يعرض 1 - 20 نتائج من 270 نتيجة بحث عن '"I. A. Antonova"', وقت الاستعلام: 0.88s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المؤلفون: I. S. Antonova, M. S. Televinova

    المصدر: Труды по прикладной ботанике, генетике и селекции, Vol 185, Iss 2, Pp 147-156 (2024)

    وصف الملف: electronic resource

  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal

    المصدر: The Herald of the Siberian State University of Telecommunications and Information Science; № 4 (2022); 96-103 ; Вестник СибГУТИ; № 4 (2022); 96-103 ; 1998-6920

    وصف الملف: application/pdf

    Relation: https://vestnik.sibsutis.ru/jour/article/view/583/538; Cherevko A. G., Kriging A. S., Ivanov A. I., Soots R. A., Antonova I. V. Benefits of Printed Graphene with Variable Resistance for Flexible and Ecological 5G Band Antennas // Materials. 2022. V. 15, 7267. https://doi.org/10.3390/ma15207267.; Cherevko A. G., Morgachev, Y. V. Ecological graphene antennas modeling for multi-channel systems for transferring atmospheric data and oceanological information in the range of cellular communications // Proc. XXV International Symposium Atmospheric and Ocean Optics, Atmospheric Physics, Novosibirsk, Russia, 1–5 July 2019. V. 1. P. 1208–1212.; Sa’don S. N. H., Jamaluddin M. H., Kamarudin M. R., Ahmad F., Yamada Y., Kamardin K., Idris I. H. Analysis of Graphene Antenna Properties for 5G Applications // Sensors. 2019. V. 19. 4835.; Xu Z, Xiao Z., Jiang S., Song R., He D. A Dual-Band Conformal Antenna Based on Highly Conductive Graphene-Assembled Films for 5G WLAN Applications // Materials. 2021, V. 14. 5087.; Antonova I. V., Shavelkina M. B., Ivanov A. I., Poteryaev D. A., Nebogatikova N. A., Buzmakova A. A, Soots R. A., Katarzhis V. A. Graphene: Hexagonal Boron Nitride Composite Films with Low-Resistance for Flexible Electronics // Nanomaterials. 2022. V. 12. 1703.; Патент РФ №2665397, МПК G01S 17/00 Способ получения водной суспензии графена для проводящих чернил / Е. А. Якимчук, И. В. Антонова, Р. А. Соотс. Заявка № 2017145195, заявлено 06.07.2017, опубликовано 29.08.2018.; Soots R. A., Yakimchuk E. A., Nebogatikova N. A., Kotin I. A., Antonova I. V. Graphene Suspensions for 2D Printing // Tech. Phys. Lett. 2016. V. 42. P. 438–441.; Cherevko A., Morgachev Y. Analysis of the Radiation Pattern Stability of Flexible, Eco-Friendly Microstrip and Folded Dipole Antennas in Graphene Design // Proc. International Russian Automation Conference (RusAutoCon). 2021. P. 945–949.; Cherevko A., Morgachev Y. Comparative Analysis of Graphene Deposition Technologies for Antennas of Millimeter and Submillimeter Parts of the Spectrum (5-6G) // Proc. International Russian Automation Conference (RusAutoCon). 2021. P. 970–974.; Yakimchuk E. A., Soots R. A., Kotin I. A., Antonova I. V. 2D printed graphene conductive layers with high carrier mobility // Current Appl. Phys. 2017. № 17. P. 1655–1661.; Lee K., Yoon Y., Cho Y., Lee S.M., Shin Y., Lee H., Lee H. Tunable Sub-nanopores of Graphene Flake Interlayers with Conductive Molecular Linkers for Supercapacitors // ACS Nano. 2016. № 10. P. 6799−6807.; Zezelj M., Stankovic I. From percolating to dense random stick networks: Conductivity model investigation // Physical Review B. 2012. V. 86. 134202.; Tarasevich Y. Y., Vodolazskaya I. V., Eserkepov A. V. Electrical conductivity of random metallic nanowire networks: an analytical consideration along with computer simulation // Phys. Chem. Chem. Phys. 2022. V. 24. P. 11812–11819.; Gouveia M., Dias C. S., Tavares J. M. Percolation in binary mixtures of linkers and particles: Chaining vs branching // J. Chem. Phys. 2022. V. 157. 164903.; Nezakati T., Tan A., Seifalian A. M. Enhancing the electrical conductivity of a hybrid POSS–PCL/graphene nanocomposite polymer // Journal of Colloid and Interface Science. 2014. V. 435. P. 145–155.; Liu L., Shen Z., Zhang X., Ma H. Highly conductive graphene/carbon black screen printing inks for flexible electronics // Journal of Colloid and Interface Science. 2021. V. 582. P. 12–21.; Lim S., H. Park H., Yamamoto G., Lee C., Suk J. W. Measurements of the Electrical Conductivity of Monolayer Graphene Flakes Using Conductive Atomic Force Microscopy // Nanomaterials. 2021. V. 11. 2575.; Afroj S., Tan S., Abdelkader A. M., Novoselov K. S., Karim N. Highly Conductive, Scalable, and Machine Washable Graphene-Based E-Textiles for Multifunctional Wearable Electronic Applications // Adv. Funct. Mater. 2020. V. 30. 2000293.; https://vestnik.sibsutis.ru/jour/article/view/583

