يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"I. Tolmachev V."', وقت الاستعلام: 0.43s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: Работа проведена в рамках выполнения гранта РНФ «Разработка научных основ роботизированной нейромиореабилитации». Соглашение № 18-15-00082 173.

    المصدر: Bulletin of Siberian Medicine; Том 18, № 4 (2019); 136-142 ; Бюллетень сибирской медицины; Том 18, № 4 (2019); 136-142 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2017-0-12

    وصف الملف: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/2566/1666; Truelsen T., Piechowski-Jóźwiak B., Bonita R., Mathers C., Bogousslavsky J., Boysen G. Stroke incidence and prevalence in Europe: a review of available data. Eur. J. Neurol. 2006; 13 (6): 581–598. DOI:10.1111/j.1468-1331.2006.01138.x.; Bleyenheuft Y., Gordon A.M. Precision grip in congenital and acquired hemiparesis: similarities in impairments and implications for neurorehabilitation. Front. Hum. Neurosci. 2014; 8: 459. DOI:10.3389/fnhum.2014.00459.; Richards L.G., Stewart K.C., Woodbury M.L., Senesac C., Cauraugh J.H. Movement-dependent stroke recovery: a systematic review and meta-analysis of TMS and fMRI evidence. Neuropsychologia. 2008; 46 (1): 3–11. DOI:10.1016/j.neuropsychologia.2007.08.013.; Pollock A., Farmer S.E., Brady M.C. et al. Interventions for improving upper limb function after stroke. Cochrane Database Syst. Rev. 2014; (11): CD010820. DOI:10.1002/14651858.CD010820.pub2; Burke J., McNeill M., Charles D., Morrow P., Crosbie J., McDonough S. Augmented reality games for upper-limb stroke rehabilitation: 2010 Second International Conference on Games and Virtual Worlds for Serious Applications. Braga, Portugal: IEEE, 2010: 75–78. DOI:10.1109/ VS-GAMES.2010.21.; Krichenbauer M., Yamamoto G., Taketom T., Sandor C., Kato H. Augmented reality versus virtual reality for 3D object manipulation. IEEE Transactions on Visualization and Computer Graphics. 2018; 24 (2): 1038–1048. DOI:10.1109/TVCG.2017.2658570.; https://bulletin.tomsk.ru/jour/article/view/2566

  2. 2
    Academic Journal

    المساهمون: The review was supported by the grant of the Russian Science Foundation “Developing the scientific foundations of robotic neurorehabilitation” (No. 18-15-00082 173), Обзор подготовлен в рамках выполнения гранта РНФ «Разработка научных основ роботизированной нейромиореабилитации» (№ 18-15-00082 173)

    المصدر: Bulletin of Siberian Medicine; Том 18, № 2 (2019); 223-233 ; Бюллетень сибирской медицины; Том 18, № 2 (2019); 223-233 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2019-18-2

