يعرض 1 - 7 نتائج من 7 نتيجة بحث عن '"I. E. Zorina"', وقت الاستعلام: 0.44s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 68, № 6 (2023); 94-98 ; Российский вестник перинатологии и педиатрии; Том 68, № 6 (2023); 94-98 ; 2500-2228 ; 1027-4065

    وصف الملف: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1911/1440; Hasbaoui B.E., Elyajouri A., Abilkassem R., Agadr A. Nijmegen breakage syndrome: case report and review of literature. Pan African Med J 2020; 35: 85. DOI:10.11604/pamj.2020.35.85.14746; Kondratenko I., Paschenko O., Polyakov A., Bologov A. Nijmegen breakage syndrome. Advanc Exper Med Biol 2007; 601: 61–67. DOI:10.1007/978–0–387–72005–0_6; Taylor A.M.R., Rothblum-Oviatt C., Ellis N.A., Hickson I.D., Meyer S, Crawford T.O. et al. Chromosome instability syndromes. Nature Rev Dis Prim 2019; 5(1): 64. DOI:10.1038s41572–019–0113–0; Maciejczyk M., Mikoluc B., Pietrucha B., Heropolitanska-Pliszka E., Pac M., Motkowski R. et al. Oxidative stress, mitochondrial abnormalities and antioxidant defense in Ataxia-telangiectasia, Bloom syndrome and Nijmegen breakage syndrome. Redox Biol 2017; 11: 375–383. DOI:10.1016/j.redox.2016.12.030; Pastorczak A., Szczepanski T., Mlynarski W.; International Berlin-Frankfurt-Munster (I-BFM) ALL host genetic variation working group. Clinical course and therapeutic implications for lymphoid malignancies in Nijmegen breakage syndrome. Eur J Med Genet 2016; 59(3):126–132. DOI:10.1016/j.ejmg.2016.01.007; Мухина А.А., Кузьменко Н.Б., Родина Ю.А., Хорева А.Л., Моисеева А.А., Швец О.А. и др. Эпидемиология первичных иммунодефицитов в Российской Федерации. Педиатрия им. Г.Н. Сперанского 2020; 99(2): 16–32.; Каган М.Ю., Шулакова Н.С., Гумирова Р.А., Злодеева Е.А., Резник Н.В. Синдром Ниймеген (клиническое наблюдение). Педиатрическая фармакология 2012; 9(3): 102–105.; Дерипапа Е.В., Родина Ю.А., Лаберко А.Л., Балашов Д.Н., Мякова Н.В., Зимин С.Б. Синдром Ниймеген у детей: клинико-лабораторная характеристика и оценка эффективности различных видов терапии. Педиатрия 2018; 97(4): 116–124.; Marczak H., Heropolitańska-Pliszka E., Langfort R., Roik D., Grzela K. Nijmegen Breakage Syndrome Complicated With Primary Pulmonary Granulomas. Pediatrics 2018; 142(4): e20180122. DOI:10.1542/peds.2018–0122; Кондратенко И.В., Пащенко О.Е., Бологов А.А. Поражение легких при первичных иммунодефицитных состояниях. Под ред. Н.Н. Розиновой, Ю.Л. Мизерницкого. Орфанные заболевания легких у детей. М: Медпрактика-М, 2015: 170–186.; Varon R., Demuth I., Chrzanowska K.H. Nijmegen Breakage Syndrome. https://www.ncbi.nlm.nih.gov/books/NBK1176; Новак А.А., Мизерницкий Ю.Л. Первичная цилиарная дискинезия: состояние проблемы и перспективы. Медицинский совет 2021; 1: 276–285. DOI:10.21518/2079–701X-2021–1–276–285; Filipiuk A., Kozakiewicz A., Kośmider K., Lejman M., Zawitkowska J. Diagnostic and therapeutic approach to children with Nijmegen breakage syndrome in relation to development of lymphoid malignancies. Ann Agric Environ Med 2022; 29(2): 207–214. DOI:10.26444/aaem/143541; Chrzanowska K.H., Gregorek H., Dembowska-Bagińska B., Kalina M.A, Digweed M. Nijmegen breakage syndrome (NBS). Orphanet J Rare Dis 2012; 7: 13. DOI:10.1186/1750–1172–7–13; Dembowska-Baginska B., Perek D., Brozyna A., Wakulinska A., Olczak-Kowalczyk D., Gladkowska-Dura M. et al. Non-Hodgkin lymphoma (NHL) in children with Nijmegen Breakage syndrome (NBS). Pediatr Blood Cancer 2009; 52(2): 186–190. DOI:10.1002/pbc.21789; Batiuk E., Bassett M., Hakar M., Lin H.C., Hunter A.K. A rare case of primary gastric Hodgkin lymphoma in an adolescent with Nijmegen breakage syndrome. BMC Pediatrics 2023; 23: 189. DOI:10.1186/s12887–023–03929; https://www.ped-perinatology.ru/jour/article/view/1911