  10. 10
    Academic Journal

    المصدر: Medical Visualization; Том 27, № 4 (2023); 124-137 ; Медицинская визуализация; Том 27, № 4 (2023); 124-137 ; 2408-9516 ; 1607-0763

    وصف الملف: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/1354/850; https://medvis.vidar.ru/jour/article/downloadSuppFile/1354/2135; https://medvis.vidar.ru/jour/article/downloadSuppFile/1354/2136; Adams T.S., Rogers L.J., Cuello M.A. Cancer of the vagina: 2021 update. Int. J. Gynecol. Obstet. 2021; 155 (Suppl. 1): 19– 27. https://doi.org/10.1002/ijgo.13867; Sinno A.K., Saraiya M., Thompson T.D. et al. Human papillomavirus genotype prevalence in invasive vaginal cancer from a registry-based population. Obstet. Gynecol. 2014; 123 (4): 817–821. https://doi.org/10.1097/AOG.0000000000000171; Солопова А.Г., Москвичёва В.С., Блбулян Т.А., Шкода А.С., Макацария А.Д. Актуальные вопросы профилактики, диагностики и лечения рака вульвы и влагалища. Акушерство, гинекология и репродукция. 2018; 12 (4): 62–70. https://doi.org/10.17749/2313-7347.2018.12.4. 062-070; Guo L., Li C., Hua K. Occult vaginal cancer recurrence after hysterectomy: a case report and literature review. J. Int. Med. Res. 2020; 48 (12): 300060520973901. https://doi.org/10.1177/0300060520973901; Donati O.F., Lakhman Y., Sala E. et al. Role of preoperative MR imaging in the evaluation of patients with persistent or recurrent gynaecological malignancies before pelvic exenteration. Eur. Radiol. 2013; 23 (10): 2906–2915. https://doi.org/10.1007/s00330-013-2875-1; Каприн А.Д., Старинский В.В., Шахзадова А.О. Состояние онкологической помощи населению России в 2021 году. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ “НМИЦ радиологии” Минздрава России, 2022. 239 с. ISBN 978-5-85502-275-9; Клинические рекомендации, одобренные научным советом МЗ РФ. Злокачественные новообразования влагалища, 2020. https://www.cancer.org/research/cancer-factsstatistics/all-cancer-facts-figures/cancer-factsfigures-2020.html; American Cancer Society. Cancer Facts and Figures 2020. Atlanta, Ga: American Cancer Society; 2020. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2020.htm; Аксенова С.П., Солодкий В.А., Нуднов Н.В., Крейнина Ю.М., Котляров П.М., Сергеев Н.И., Ребрикова В.А., Мурзина А.А. Магнитно-резонансная томография в диагностике опухолевого поражения влагалища (по материалам методических рекомендаций). Вестник научного центра рентгенорадиологии. 2022; 22 (2). http://vestnik.rncrr.ru/vypusk/vypusk22/?ELEMENT_ID=71; Казумова А.А. Ультразвуковая диагностика опухолей влагалища и вульвы: Дис. … канд. мед. наук. Обнинск, 2010. 101 c.; Pozzati F., Moro F., Leombroni M. et al. Clinical and ultrasound characteristics of vaginal lesions. Int. J. Gynecol. Cancer. 2021; 31 (1): 45–51. https://doi.org/10.1136/ijgc-2020-001651; Fischerova D., Garganese G., Reina H. et al. Terms, definitions and measurements to describe sonographic features of lymph nodes: consensus opinion from the Vulvar International Tumor Analysis (VITA) group. Ultrasound Obstet. Gynecol. 