    وصف الملف: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/2321/1584; https://bulletin.tomsk.ru/jour/article/view/2321/1613; Béjot Y., Daubail B., Giroud M. Epidemiology of stroke and transient ischemic attacks: Current knowledge and perspectives. Rev. Neurol. (Paris). 2016; 172 (1): 59–68. DOI:10.1016/j.neurol.2015.07.013.; Feigin V.L., Krishnamurthi R.V., Parmar P., Norrving B., Mensah G.A., Bennett D.A. et al. Update on the global burden of ischemic and hemorrhagic strokein 1990–2013: TheGBD 2013 Study. Neuroepidemiology. 2015; 45 (3):161–176. DOI:10.1159/000441085.; Prabhakaran S. Big data trends in stroke epidemiology in the United States. Neurology. 2017; 89 (19): 1940. DOI:10.1212/WNL.0000000000004636.; Olesen J., Gustavsson A., Svensson M., Wittchen H.-U., Jönsson B. et al. The economic cost of brain disorders in Europe. Eur. J. Neurol. 2012; 19 (1): 155–162. DOI:10.1111/j.1468-1331.2011.03590.x.; Turner-Stokes L., Sykes N., Silber E. Long-term neurological conditions: management at the interface between neurology, rehabilitation and palliative care. Clin. Med. 2008; 8 (2): 186–191. DOI:10.7861/clinmedicine.8-2-186.; Wolbrecht E.T., Chan V., Reinkensmeyer D.J., Bobrow J.E. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans. Neural. Syst. Rehabil. Eng. 2008; 16 (3): 286–297. DOI:10.1109/TNSRE.2008.918389.; Blank A.A., French J.A., Pehlivan A.U., O’Malley M.K. Current trends in robot-assisted upper-limb stroke rehabilitation: promoting patient engagement in therapy. Curr. Phys. Med. Rehabil. Rep. 2014; 2: 184–195. DOI:10.1007/s40141-014-0056-z.; Rowe J.B., Chan V., Ingemanson M.L., Cramer S.C., Wolbrecht E.T., Reinkensmeyer D.J. Robotic assistance for training finger movement using a hebbian model: a randomized controlled trial. Neurorehabil. Neural. Repair. 2017; 31 (8): 769–780. DOI:10.1177/1545968317721975.; Federici S., Meloni F., Bracalenti M., De Filippis M.L. The effectiveness of powered, active lower limb exoskeletons in neurorehabilitation: a systematic review. Neuro. Rehabilitation. 2015; 37 (3): 321–340. DOI:10.3233/NRE-151265.; Dimyan M.A., Cohen L.G. Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 2011; 7 (2): 76–85. DOI:10.1038/nrneurol.2010.200.; Germanotta M., Cruciani A., Pecchioli C., Loreti S., Spedicato A., Meotti M. et al. Reliability, validity and discriminant ability of the instrumental indices provided by a novel planar robotic device for upper limb rehabilitation. J. Neuro. Engineering Rehabil. 2018; 15 (1): 39. DOI:10.1186/s12984-018-0385-8.; Langhorne P., Bernhardt J., Kwakkel G. Stroke rehabilitation. The Lancet. 2011; 377 (9778): 1693–1702. DOI:10.1016/S0140-6736(11)60325-5.; Mazzoleni S., Duret C., Grosmaire A.G., Battini E. Combining upper limb robotic rehabilitation with other therapeutic approaches after stroke: current status, rationale, and challenges. BioMed Res. Int. 2017; 2017. DOI:10.1155/2017/8905637.; Colombo R., Sterpi I., Mazzone A., Delconte C., Pisano F. Robot-aided neurorehabilitation in sub-acute and chronic stroke: does spontaneous recovery have a limited impact on outcome? Neuro. Rehabilitation. 2013; 33 (4): 621–629. DOI:10.3233/NRE-131002.; Di Pino G., Pellegrino G., Assenza G., Capone F., Ferreri F., Formica D. et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat. Rev. Neurol. 2014; 10 (10): 597–608. DOI:10.1038/nrneurol.2014.162.; Nahmani M., Turrigiano G.G. Adult cortical plasticity following injury: recapitulation of critical period mechanisms? Compens. Inj. Adult Brain Always Good. 2014; 283: 4–16. DOI:10.1016/j.neuroscience.2014.04.029.; Diaz Heijtz R., Forssberg H. Translational studies exploring neuroplasticity associated with motor skill learning and the regulatory role of the dopamine system. Dev. Med. Child Neurol. 