  2. 2
    Academic Journal

    المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 3 (2024); 125-131 ; Российский вестник перинатологии и педиатрии; Том 69, № 3 (2024); 125-131 ; 2500-2228 ; 1027-4065

    وصف الملف: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/2014/1504; Rabson A.R. Chronic mucocutaneous candidiasis — an immunological mystery. S Afr Med J 2007; 97(11 Pt 3): 1190-1192. PMID: 18250935; Puel A., Cypowyj S., Maródi L., Abel L., Picard C., Casanova J.L. Inborn errors of human IL-17 immunity underlie chronic mucocutaneous candidiasis. Curr Opin Allergy Clin Immunol 2012; 12(6): 616-622. DOI:10.1097/ACI.0b013e328358cc0b; van de Veerdonk F.L., Plantinga T.S., Hoischen A., Smeekens S.P., Joosten L.A., Gilissen C. et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med 2011; 365: 54-61. DOI:10.1056/ NEJMoa1100102; Liu L., Okada S., Kong X.F., Kreins A.Y., Cypowyj S., Abhyankar A. et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med 2011; 208: 1635-1648. DOI:10.1084/ jem.20110958; Sampaio E.P., Hsu A.P., Pechacek J., Bax H.I., Dias D.L., Paulson M.L. et al. Signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations and disseminated coccidioidomycosis and histoplasmosis. J Allergy Clin Immunol 2013; 131: 1624-1634. DOI:10.1016/j.jaci.2013.01.052; Sakatsume M., Igarashi K., Winestock K.D., Garotta G., Larner A.C., Finbloom D.S. The Jak kinases differentially associate with the alpha and beta (accessory factor) chains of the interferon gamma receptor to form a functional receptor unit capable of activating STAT transcription factors. J Biol Chem 1995; 270(29): 17528-17534. DOI:10.1074/jbc.270.29.17528; Villarino A.V., Kanno Y., O’Shea J.J. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol 2017; 18(4): 374-384. DOI:10.1038/ni.3691. PMID: 28323260; Boisson-Dupuis S., Kong X.F., Okada S., Cypowyj S., Puel A., Abel L., Casanova J.-L. Inborn errors of human STAT1: allelic heterogeneity governs the diversity of immunological and infectious phenotypes. Curr Opin Immunol 2012; 24(4): 364-378. DOI:10.1016/j.coi.2012.04.011; Pichard D.C., Freeman A.F., Cowen E.W. Primary immunodeficiency update: Part II. Syndromes associated with mucocutaneous candidiasis and noninfectious cutaneous manifestations. J Am Acad Dermatol 2015; 73(3): 367-381. DOI:10.1016/j.jaad.2015.01.055; Hunter C.A. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol 2005; 5: 521-531. DOI:10.1038/nri1648; Hirahara K., Ghoreschi K., Laurence A., Yang X.P., Kanno Y., O’Shea J.J. Signal transduction pathways and transcriptional regulation in Th17 cell differentiation. Cytokine Growth Factor Rev 2010; 21: 425-434. DOI:10.1016/j.cytogfr.2010.10.006; Asano T., Utsumi T., Kagawa R., Karakawa S., Okada S. Inborn errors of immunity with loss- and gain-of-function germline mutations in STAT1. Clin Exp Immunol 2023; 212(2): 96-106. DOI:10.1093/cei/uxac106; Toubiana J., Okada S., Hiller J., Oleastro M., Lagos Gomez M., Aldave Becerra J.C. et al. Heterozygous STAT1 gainof-function mutations underlie an unexpectedly broad clinical phenotype. Blood 2016; 127: 3154-3164. DOI:10.1182/blood-2015-11-679902; Leiding J.W., Okada S., Hagin D., Abinun M., Shcherbina A., Balashov D.N. et al. Hematopoietic stem cell transplantation in patients with gain-of-function signal transducer and activator of transcription 1 mutations. J Allergy Clin Immunol 2018; 141(2): 704-717.e5. DOI:10.1016/j. jaci.2017.03.049; Breuer O., Daum H., Cohen-Cymberknoh M., Unger S., Shoseyov D., Stepensky P. et al. Autosomal dominant gain of function STAT1 mutation and severe bronchiectasis. Respir Med 2017; 126: 39-45. DOI:10.1016/j.rmed.2017.03.018; Al Shehri T., Gilmour K., Gothe F., Loughlin S., Bibi S., Rowan A.D. et al. Novel gain-of-function mutation in Stat1 sumoylation site leads to CMC/CID phenotype responsive to ruxolitinib. J Clin Immunol 2019; 39(8): 776-785. DOI:10.1007/s10875-019-00687-4; Moriya K., Suzuki T., Uchida N., Nakano T., Katayama S., Irie M. et al. Ruxolitinib treatment of a patient with steroid-dependent severe autoimmunity due to STAT1 gain-offunction mutation. Int J Hematol 2020; 112(2): 258-262. DOI:10.1007/s12185-020-02860-7; Forbes L.R., Vogel T.P., Cooper M.A., Castro-Wagner J., Schussler E., Weinacht K.G. et al. JAKinibs for the treatment of immune dysregulation in patients with gain-of-function signal transducer and activator of transcription 1 (STAT1) or STAT3 mutations. J Allergy Clin Immunol 2018; 142(5): 1665-1669. DOI:10.1016/j.jaci.2018.07.020; Hadjadj J., Frémond M.L., Neven B. Emerging place of JAK inhibitors in the treatment of inborn errors of immunity. Front Immunol 2021; 17(12): 717388. DOI:10.3389/fimmu.2021.717388; Neven B., Al Adba B., Hully M., Desguerre I., Pressiat C., Boddaert N. et al. JAK inhibition in the Aicardi-Goutières syndrome. N Engl J Med Mass Med Soc 2020; 383(22): 2190- 2193. DOI:10.1056/NEJMc2031081; Soltész B., Tóth B., Shabashova N., Bondarenko A., Okada S., Cypowyj S. et al. New and recurrent gain-of-function STAT1 mutations in patients with chronic mucocutaneous candidiasis from Eastern and Central Europe. J Med Genet 2013; 50(9): 567-578. DOI:10.1136/jmedgenet-2013-101570; Takezaki S., Yamada M., Kato M., Park M.J., Maruyama K., Yamazaki Y. et al. Chronic mucocutaneous candidiasis caused by a gain-of-function mutation in the STAT1 DNA-binding domain. J Immunol 2012; 189(3): 1521-1526. DOI:10.4049/ jimmunol.1200926; https://www.ped-perinatology.ru/jour/article/view/2014

