-
1Academic Journal
المؤلفون: Tamburello, Giancarlo, Moune, Séverine, Allard, Patrick, Venugopal, Swetha, Robert, Vincent, Rosas-Carbajal, Marina, Deroussi, Sébastien, Kitou, Gaëtan-Thierry, Didier, Tristan, Komorowski, Jean-Christophe, Beauducel, François, de Chabalier, Jean-Bernard, Le Marchand, Arnaud, Le Friant, Anne, Bonifacie, Magali, Dessert, Céline, Moretti, Roberto
المساهمون: Laboratoire Magmas et Volcans (LMV), Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique du Globe de Paris (IPG Paris), ANR-14-CE04-0001,DIAPHANE,Imageries structurelle et fonctionnelle de volcans avec des rayons cosmiques(2014)
المصدر: ISSN: 1023-7429 ; Geosciences ; https://hal.science/hal-02392160 ; Geosciences, 2019, 9 (11), pp.480. ⟨10.3390/geosciences9110480⟩.
مصطلحات موضوعية: guadeloupe, volcanic gas, la soufrière, hydrothermal gas, multigas, extensometry, volcanic unrest, [SDU.STU]Sciences of the Universe [physics]/Earth Sciences, [SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/Volcanology
-
2Academic Journal
المؤلفون: Granieri, Domenico, Mazzarini, Francesco, Cerminara, Matteo, Calusi, Benedetta, Scozzari, Andrea, Menichini, Matia, Lelli, Matteo
المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia, CNR-ISTI Istituto di Scienza e Tecnologie dell’Informazione, Via G. Moruzzi 1, 56124 Pisa, Italy, CNR-IGG Istituto di Geoscienze e Georisorse, Via G. Moruzzi 1, 56124 Pisa, Italy
مصطلحات موضوعية: Larderello geothermal field, Fracture network connectivity, Diffuse CO2 soil degassing, Thermal infrared images, Hydrothermal gas, 04. Solid Earth
وصف الملف: application/pdf
Relation: Geothermics; /108 (2023); Adler, P.M., Thovert, J.F., 1999. Fractures and Fracture Networks, 15. Kluwer Academic Publishers, Dordrecht. Arias, A., Dini, I., Casini, M., Fiordelisi, A., Perticone, I., Dell’Aiuto, P., 2010. Geoscientific Feature Update of the Larderello-Travale Geothermal System (Italy) for a Regional Numerical Modeling. In: Proceedings World Geothermal Congress 2010. Bali, Indonesia. Baba, A., S¸aro˘glu, F., Akkus¸, I., ¨Ozel, N., Yes¸ilnacar, M.˙I., Nalbantçılar, M.T., Demir, M. M., G¨okçen, G., Arslan, S¸., Dursun, N., Uzelli, T., Yazdani, H., 2019. Geological and hydrogeochemical properties of geothermal systems in the southeastern region of Turkey. Geothermics 78, 255–271. https://doi.org/10.1016/j. geothermics.2018.12.010. Baba, A., S¨ozbilir, H., Sayık, T., Arslan, S., Uzelli, T., Tonkul, S., Demir, M.M., 2022. Hydrogeology and hydrogeochemistry of the geothermal systems and its direct use application: Balçova-Narlıdere geothermal system, ˙Izmir, Turkey. Geothermics 104, 102461. https://doi.org/10.1016/j.geothermics.2022.102461. Barin, I., Knacke, O., 1973. Thermochemical Properties of Inorganic Substances, 921. Springer-Verlag, New York. Barsi, J.A., Barker, J.L., Schott, J.R., 2003. An Atmospheric Correction Parameter Calculator for a Single Thermal Band Earth-Sensing Instrument. In: IGARSS03, 21-25 July 2003. Toulouse, France. Centre de Congr`es Pierre Baudis. Barton, C.C., 1995. Fractal Analysis of Scaling and Spatial Clustering of Fractures. In: Barton, C.C., La Pointe, P.R. (Eds.), Fractals in the Earth Sciences. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1397-5_8. Batini, F., Bertini, G., Gianelli, G., Pandeli, E., Puxeddu, M., 1983. Deep structure of the Larderello field: contribution from recent geophysical and geological data. Mem. Soc. Geol. Ital. 25, 219–235. Batini, F., Burgassi, P.D., Cameli, G.M., Nicholic, R., Squarci, P., 1978. Contribution to the study of the deep lithospheric profiles: “Deep” reflecting horizons in Larderello- Travale geothermal field. Societ`a Geologica Italiana, Perugia, 2-4 Ottobre 1978. Batini, F., Bertini, G., Gianelli, G., Pandeli, E., Puxeddu, M., Villa, I.M., 1985. Deep structure, age and evolution of the Larderello-Travale geothermal field. Geotherm. Res. Coun. Trans. 