continuous tritium recovery system for fusion reactors / H. Matsuura, H. Nakaya, Y. Nakao, S. Shimakawa, M. Goto, Sh. Nakagawa, M. Nishikawa // Fusion Engineering and Design. − 2013. − V. 88, N 8–9. − P. 2219—2222. DOI:10.1016/j.fusengdes.2013.05.022; Engelkemeir, A . G. The half−life of radiocarbon (C14) / A. G. Engelkemeir, W. H. Hamill, M. G. Inghram, W. F. Libby // Phys. Rev. − 1949. − V. 75, N 12. − P. 1825—1833. DOI:10.1103/Phys-Rev.75.1825; Langer, L. M. Low energy Beta−Ray spectra: Pm147 S35 / L. M. Langer, J. W. Motz, H. C. Price, Jr. // Phys. Rev. − 1950. − V. 77, N 7. − P. 798—806. DOI:10.1103/PhysRev.77.798; Korff, S. A. On the contribution to the ionization at sea−level produced by the neutrons in the cosmic radiation / S. A. Korff // Terrestrial Magnetism and Atmospheric Electricity. − 1940. − V. 45, N 2. − P. 133—134. DOI:10.1029/TE045i002p00133; Hannа, G. C. Thermal neutron cross sections and resonance integrals of the reactions O17(n,α)C14, Ar36(n,α)S33, and N14(n,p)C14 / G. C. Hannа, D. B. Primeau, P. R. Tunnicliffe // Canadian Journal of Physics. − 1961. − V. 39, N 12. − P. 1784—1806. DOI:10.1139/p61-201; Konstantinov, E. A. 14C emission from RBMK−1500 reactors and features determining it / E. A. Konstantinov, N. A. Korablev, E. N. Solov’ev, V. P. Shamov, V. L. Fedorov, A. M. Litvinov // Soviet Atomic Energy. − 1989. − V. 66, N 1. − P. 77—79. DOI:10.1007/BF01121081; Choppin, G. Radiochemistry and nuclear chemistry / G. Choppin, J.−O. Liljenzin, J. Rydberg, C. Ekberg. − Amsterdam; Boston; Heidelberg; London; New York; Oxford; Paris; San Diego; San Francisco; Sydney; Tokyo: Academic Press (Elsevier), 2013. − 866 p. DOI:10.1016/B978-0-12-405897-2.01001-6; Mannik, L. Laser enrichment of carbon−14 / L. Mannik, S. K. Brown // Appl. Phys. B. − 1985. − V. 86, N 2. − P. 79—86. DOI:10.1007/BF00692553; Voges, R. Preparation of compounds labeled with tritium and carbon−14 / R. Voges, J. R. Heys, T. Moenius. − Wiley, 2009. − 682 p.; Garofali, K. Discovery of chromium, manganese, nickel, and copper isotopes / K. Garofali, R. Robinson, M. Thoennessen // Atomic Data and Nuclear Data Tables. − 2012. − V. 98, N 2. − P. 356—372. DOI:10.1016/j.adt.2011.11.002; Gresits, I. Determination of soft X−ray emitting isotopes in radioactive liquid wastes of nuclear power plants / I. Gresits, S. Tolgyesi // Journal of Radioanalytical and Nuclear Chemistry. − 2003. − V. 258, N 1. − P. 107—112. DOI:10.1023/A:1026214310645; Holm, E. Radioanalytical studies of fallout 63Ni / E. Holm, P. Rots, B. Skwarzec // International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes. − 1992. − V. 43, N 1–2. − P. 371—376. DOI:10.1016/0883-2889(92)90107-P; Colle, R. 63Ni, its half−life and standardization: Revisited / R. Colle, B.E. Zimmerman, P. Cassette, L. Laureano−Perez // Applied Radiation and Isotopes. − 2008. − V. 66, N 1. − P. 60—68. DOI:10.1016/j.apradiso.2007.07.017; Gaitskell, R. J. A measurement of the beta spectrum of 63Ni using a new type of calorimetric cryogenic detector / R. J. Gaitskell, L. C. Angrave, N. E. Booth, A. D. Hahn, A. M Swift // Phys. Lett. B. − 1996. − V. 370, N 1–2. − P. 163—166. DOI:10.1016/0370-2693(96)00084-6; Angrave, L . C. Measurement of the atomic exchange effect in nuclear β decay / L. C. Angrave, N. E. Booth, R. J. Gaitskell, G. L. Salmon // Phys. Rev. Lett. − 1998. − V. 80, N 8. − P. 1610—1613. DOI:10.1103/PhysRevLett.80.1610; Coursey, B. M. The standardization of plutonium−241 and nickel−63 / B. M. Coursey, L. L. Lucas, A. Grau Malonda, E. Garcia− Torano // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. − 1989. − V. 279, N 3. − P. 603—610. DOI:10.1016/0168-9002(89)91310-7; Le−Bret, C. Study of the influence of the source quality on the determination of the shape factor of beta spectra / C. Le−Bret,•M. Loidl,•M. Rodrigues,•X. Mougeot, J. Bouchard // J. Low Temperature Physics. − 2012. − V. 167, N 5. − P. 985—990. DOI:10.1007/s10909-012-0607-6; Sims, G. H. E. The beta self−absorption of Ni63 as metallic nickel / G. H. E. Sims, D. G. Juhnke // International Journal of Applied Radiation and Isotopes. − 1967. − V. 18, N 10. − P. 727—728. DOI:10.1016/0020-708X(67)90034-8; Gelsema, W. J. The self−absorption of the beta−radiation of 63Ni in metallic nickel sources / W. J. Gelsema, L. Donk, J. H. T. F. P. v. Enckevort, H. A. Blijleven // Journal of Chemical Education. − 1969. − V. 46, N 8. − P. 528—530. DOI:10.1021/ed046p528; Barnes, I. L. Nickel−63: standardization, half−life and neutron−capture cross−section / I. L. Barnes, S. B. Garfinkel, W. B. Mann // The International Journal of Applied Radiation and Isotopes. − 1971. − V. 22, N 12. − P. 777—781. DOI:10.1016/0020-708X(71)90143-8; Sosnin, L. J. Production of 63Ni of high specific activity / L. J. Sosnin, I. A. Suvorov, A. N. Tcheltsov, B. I. Rogozev // Nuclear Instruments and Methods in Physics Research A. − 1993. − V. 334, N 1. − P. 43—44. DOI:10.1016/0168-9002(93)90526-N; Numajiri, M. Estimation of nickel−63 in steel and copper activated at high−energy accelerator facilities / M. Numajiri, Y. Oki, T. Suzuki, T. Miura, M. Taira, Yu. Kanda, K. Kondo // Applied Radiation and Isotopes. − 1994. − V. 45, N 4. − P. 509—514. DOI:10.1016/0969-8043(94)90116-3; Pustovalov, A. A. 63Ni−based β−electric current source / A. A. Pustovalov, V. V. Gusev, V. V. Zadde, N. S. Petrenko, L. A. Tsvetkov, A. V. Tikhomirov // Atomic Energy. − 2007. − V. 103, N 6. − P. 353—356. DOI:10.1007/s10512-007-0151-7; Parker, A. M. Discovery of rubidium, strontium, molybdenum, and rhodium isotopes / A. M. Parker, M. Thoennessen // Atomic Data and Nuclear Data Tables. − 2012. − V. 98, N 4. − P. 812—831. DOI:10.1016/j.adt.2012.06.001; Nystrom, A . Discovery of yttrium, zirconium, niobium, technetium, and ruthenium isotopes / A. Nystrom, M. Thoennessen // Atomic Data and Nuclear Data Tables. − 2012. − V. 98, N 2. − P. 95—119. DOI:10.1016/j.adt.2011.12.002; Horwitz, E. P. SREX: A new process for the extraction and recovery of strontium from acidic nuclear waste streams / E. P. Horwitz, M. L. Dietz, D. E. Fisher // Solvent Extraction and Ion Exchange. − 1991. − V. 9, N 1. − P. 1—25. DOI:10.1080/07366299108918039; Loferski, J. J. Radiation damage in Ge and Si detected by carrier lifetime changes: Damage thresholds / J. J. Loferski, P. Rappaport // Physical Review. − 1958. − V. 111, N 2. − P. 432—439.; Flicker, H. Construction of a promethium−147 atomic battery / H. Flicker, J. J. Loferski, T. S. Elleman // IEEE Transactions on Electron Devices. − 1964. − V. 11, N 1. − P. 2—8. DOI:10.1109/TED.1964.15271; Manjunatha, H. C. External bremsstrahlung of 90Sr−90Y, 147Pm and 204Tl in detector compounds / H. C. Manjunatha, B. Rudraswamy // Radiation Physics and Chemistry. − 2013. − V. 85. − P. 95—101. DOI:10.1016/j.radphyschem.2012.12.022; May, E. Discovery of cesium, lanthanum, praseodymium and promethium isotopes / E. May, M. Thoennessen // Atomic Data and Nuclear Data Tables. − 2012. − V. 98, N 5. − P. 960—982. DOI:10.1016/j.adt.2011.09.005; Reader, J. Promethium 147 hyperfine structure under high resolution / J. Reader, S. P. Davis // Journal of the Optical Society of America. − 1963. − V. 53, N 4. − P. 431—435. DOI:10.1364/JOSA.53.000431; Gorshkov, V. K. 235U Fission product yields in the rare earth region / V. K. Gorshkov, R. N. Ivanov, G. M. Kukabadze, I. A. Reformatsky // Journal of Nuclear Energy. − 1958. − V. 8, N 1–3. − P. 69—73. DOI:10.1016/0891−3919(58)90010−X; Lee, C.−S. Chemical study on the separation and purification of promethium−147 / C.−S. Lee, Y.−M. Wang, W.−L. Cheng, G. Ting // Journal of Radioanalytical and Nuclear Chemistry. − 1989. − V. 130, N 1. − P. 21—37. DOI:10.1007/BF02037697; Yoshida, M. A rapid separation method for determination of promethium−147 and samarium−151 in environmental samples with high performance liquid chromatography / M. Yoshida, S. Sumiya, H. Watanabe, K. Tobita // Journal of Radioanalytical and Nuclear Chemistry. − 1995. − V. 197, N 2. − P. 219—227. DOI:10.1007/BF02036001; https://met.misis.ru/jour/article/view/290