2021; 57 (6): 861–879. https://doi.org/10.1002/uog.23617; Faria S., Devine C., Viswanathan C. et al. FDG-PET assessment of other gynecologic cancers. PET Clin. 2018; 13 (2): 203–223. https://doi.org/10.1016/j.cpet.2017.11.006; Robertson N.L., Hricak H., Sonoda Y. et al. The impact of FDG-PET/CT in the management of patients with vulvar and vaginal cancer. Gynecol. Oncol. 2016; 140 (3): 420–424. https://doi.org/10.1016/j.ygyno.2016.01.011; Gouveia P., Sá Pinto A., Violante L. et al. 18F-FDG PET/CT in Patients with Vulvar and Vaginal Cancer: A Preliminary Study of 20 Cases. Acta Med. Port. 2022; 35 (3): 170–175. https://doi.org/10.20344/amp.12510; Sadowski E.A., Pirasteh A., McMillan A.B. et al. PET/MR imaging in gynecologic cancer: tips for differentiating normal gynecologic anatomy and benign pathology versus cancer. Abdom. Radiol. (NY). 2022; 47 (9): 3189–3204. https://doi.org/10.1007/s00261-021-03264-9; Kilcoyne A., Gottumukkala R.V., Kang S.K. et al.; Expert Panel on GYN and OB Imaging. ACR Appropriateness Criteria® Staging and Follow-up of Primary Vaginal Cancer. J. Am. Coll. Radiol. 2021; 18: S442–S455. https://doi.org/10.1016/j.jacr.2021.08.011; Shetty A.S. Menias C.O. MR imaging of vulvar and vaginal cancer. Magn. Reson. Imaging Clin. N. Am. 2017; 25: 481–502. https://doi.org/10.1016/j.mric.2017.03.013; Ferreira D.M. Bezerra R.O.F. Ortega C.D. et al. Magnetic resonance imaging of the vagina: an overview for radiologists with emphasis on clinical decision making. Radiol. Bras. 2015; 48: 249–259. https://doi.org/10.1590/0100-3984.2013.1726; Parikh J.H., Barton D.P., Ind T.E., Sohaib S.A. MR imaging features of vaginal malignancies. Radiographics. 2008; 28 (1): 49–63; quiz 322. https://doi.org/10.1148/rg.281075065; Аксенова С.П., Нуднов Н.В., Солодкий В.А. Поиск оптимального МР-протокола для диагностики опухолевого поражения влагалища. Вестник рентгенологии и радиологии. 2022; 103 (4–6): 58–70. https://doi.org/10.20862/0042-4676-2022-103-4-6-58-70; Manganaro L., Lakhman Y., Bharwani N. et al. Staging, recurrence and follow-up of uterine cervical cancer using MRI: Updated Guidelines of the European Society of Urogenital Radiology after revised FIGO staging 2018. Eur. Radiol. 2021; 31 (10): 7802–7816. https://doi.org/10.1007/s00330-020-07632-9. Epub 2021 Apr 14. Erratum in: Eur Radiol. 2021 Jun 17.; Proscia N., Jaffe T.A., Neville A.M. et al. MRI of the pelvis in women: 3D versus 2D T2-weighted technique. Am. J. Roentgenol. 2010; 195 (1): 254–259. https://doi.org/10.2214/ajr.09.3226; Alt C.D., Bharwani N., Danza F.M. et al. ESUR Quick Guide to Female Pelvis Imaging. 2019; https://www.researchgate.net/publication/334725882_ESUR_Quick_Guide_to_Female_Pelvis_Imaging; Bhardwaj R., Boruah D.K., Gogoi B.B. et al. Added-Value of Diffusion-Weighted Imaging (DWI) and Dynamic Contrast-Enhanced (DCE-MRI) Magnetic Resonance Imaging in the Preoperative Assessment of Cervical Cancer. J. Obstet. Gynaecol. India. 