2015; 57: 10–14. DOI:10.1111/dmcn.12692.; Guadagnoli M.A., Lee T.D. Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J. Mot. Behav. 2004; 36 (2): 212–224. DOI:10.3200/JMBR.36.2.212-224.; Murdoch K., Buckley J.D., McDonnell M.N. The effect of aerobic exercise on neuroplasticity within the motor cortex following stroke. PLoS One. 2016; 11 (3): e0152377. DOI:10.1371/journal.pone.0152377.; McDonnell M.N., Koblar S., Ward N.S., Rothwell J.C., Hordacre B., Ridding M.C. An investigation of cortical neuroplasticity following stroke in adults: is there evidence for a critical window for rehabilitation? BMC Neurol. 2015; 15: 109. DOI:10.1186/s12883-015-0356-7.; Tran D.A., Pajaro-Blazquez M., Daneault J.-F., Gallegos J.G., Pons J., Fregni F. et al. Combining dopaminergic facilitation with robot-assisted upper limb therapy in stroke survivors: a focused review. Am. J. Phys. Med. Rehabil. 2016; 95 (6): 459–474. DOI:10.1097/PHM.0000000000000438.; Pinto C.B., Saleh Velez F.G., Lopes F., de Toledo Piza P.V., Dipietro L., Wang Q.M. et al. SSRI and motor recovery in stroke: reestablishment of inhibitory neural network tonus. Front. Neurosci. 2017; 11: 637. DOI:10.3389/fnins.2017.00637.; Luft A.R., Buitrago M.M., Ringer T., Dichgans J., Schulz J.B. Motor skill learning depends on protein synthesis in motor cortex after training. J. Neuroscim. 2004; 24 (29): 6515–6520. DOI:10.1523/JNEUROSCI.1034-04.2004.; Hosp J.A., Mann S., Wegenast-Braun B.M., Calhoun M.E., Luft A.R. Region and task-specific activation of arc in primary motor cortex of rats following motor skill learning. Neuroscience. 2013; 250: 557–564. DOI:10.1016/j.neuroscience.2013.06.060.; Hirano T. Regulation and interaction of multiple types of synaptic plasticity in a purkinje neuron and their contribution to motor learning. The Cerebellum. 2018. DOI:10.1007/s12311-018-0963-0.; Rioult-Pedotti M.-S., Donoghue J.P., Dunaevsky A. Plasticity of the synaptic modification range. J. Neurophysiol. 2007; 98 (6): 3688–3695. DOI:10.1152/jn.00164.2007.; Xu T., Yu X., Perlik A.J., Tobin W.F., Zweig .JA., Tennant K. et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature. 2009; 462: 915–919. DOI:10.1038/nature08389.; Arya K.N., Pandian S., Verma R., Garg R.K. Movement therapy induced neural reorganization and motor recovery in stroke: A review. J. Bodyw. Mov. Ther. 2011; 15 (4): 528–537. DOI:10.1016/j.jbmt.2011.01.023.; Schaechter J.D. Motor rehabilitation and brain plasticity after hemiparetic stroke. Prog. Neurobiol. 2004; 73 (1): 61–72. DOI:10.1016/j.pneurobio.2004.04.001.; Gandolfi M., Formaggio E., Geroin C., Storti S.F., Boscolo Galazzo I., Bortolami M. et al. Quantification of upper limb motor recovery and EEG power changes after robot-assisted bilateral arm training in chronic stroke patients: a prospective pilot study. Neural. Plast. 2018; 2018. DOI:10.1155/2018/8105480.; Nicolas-Alonso L.F., Gomez-Gil J. Brain computer interfaces, a review. Sensors. 2012; 12 (2): 1211–1279. DOI:10.3390/s120201211.; Laffont I., Bakhti K., Coroian F., van Dokkum .L, Mottet D., Schweighofer N. et al. Innovative technologies applied to sensorimotor rehabilitation after stroke. Ann. Phys. Rehabil. Med. 2014; 57: 543–551. DOI:10.1016/j.rehab.2014.08.007.; Doeringer J.A., Hogan N. Performance of above elbow body-powered prostheses in visually guided unconstrained motion tasks. IEEE Trans. Biomed. Eng. 1995;42 (6): 621–631. DOI:10.1109/10.387202.; Burgar C.G., Lum P.S., Shor P.C., Van der Loos H.M. Development of robots for rehabilitation therapy: The palo alto VA/Stanford experience. J. Rehabil. Res. Dev. 2000; 37 (6): 663–674.; Lo A.C., Guarino P.D., Richards L.G., Haselkorn J.K., Wittenberg G.F., Federman D.G., et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N. Engl. J. Med. 2010; 362 (19): 1772–1783. DOI:10.1056/NEJMoa0911341.; Sale P., Franceschini M., Mazzoleni S., Palma E., Agosti M., Posteraro F. Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients. J. NeuroEngineering Rehabil. 2014; 11: 104. DOI:10.1186/1743-0003-11-104.; Taveggia G., Borboni A., Salvi L., Mulé C., Fogliaresi S., Villafaсe J.H. et al. Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: a randomized controlled study. Eur.J. Phys. Rehabil. Med. 2016; 52 (6): 767–773.; Fukuda H., Morishita T., Ogata T., Saita K., Hyakutake K., Watanabe J. et al. Tailor-made rehabilitation approach using multiple types of hybrid assistive limb robots for acute stroke patients: A pilot study. Assist. Technol. 2016; 28 (1): 53–56. DOI:10.1080/10400435.2015.1080768.; Caimmi M., Chiavenna A., Scano A., Gasperini G., Giovanzana C., Molinari Tosatti L. et al. Using robot fully assisted functional movements in upper-limb rehabilitation of chronic stroke patients: preliminary results. Eur. J. Phys. Rehabil. Med. 2017; 53 (3): 390–399. DOI:10.23736/s1973-9087.16.04407-5.; Frolov A.A., Mokienko O., Lyukmanov R., Biryukova E., Kotov S., Turbina L. et al. Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: a randomized controlled multicenter. Trial. Front Neurosci. 2017; 11: 400. DOI:10.3389/fnins.2017.00400.; Susanto E.A., Tong R.K., Ockenfeld C., Ho N.S. Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial. J. NeuroEngineering Rehabil. 2015; 12: 42. DOI:10.1186/s12984-015-0033-5.; Rong W., Li W., Pang M., Hu J., Wei X., Yang B. et al. A neuromuscular electrical stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke. J. NeuroEngineering Rehabil. 2017; 14 (1): 34. DOI:10.1186/s12984-017-0245-y.; Mehrholz J., Pohl M., Platz T., Kugler J., Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst. Rev. 2015: CD006876. DOI:10.1002/14651858.cd006876.pub4.; Chen J., Lum P.S. Pilot testing of the spring operated wearable enhancer for arm rehabilitation (Spring wear). J. NeuroEngineering Rehabil. 2018; 15 (1): 13. DOI:10.1186/s12984-018-0352-4.; Uhlenbrock D., Hesse S., Sarkodie-Gyan T. Development of an advanced mechanized gait-trainer, controlling movement of the center of mass, for restoration of gait in non-ambulatory subjects. J. Biomed. Tech. 1999; 44 (7): 194–201.; Sašo J., Gery C., Thierry K., Hansruedi F., Manfred M. Robotic orthosis lokomat: a rehabilitation and research tool. Neuromodulation Technol. Neural. Interface. 2008; 6 (2): 108–115. DOI:10.1046/j.1525-1403.2003.-03017.x.; Hidler J., Nichols D., Pelliccio M., Brady K., Campbell D.D., Kahn J.H. et al. Multicenter randomized clinical trial evaluating the effectiveness of the lokomat in subacute stroke. Neurorehabi.l Neural. Repair. 2008; 23: 5–13. DOI:10.1177/1545968308326632.; Husemann B., Mьller F, Krewer C., Heller S., Koenig E. Effects of locomotion wraining with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke. Stroke. 2007; 38 (2): 349–354. DOI:10.1161/01.STR.0000254607.48765.cb.; Mayr A., Kofler M., Quirbach E., Matzak H., Frцhlich K., Saltuari L. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the lokomat gait orthosis. Neurorehabil. Neural. Repair. 2007; 21: 307–314. DOI:10.1177/1545968307300697.; https://bulletin.tomsk.ru/jour/article/view/2321