9, 253–259. Bertrami, R., Cioni, R., Corazza, E., D’amore, F., Marini, L., 1985. Carbon monoxide in geothermal gases. Reservoir temperature calculation at Larderello (Italy). In: Geotherm. Resour. Council Int. Symp. on Geothermal Energy, August 1985. Kona, Hawaii, pp. 299–302. Trans. 9/I. Bertani, R., Bertini, G., Cappetti, G., Fiordelisi, A., Marocco, B.M., 2005. An Update of the Larderello-Travale/Radicondoli Deep Geothermal System. In: Proceedings World Geothermal Congress. Antalya, Turkey, 24-29 April 2005. Bertani, R., 2016. Geothermal power generation in the world 2010-2014 update report. Geothermics 60, 31–43. Bertini, G., Casini, M., Ciulli, B., Ciuffi, S., Fiordelisi, A., 2005. Data revision and upgrading of the structural model of the Travale geothermal field (Italy). In: Proceedings of the 2005, World Geothermal Congress. Antalya, Turkey, p. 8 paper 2612. Bertini, G., Casini, M., Gianelli, G., Pandeli, E., 2006. Geological structure of a long-living geothermal system, 18. Terra Nova, Larderello, Italy, pp. 163–169. Bolognesi, L., 2011. The oxygen isotope exchange between carbon dioxide and water in the Larderello geothermal field (Italy) during fluid reinjection. Geothermics 40 (3), 181–189. https://doi.org/10.1016/j.geothermics.2011.06.002. Brogi, A., Lazzarotto, A., Liotta, D., Ranalli, G., 2003. Extensional shear zones as imaged by reflection seismic lines: the Larderello geothermal field (central Italy). Tectonophysics 363, 27–139. https://doi.org/10.1016/S0040-1951(02)00668-6. Cabassi, J., Venturi, S., Di Bennardo, F., Nisi, B., Tassi, F., Magi, F, Ricci, A., Picchi, G., Vaselli, O., 2021. Flux measurements of gaseous elemental mercury (GEM) from the geothermal area of “Le Biancane” natural park (Monterotondo Marittimo, Grosseto, Italy): Biogeochemical processes controlling GEM emission. J. Geoch. Expl. 228, 106824 https://doi.org/10.1016/j.gexplo.2021.106824. Calusi, B., Andronico, D., Pecora, E., Biale, E., Cerminara, M., 2020. PyTirCam-1.0: a python model to manage thermal infrared camera data. Remote Sens. https://doi. org/10.3390/rs12244056. Cappetti, G., Parisi, L., Ridolfi, A., Stefani, G., 1995. Fifteen years of reinjection in the Larderello-Valle Secolo area: analysis of the production data. In: Proceedings of the World Geothermal Congress, 18-31 May 1995. Firenze, Italy, pp. 1997–2000. Cardellini, C., Chiodini, G., Frondini, F., 2003. Application of stochastic simulation to CO2 flux from soil: mapping and quantification of gas release. J. Geophys. Res. 108 (B9), 2425. https://doi.org/10.1029/2002JB002165. Carella, M., Fulignati, P., Musumeci, G., Sbrana, A., 2000. Metamorphic consequences of Neogene thermal anomaly in the northern Apennines (Radicondoli-Travale area, Larderello geothermal field Italy). Rev. Geol. Dyn. Geogr. Phys. 13 (6), 345–366. https://doi.org/10.1016/S0985-3111(00)01051-2. Casini, M., Ciuffi, S., Fiordelisi, A., Mazzotti, A., Stucchi, E., 2010. Results of a 3D seismic survey at the Travale (Italy) test site. Geothermics 39 (1), 4–12. https://doi.org/ 10.1016/j.geothermics.2009.11.003. Cavaretta, G., Gianelli, G., Puxeddu, M., 1983. Hydrothermal and contact metamorphism in the Larderello geothermal field (Italy): a new contribution from San Pompeo deep well. In: 4th International Symposium on Water Rock Interaction. Miassa, Japan, pp. 82–86. Ceccarelli, A., Celati, R., Grassi, S., Minissale, A., Ridolfi, A., 1987. The southern boundary of Larderello Geothermal field. Geothermics 16, 505–515. Cerminara, M., Fasano, A., 2012. Modeling the dynamics of a geothermal reservoir fed by gravity driven flow through overstanding saturated rocks. J. Volcanol. Geotherm. Res. 233-234, 37–54. Chiodini, G., Cioni, R., 1989. Gas geobarometry for hydrothermal systems and its application to some Italian geothermal areas. Appl. Geochem. 