2022; 72 (4): 330–340. https://doi.org/10.1007/s13224-021-01488-9; Chow L., Tsui B.Q., Bahrami S. et al. Gynecologic tumor board: a radiologist's guide to vulvar and vaginal malignancies. Abdom. Radiol. (NY). 2021; 46 (12): 5669–5686. https://doi.org/10.1007/s00261-021-03209-2; Lamoreaux W.T., Grigsby P.W., Dehdashti F. et al. FDG-PET evaluation of vaginal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2005; 62 (3): 733–737. https://doi.org/10.1016/j.ijrobp.2004.12.011; Brar H., May T., Tau N. et al. Detection of extra-regional tumour recurrence with 18F-FDG-PET/CT in patients with recurrent gynaecological malignancies being considered for radical salvage surgery. Clin. Radiol. 2017; 72 (4): 302–306. https://doi.org/10.1016/j.crad.2016.12.009; ACR–SABI–SAR–SPR Practice parameter for the performance of computed tomography (CT) of the abdomen and computed tomography (CT) of the pelvis. Practice parameter. CT abdomen CT pelvis. revised 2021 (resolution 46); Burton C.S., Frey K., Fahey F. et al. Fetal Dose from PET and CT in Pregnant Patients. J. Nucl. Med. 2023; 64 (2): 312–319. https://doi.org/10.2967/jnumed.122.263959; NCCN Clinical Practice Guidelines in Oncology. Cervical cancer. Version 1.2020. Available at. https://www.nccn.org/professionals/physician_gls/pdf/cervical.pdf; Nout R., Calaminus G., Planchamp F. et al. ESTRO/ESGO/ SIOPe guidelines for the management of patients with vaginal cancer. Radiother Oncol. 2023 Sep;186:109662. https://doi.org/10.1016/j.radonc.2023.109662; Friedman S.N., Itani M., Dehdashti F. PET Imaging for Gynecologic Malignancies. Radiol. Clin. N. Am. 2021; 59 (5): 813–833. https://doi.org/10.1016/j.rcl.2021.05.011; Gardner C.S., Sunil J., Klopp A.H. et al. Primary vaginal cancer: role of MRI in diagnosis, staging and treatment. Br. J. Radiol. 2015; 88 (1052): 20150033. https://doi.org/10.1259/bjr.20150033; Коржевская Е.В., Кузнецов В.В., Грицай А.Н. Злокачественные опухоли влагалища. Клиническая онкогинекология: Руководство для врачей / Под ред. В.П. Козаченко. 2-е изд., перераб. и доп. М.: Издательство Бином, 2016: 97–108.; Choi H.J., Ju W., Myung S.K., Kim Y. Diagnostic performance of computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with cervical cancer: meta-analysis. Cancer Sci. 2010; 101 (6): 1471–1479. https://doi.org/10.1111/j.1349-7006.2010.01532.x; Albuquerque K.S., Zoghbi K.K., Gomes N.B.N. et al. Vaginal cancer: Why should we care? Anatomy, staging and in-depth imaging-based review of vaginal malignancies focusing on MRI and PET/CT. Clin. Imaging. 2022; 84: 65–78. https://doi.org/10.1016/j.clinimag.2022.01.009; Garganese G., Collarino A., Fragomeni S.M. et al. Groin sentinel node biopsy and 18F-FDG PET/CT-supported preoperative lymph node assessment in cN0 patients with vulvar cancer currently unfit for minimally invasive inguinal surgery: The GroSNaPET study. Eur. J. Surg. Oncol. 2017; 43 (9): 1776-1783. https://doi.org/10.1016/j.ejso.2017.06.018; https://medvis.vidar.ru/jour/article/view/1354

  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal
  18. 18
  19. 19
  20. 20
    Academic Journal