  3. 3
    Academic Journal

    المساهمون: The study was supported by the grant of the Russian Humanitarian Research Foundation 15-06-10666а “Assessing the impact of the psychoemotional state, the quality of life and the environment on the physiological course of pregnancy and labor and the condition of a newborn”, Исследование поддержано грантом РГНФ 15-06-10666а «Оценка влияния психоэмоционального состояния, уровня качества жизни и городской среды на физиологическое протекание беременности, родов у женщины и состояние новорожденного»

    المصدر: Bulletin of Siberian Medicine; Том 18, № 2 (2019); 6-15 ; Бюллетень сибирской медицины; Том 18, № 2 (2019); 6-15 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2019-18-2

    وصف الملف: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/2297/1572; https://bulletin.tomsk.ru/jour/article/view/2297/1592; Горина Е.А., Бурдяк А.Я. Взгляд на качество жизни населения сквозь призму городской среды. Социология города. 2015; 2: 11–31.; Филиппова Г.Г. Нарушение репродуктивной функции и ее связь с нарушениями в формировании материнской сферы. Перинатальная психология и психология родительства. 2003; 4–5: 145–149. DOI:10.18565/aig.2017.10.78-83.; Gul B., Riaz M.A., Batool N., Yasmin H., Riaz M.N. Social support and health related quality of life among pregnant women. Journal of the Pakistan Medical Association. 2018; 68 (6): 872–875.; Tan A., Lowe S., Henry A. Nausea and vomiting of pregnancy: Effects on quality of life and day-to-day function. Australian and New Zealand Journal of Obstetrics and Gynaecology. 2018; 58 (3): 278–290. DOI:10.1111/ajo.12714.; Панкратов В.В., Ягудаева И.П., Давыдов А.И. Качество жизни, связанное со здоровьем: терминология, методология, особенности оценки в акушерско-гинекологической практике. Вопросы гинекологии, акушерства и перинатологии. 2012; 11 (2): 22–33.; Saadati F., Sehhatiei Shafaei F., Mirghafourvand M. Sleep quality and its relationship with quality of life among high-risk pregnant women (gestational diabetes and hypertension). Journal of Maternal-Fetal and Neonatal Medicine. 2018; 31 (2): 150–157. DOI:10.1080/14767058.2016.1277704.; Maharlouei Najm. The importance of social support during pregnancy. Women’s Health Bulletin. 2016; 3 (1): е34991. DOI:10.17795/whb-34991.; Амвросова М.А., Кондратенко Е.А., Ожигина С.Н., Тетерина Е.В. Влияние беременности на психоýмоциональное состояние женщины. Научно-методический электронный журнал «Концепт». 2017; 2: 257–261. URL: http://e-koncept.ru/2017/570053.htm.; Гацаева Л.Т., Торчинов А.М., Филиппова Г.Г., Цахилова С.Г. Особенности течения беременности, родов и послеродового периода у женщин на фоне смешанных тревожных и депрессивных расстройств в условиях социально-ýкономической нестабильности. Репродуктивное здоровье детей и подростков. 2011; 3: 66–73.; Козлова Н.С., Панов В.А. Изучение специфики состояния беременности при помощи факторного анализа. Актуальные проблемы гуманитарных и естественных наук. 2016; 5–4: 124–128.; Фекличева И.В., Чипеева Н.А., Воронина И.Д., Солдатова Е.Л., Масленникова Е.П., Шабаловская М.В., Агаркова Л.А., Малых С.Б., Ковас Ю.В. Взаимосвязь между отношением к будущему ребенку и отношениями между родителями в семьях со спонтанной и индуцированной беременностью. Акушерство и гинекология. 2017; 10: 78–83.; Salazar-Pousada D., Astudillo C., Gonzaga M., Hidalgo L., Pйrez-Lуpez F.R., Chedraui P. Intimate partner violence and psychoemotional disturbance among pregnant women admitted to hospital with prenatal complications. International Journal of Gynaecology and Obstetrics. 2012; Sept. 118 (3): 194–197. DOI:10.1016/j.ijgo.2012.03.043. Epub 2012 June 22. PMID: 22727412.; Calou C.G. et al. Maternal predictors related to quality of life in pregnant women in the Northeast of Brazil. Health and Quality of Life Outcomes. 2018; 16: 109. DOI:10.1186/s12955-018-0917-8.; https://bulletin.tomsk.ru/jour/article/view/2297