  3. 3
    Academic Journal

    المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 67, № 6 (2022); 88-92 ; Российский вестник перинатологии и педиатрии; Том 67, № 6 (2022); 88-92 ; 2500-2228 ; 1027-4065

    وصف الملف: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1748/1329; Jacobs J.P., Anderson R.H., Weinberg P.M., Walters H.L., Tchervenkov C.I., Duca D.D. et al. The nomenclature, definition, and classification of cardiac structures in the setting of heterotaxy. Cardiol Young 2007; 17: 1–28. DOI:10.1017/S1047951107001138; Shiraishi I., Ichikawa H. Human heterotaxy syndrome–from molecular genetics to clinical features, management and prognosis. Circ J 2012; 76: 2066–2075. DOI:10.1253/circj.cj-12–0957; Zhu L., Belmont J., Ware S. Genetics of human hetero-taxias. Eur J Hum Genet 2006; 14: 17–25. DOI:10.1038/sj.ejhg.5201506; Новак А.А., Мизерницкий Ю.Л. Первичная цилиарная дискинезия: состояние проблемы и перспективы. Ме-дицинский совет 2021; 1: 276–285.; Purandare S.M., Ware S.M., Kwan K.M., Gebbia M., Bassi M.T., Deng J.M. et al. A complex syndrome of left–right axis, central nervous system and axial skeleton defects in Zic3 mutant mice. Development 2002; 129: 2293–2302. DOI:10.1242/dev.129.9.2293; Yan Y.L., Tan K.B., Yeo G.S. Right atrial isomerism: preponderance in Asian fetuses. Using the stomach-distance ratio as a possible diagnostic tool for prediction of right atrial isomerism. Ann Acad Med Singap 2008; 37: 906–912; Ortega-Zhindón D.B., Flores-Sarria I.P., Minakata-Quiróga M.A., Angulo-Cruzado S.T., Romero-Montalvo L.A., Cervantes-Salazar J.L. Atrial isomerism: A multidisciplinary perspective [Isomorfismo cardiaco: Una perspectiva multidisciplinaria]. Arch Cardiol Mex 2021;91(4):470–479. DOI:10.24875/ACM.20000567; Van Praagh S. Cardiac malpositions and the heterotaxy syndrome. In Nadas’s Pediatric Cardiology. Second edition. Ed. J.F. Keany, J.E. Lock, D.C. Fyler. Philadelphia: Saunders Elsevier, 2006; 589–608; Kim S.J. Heterotaxy syndrome. Korean Circ J 2011; 41: 227–232; Kothari S.S. Non-cardiac issues in patients with heterotaxy syndrome. Ann Pediatr Cardiol 2014; 7: 187–192. DOI:10.4103/0974–2069.140834; Anderson R.H., Brown N.A., Meno C., Spicer D.E. The importance of being isomeric. Clin Anat 2015; 28: 477–486. DOI:10.1002/ca.22517; Loomba R., Shah P.H., Anderson R., Arora Y. Radiologic considerations in Heterotaxy: need for detailed anatomic evaluation. Cureus 2016; 8(1): e470. DOI:10.7759/cureus.470; Ho S.Y., Seo J.W., Brown N.A., Cook A.C., Fagg N.L., Anderson R.H. Morphology of the sinus node in human and mouse hearts with isomerism of the atrial appendages. Br Heart J 1995; 74: 437–442. DOI:10.1136/hrt.74.4.437; Renier H. Intra-Abdominal Abnormalities Associated with Polysplenia Syndrome. J Belg Soc Radiol 2019; 103(1):54. DOI:10.5334/jbsr.1903; Marx G.R. Echocardiography in heterotaxy syndrome. World J Pediatr Congenit Heart Surg 2011; 2: 253–257. DOI:10.1177/2150135110397671; Loomba R., Shah P.H., Anderson R.H. Fetal Magnetic Resonance Imaging of Malformations Associated with Heterotaxy. Cureus 2015; 7(5): e269. DOI:10.7759/cureus.269; Kulkarni A., Patel N., Singh T.P., Mossialos E., Mehra M.R. Risk factors for death or heart transplantation in single-ventricle physiology (tricuspid atresia, pulmonary atresia and heterotaxy): a systematic review and meta-analysis. J Heart Lung Transplant 2019; 38: 739–747. DOI:10.1016/j.healun.2019.04.001; Ma L., Selamet Tierney E.S., Lee T., Lanzano P., Chung W.K. Mutations in ZIC3 and ACVR2B are a common cause of heterotaxy and associated cardiovascular anomalies. Cardiol Young 2012; 22(2): 194–201. DOI:10.1017/S1047951111001181; https://www.ped-perinatology.ru/jour/article/view/1748

  4. 4
    Academic Journal

    المساهمون: The work was performed within the framework of the clinical approbation of the Ministry of health of the Russian Federation No. 2018-46-12 «Personalized therapy of bronchial asthma in children using the course using monoclonal antibodies (anti-IgE therapy)»., Работа выполнена в рамках Клинической апробации Минздрава РФ №2018-46-12 «Персонифицированная терапия бронхиальной астмы у детей с применением курсового метода использования моноклональных антител (анти-IgE терапии)».

    المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 65, № 6 (2020); 116-121 ; Российский вестник перинатологии и педиатрии; Том 65, № 6 (2020); 116-121 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2020-65-6

    وصف الملف: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1299/1032; Верлан Н.В., Варик Н.А., Секретарева Л.Б., Хашкина Л.А., Лузгина Н.В., Шинкарева В.М., Бондаренко Т.П. Современные возможности оптимизации расходов медицинских учреждений на лечение среднетяжелой и тяжелой атопической бронхиальной астмы. Практическая пульмонология 2017; 2: 22–26. [Verlan N.V., Varik N.A., Sekretareva L.B. Hashkina L.A., Luzgina N.V., Shinkareva V.M., Bondarenko T.P. Modern possibilities of optimizing the costs of medical institutions for the treatment of moderate and severe atopic bronchial asthma. Prakticheskaya pul’monologiya 2017; 2: 22–26. (in Russ.)]; Национальная программа «Бронхиальная астма у детей. Стратегия лечения и профилактика» (5-е изд., испр. и перераб.). М.: Оригинал-макет, 2017; 184. [National program “Bronchial asthma in children. Treatment strategy and prevention”. Moscow: Original-maket, 2017; 184. (in Russ.)]; Колбин А.С., Намазова-Баранова Л.С., Вишнева Е.А., Фролов М.Ю., Галанкин Т.Л., Алексеева А.А., Добрынина Е.А. Комплексная клинико-экономическая экспертиза применения омализумаба при тяжелой неконтролируемой бронхиальной астме в России. Клиническая фармакология и терапия 2016; 25(5): 80–85. DOI: 655198/HEOR/11.16/F4/8000. [Kolbin A.S., Namazova-Baranova L.S., Vishneva E.A., Frolov M.Yu., Galankin T.L., Alekseeva A.A., Dobrynina E.A. Comprehensive clinical and economic examination of the use of omalizumab in severe uncontrolled bronchial asthma in Russia. Klinicheskaya farmakologiya i terapiya 2016; 25(5): 80–85. (in Russ.)]; Куличенко Т.В. Омализумаб в лечении аллергических болезней. Пед фармакология 2007; 4(4): 63–71. [Kulichenko T.V. Omalizumab in the treatment of allergic diseases. Ped farmakologiya 2007; 4(4): 63–71. (in Russ.)]; Мизерницкий Ю.Л., Цыпленкова С.Э. Ксолар – новые возможности в терапии тяжелой бронхиальной астмы у детей. Атмосфера. Пульмонология и аллергология 2008; 3: 33–36. [Mizernitsky Yu.L., Cyplenkova S.E. Xolar – new opportunities in the treatment of severe bronchial asthma in children. Atmosfera. Pul’monologiya i allergologiya 2008; 3: 33–36. (in Russ.)]; Цыпленкова С.Э., Мизерницкий Ю.Л., Соколова Л.В., Сорокина Е.В. Омализумаб: инновационный подход к терапии неконтролируемой тяжелой бронхиальной астмы и коморбидных заболеваний у детей. Рос аллергол журнал 2014; 5: 57–60. [Cyplenkova S.E., Mizernitsky Yu.L., Sokolova L.V., Sorokina E.V. Omalizumab: an innovative approach to the treatment of uncontrolled severe bronchial asthma and comorbid diseases in children. Ros allergol zhurnal 2014; 5: 57–60. (in Russ.)]. DOI:10.36691/RJA537; Цыпленкова С.Э., Мизерницкий Ю.Л., Соколова Л.В., Сорокина Е.В. Клиническая эффективность анти-IgEтерапии при тяжелой бронхиальной астме у детей. Эффективная фармакотерапия (Педиатрия) 2013; 50(5): 34–40. [Cyplenkova S.E., Mizernitsky Yu.L., Sokolova L.V., Sorokina E.V. Clinical efficacy of anti-IgE therapy in severe bronchial asthma in children. Effektivnaya farmakoterapiya (Pediatriya) 2013; 50(5): 34–40. (in Russ.)]; Фассахов Р.С. Ксолар (омализумаб): новые возможности терапии тяжелой бронхиальной астмы. Пульмонология 2007; 4: 100–105. [Fassahov R.S. Xolar (omalizumab): new treatment options for severe bronchial asthma. Pul’monologiya 2007; 4: 100–105. (in Russ.)] DOI:10.18093/0869-0189-2007-0-4-100-105; Alhossan A., Lee C.S., MacDonald K., Abraham I. «Real-life» Effectiveness Studies of Omalizumab in Adult Patients with Severe Allergic Asthma: Meta-analysis. J Allergy Clin Immunol Pract 2017; 5(5): 1362–1370e2. DOI:10.1016/j.jaip.2017.02.002; Barnes P.J. Anti-IgE therapy in asthma: rationale and therapeutic potential. Int Arch Allergy Immunol 2000; 123: 196– 204. DOI:10.1159/000024444; Nowak D. Management of asthma with anti-immunoglobulin E: a review of clinical trials of omalizumab. Respir Med 2006; 100(11): 1907–1917. DOI:10.1016/j.rmed.2005.10.004; Soresi S., Togias A. Mechanisms of action of anti-immunoglobulin E therapy. Allergy Asthma Proc 2006; 27(2 Suppl): S15–23.; Bousquet J., Rabe K., Humbert M., Chung K.F., Berger W., Fox H., Ayre G. et al. Predicting and evaluating response to omalizumab in patients with severe allergic asthma. Respir Med 2007; 101(7): 1483–1492. DOI:10.1016/j.rmed.2007.01.011; Braunstahl G.J., Chen C.-W., Maykut R., Georgiou P., Peachey G., Bruce J. The eXpeRience registry: the ‘real-world’ effectiveness of omalizumab in allergic asthma. Respir Med 2013; 107(8): 1141–1151. DOI:10.1016/j.rmed.2013.04.017; Busse W.W., Morgan W.J., Gergen P.J., Mitchell H.E., Gern J.E., Liu A.H. et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med 2011; 364: 1005–1015. DOI:10.1056/NEJMoa1009705; Chapman K.R., Cartier A., McIvor R.A., Jacques H., McIvor R.A., Schellenberg R.R. The role of omalizumab in the treatment of severe allergic asthma. Can Respir J 2006; 13(Suppl.B): B1–9. DOI:10.1155/2006/279435; Chipps B.E., Lanier B., Milgrom H., Deschildre A., Hedlin G., Szefler S.J. Omalizumab in children with uncontrolled allergic asthma: review of clinical trial and real-world experience. J Allergy Clin Immunol 2017; 139: 1431–1444. DOI:10.1016/j.jaci.2017.03.002; Rodrigo G.J., Neffen H., Castro-Rodriguez J.A. Efficacy and safety of subcutaneous omalizumab vs placebo as addon therapy to corticosteroids for children and adults with asthma: a systematic review. Chest 2011; 139: 28–35. DOI:10.1378/chest.10-1194; Teach S.J., Gill M.A., Togias A., Sorkness C.A., Arbes S.J.Jr., Calatroni A. Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. J Allergy Clin Immunol 2015; 136(6):1476–85. DOI:10.1016/j.jaci.2015.09.008; Walker S., Monteil M., Phelan K., Lasserson T.J., Walters E.H. Anti-IgE for chronic asthma in adult and children. Cochrane Database Syst Rev 2003; 3: CD003559. DOI:10.1002/14651858; Esquivel A., Busse W.W., Calatroni A., Togias A.G., Grindle K.G., Bochkov Y.A. et al. Effects of Omalizumab on rhinovirus infections, illnesses, and exacerbations of asthma. Am J Respir Crit Care Med 2017; 196(8): 985–992. DOI:10.1164/rccm.201701-0120OC; National Institute of Health. Global Initiative for Asthma. Global strategy for Asthma Management and Prevention. 2020. www.gina.orghttps://ginasthma.org; NIH/National Institute of Allergy and Infectious Diseases. Omalizumab decreases colds in inner-city children with asthma. 2016. Retrieved August 11, 2020 from https://www.sciencedaily.com/releases/2016/03/160306083848.htm; Normansell R., Walker S., Milan S.J., Walters E.H., Nair P. Omalizumab for asthma in adults and children. Cochrane Database Syst Rev 2014; 1: CD003559. DOI:10.1002/14651858.; Bochner B.S., McKelvey A.A., Schielmeimer R.P., Hildreth J.E.K., MacGlashan D.W. Flow cytometric methods for analysis of human basophil surface antigen and viability. J Immunol Methods 1989; 125: 265–271. DOI:10.1016/0022-1759(89)90102-6; Davey H. Flow cytometry for clinical microbiology. CLI 2004; 2/3: 12–15. https://www.researchgate.net/publication/233918653_Flow_cytometry_for_clinical_microbiology; Shapiro H.M. Practical flow cytometry. New York: Liss, 1988; XXIV: 353.; Maetta G. Basophil activation test: do not lose control. Eur Ann Allergy Clin Immunol 2016; 48(3):110–111.; Deza G., Bertolín-Colilla M., Pujol R.M., Curto-Barredo L., Soto D., García M. et al. Basophil FcεRI Expression in Chronic Spontaneous Urticaria: A Potential Immunological Predictor of Response to Omalizumab-Therapy. Acta Derm Venereol 2017; 97(6): 698–704. DOI:10.2340/00015555-2654; Maggi L., Rossettini B., Montaini G., Matucci A., Vultaggio A., Mazzoni A. et al. Omalizumab dampens type 2 inflammation in a group of long-term treated asthma patients and detaches IgE from FcεRI. Eur J Immunol 2018; 48(12): 2005–2014. DOI:10.1002/eji.201847668; Pereira Santos M.C., Campos Melo A., Caetano A., Caiado J., Mendes A., Pereira Barbosa M., Branco Ferreira M. Longitudinal study of the expression of FcεRI and IgE on basophils and dendritic cells in association with basophil function in two patients with severe allergic asthma treated with Omalizumab. Eur Ann Allergy Clin Immunol 2015; 47(2): 38–40.; Oliver J.M., Tarleton C.A., Gilmartin L., Archibeque T., Qualls C.R., Diehl L. et al. Reduced FcεRI-Mediated Release of Asthma-Promoting Cytokines and Chemokines from Human Basophils during Omalizumab Therapy. Int Arch Allergy Immunol 2010; 151(4): 275–284. DOI:10.1159/000250436; https://www.ped-perinatology.ru/jour/article/view/1299

  5. 5
    Academic Journal

    المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 66, № 4 (2021); 95-100 ; Российский вестник перинатологии и педиатрии; Том 66, № 4 (2021); 95-100 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2021-66-4

    وصف الملف: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1450/1122; Karmiloff-Smith A., Al-Janabi T., D’Souza H. The importance of understanding individual differences in Down syndrome. F1000Res 2016; 5: F1000 Faculty Rev-389. DOI:10.12688/f1000research.7506.1; Roizen N.J., Patterson D. Down’s syndrome. Lancet 2003; 361: 1281–1289. DOI:10.1016/S0140-6736(03)12987-X; Reeves R.H., Baxter L.L., Richtsmeier J.T. Too much of a good thing: mechanisms of gene action in Down syndrome. Trends Genet 2001; 17(2): 83–88. DOI:10.1016/S0168-9525(00)02172-7; Cheon M.S., ShimK.S., Kim S.H., Hara A., Lubec G. Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain: Challenging the gene dosage effect hypothesis (Part IV). Amino Acids 2003; 25(1): 41–47. DOI:10.1007 / S00726-003-0009-9; Colvin K.L., Yeager M.E. What people with Down Syndrome can teach us about cardiopulmonary disease. Eur Respir Rev 2017; 26(143): 160098. DOI:10.1183/16000617.0098-2016; McDowell K.M., Craven D.I. Pulmonary complications of Down syndrome during childhood. J Pediatr 2011; 158(2): 319–325. DOI:10.1016/j.jpeds.2010.07.023; Uppal H., Chandran S., Potluri R. Risk factors for mortality in Down syndrome. J Intellect Disabil Res 2015; 59: 873– 881. DOI:10.1111/jir.12196; Watts R., Vyas H. An overview of respiratory problems in children with Down’s syndrome. Arch Dis Child 2013; 98: 812– 817. DOI:10.1136/archdischild-2013-304611; LamD.J.,JensenC.C.,MuellerB.A. Pediatric sleep apnea and craniofacial anomalies: a population-based case–control study. Laryngoscope 2010; 120: 2098–2105. DOI:10.1002/lary.21093; Pandit C., Fitzgerald D.A. Respiratory problems in children with Down syndrome. J Paediatr Child Health 2012; 48: E147–E152. DOI:10.1111/J.1440-1754.2011.02077.X; Bertrand P., Navarro H., Caussade S. Airway anomalies in children with Down syndrome: endoscopic findings. Pediatr Pulmonol 2003; 36: 137–141. DOI:10.1002/ppul.10332; MartinezE., Castaneda D., Jaramillo S. Altered immune parameters correlate with infection-related hospitalizations in children with Down syndrome. Hum Immunol 2016; 77(7): 594–599. DOI:10.1016/j.humimm.2016.05.004; Piatti G., Allegra L., Ambrosetti U. Nasal ciliary function and ultrastructure in Down syndrome. Laryngoscope 2001; 111: 1227–1230. DOI:10.1097/00005537-200107000-00016; Лев Н.С., Мизерницкий Ю.Л. Клинические варианты интерстициальных болезней легких в детском возрасте. М: ИД «МЕДПРАКТИКА-М», 2021; 368.; BushD., Abman S.H., Galambos C. Prominent intrapulmonary bronchopulmonary anastomoses and abnormal lung development in infants and children with Down syndrome. J Pediatr 2017; 180: 156–162.e1. DOI:10.1016/j.jpeds.2016.08.063; Galambos C., Minic A.D., BushD. Increased lung expression of anti-angiogenic factors in down syndrome: potential role in abnormal lung vascular growth and the risk for pulmonary hypertension. PLoS One 2016; 11: e0159005. DOI:10.1371/journal.pone.0159005; Saji T. Clinical characteristics of pulmonary arterial hypertension associated with Down syndrome. Pediatr Int 2014; 56: 297–303. DOI:10.1111/ped.12349; Biko D.M., Schwartz M., Anupindi S.A. Subpleural lung cysts in Down syndrome: prevalence and association with coexisting diagnoses. Pediatr Radiol 2008; 38: 280–284. DOI:10.1007/S00247-007-0699-3; Joshi V.V., KasznicaS., Khasma A., Amato S.S., Levine O.R. Cystic Lung dsease in Dawns syndrome: report of two cases. Pediatr Pathol 1986; 5: 79–86; Gonzalez O.R., Gomez I.G., Recalde A.L. Postnatal development of the cystic lung lesion of Down syndrome: suggestion that the cause is reduced formation of peripheral air spaces. Pediatr Pathol 1991; 11: 623–633. DOI:10.3109/15513819109064794; Bruijn M., van der Aa L.B., van Rijn R.R. High incidence of acute lung injury in children with Down syndrome. Intensive Care Med 2007; 33: 2179–2182. DOI:10.1007/s00134-007-0803-z; Biko D.M., Schwartz M., Anupindi S.A., Altes T.A. Subpleural lung cysts in Dawn syndrome: prevalence and association with coexisting diagnoses. Pediatr Radiol 2008; 38: 280–284. DOI:10.1007/s00247-007-0699-3; Gyes-Ray K., Kirchener S., Stein S., Heller R., Htrnfnz-Schulman M. Cystic Lung disease in Dawn s syndrome. Pediatr Radiol 1999; 24: 137–138. DOI:10.1007/bf02020173; Беляшова М.А., Овсянников Д.Ю., Колтунов И.Е. Респираторные заболевания у детей с синдромом Дауна. Педиатрия. Журнал имени Г.Н.Сперанского 2017; 96(2): 58–64.; Костюченко М.В. Атлас рентгенодиагностики острых и хронических неспецифических заболеваний легких у детей. Под ред. Ю.Л. Мизерницкого. М.: Медпрактика-М, 2014; 276.; https://www.ped-perinatology.ru/jour/article/view/1450

  6. 6
    Academic Journal

    المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 63, № 6 (2018); 83-87 ; Российский вестник перинатологии и педиатрии; Том 63, № 6 (2018); 83-87 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2018-63-6

    وصف الملف: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/775/724; Afzelius B.A., Mossberg B., Bergstrom S.E. Immotile cilia syndrome (primary ciliary dyskinesia), including Kartagener syndrome. In: C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle, B. Childs, K.W. Kinzler, B. Vogelstein (eds). The Metabolic and Molecular Basis of Inherited Disease. New York, NY: McGraw-Hill, 2001; 4817–4827.; Розинова Н.Н., Богорад А.Е., Захаров П.П. Первичная цилиарная дискинезия и синдром Картагенера. В кн.: Н.Н. Розинова, Ю.Л. Мизерницкий. Орфанные заболевания легких у детей. М: ИД МЕДПРАКТИКА-М , 2015; 14–27. [Rozinova N.N., Bogorad A.E., Zakharov P.P. Primary ciliary dyskinesia and Kartagener syndrome. In: N.N. Rozinova, Yu.L. Mizernickij. Orphan pulmonary diseases in children Moscow: ID “MEDPRAKTIKA-M”, 2015;14–27. (in Russ)]; Kuehni C.E., Lucas J.S. Diagnosis of primary ciliary dyskinesia: summary of ERS Task Force report. Breathe 2017; 13(3): 166–178. DOI:10.1183/20734735.008517; Damseh N., Quercia N., Rumman N., Dell S.D., Kim R.H. Primary ciliary dyskinesia: mechanisms and management. The Application of Clinical Genetics 2017; 10: 67–74. DOI:10.2147/TACG.S127129; Davis S.D., Ferkol T.W., Rosenfeld M., Lee H.-S., Dell S.D., Sagel S.D., Milla C., Zariwala M.A. et al. Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype. Am J Respir Crit Care Med 2015; 191: 316–324. DOI:10.1164/rccm.201409-1672OC.; Shapiro A.J., Zariwala M.A., Ferkol T., Davis S.D., Sagel S.D., Dell S.D., Rosenfeld M., Olivier K.N. et al. Genetic Disorders of Mucociliary Clearance Consortium. Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatr Pulmonol 2016; 51(2): 115–132. DOI:10.1002/ppul.23304; Wallmeier J., Al-Mutairi D.A., Chen C.T., Loges N.T., Pennekamp P., Menchen T., Ma L., Shamseldin H.E. et al. Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Genet 2014; 46(6): 646–651. DOI:10.1038/ng.2961; https://www.ped-perinatology.ru/jour/article/view/775

  7. 7