4, 465–472. Chiodini, G., Cioni, R., Raco, B., Scandiffio, G., 1991. Carbonyl sulphide (COS) in geothermal fluids: an example from the Larderello Field (Italy). Geothermics 20 (5/ 6), 319–327. Chiodini, G., Cioni, R., Guidi, M., Marini, L., Raco, B., Taddeucci, G., 1992. Gas geobarometry in boiling hydrothermal systems: a possible tool to evaluate the hazard of hydrothermal explosions. Acta Vulcanologica Marinelli Vol. 2, 99–107. Chiodini, G., Marini, L., 1998. Hydrothermal gas equilibria: The H2O-H2-CO2-CO-CH4 system. Geochim. Cosmochim. Acta 62, 2673–2687. Chiodini, G., Cioni, R., Guidi, M., Raco, B., Marini, L., 1998. Soil CO2 flux measurements in volcanic and geothermal areas. Appl. Geochem. 13, 543–552. Chiodini, G., Frondini, F., Cardellini, C., Granieri, D., Marini, L., Ventura, G., 2001. CO2 degassing and energy release at Solfatara volcano. J. Geophys. Res. 106, 16213–16221. Chiodini, G., Granieri, D., Avino, R., Caliro, S., Costa, A., Werner, C., 2005. Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems. J. Geophys. Res. 110, B08204. https://doi.org/10.1029/ 2004JB003542. Cioni, R., Corazza, E., Magro, G., Guidi, M, Marini, L., 1988. Reactive and inert gases in low temperature fumaroles (Aeolian Islands, Italy). Rend. Soc. It. Min. Petr. 43, 1003–1011. Cox, S.F., 2010. The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones. Geofluids 10, 217–233. https://doi.org/ 10.1111/j.1468-8123.2010.00281.x. Craig, H., 1961. Isotopic variations in meteoric waters. Science 133, 1702–1703. D’Amore, F., Fancelli, R., Saracco, L., Truesdell, A., 1987. Gas geothermometry based on CO content: application in Italian geothermal fields. In: Proc. 12th Work. Geothermal Reservoir Eng. Stanford University, pp. 48–53. David, M., 1977. Geostatistical Ore Reserve Estimation. Elsevier Sci., New York, p. 364. Gat, J.R., Carmi, I., 1970. Evolution of the isotopic composition of atmospheric waters in the Mediterranean area. J. Geophys. Res. 75, 3039–3048. Gherardi, F., Panichi, C., Gonfiantini, R., Magro, G., Scandiffio, G., 2005. Isotope systematics of C-bearing gas compounds in the geothermal fluids of Larderello. Italy. Geothermics 34, 442–470. Gianelli, G., Manzella, A., Puxeddu, M., 1997. Crustal models of the geothermal areas of southern Tuscany (Italy). Tectonophysics 281, 221–239. Gianelli, G., Ruggieri, G., 2002. Evidence of contact metamorphic aureole with hightemperature metasomatism in the deepest part of the active geothermal of Larderello, Italy. Geothermics 31, 443–474. Giggenbach, W.F., 1975. A simple method for the collection and analysis of volcanic gas samples. Bull. Volcanol. 39, 132–145. Giggenbach, W.F., 1980. Geothermal gas equilibria. Geochim. Cosmochim. Acta 44, 2021–2032. Giggenbach, W.F., 1992. Isotopic composition of geothermal water and steam discharges. In: D’Amore, F. (Ed.), Application of Geochemistry in Geothermal Reservoir Development. United Nations Institute for Training and Research, New York, NY, USA, pp. 253-273. Giggenbach, W.F., 1996. Chemical composition of volcanic gases. In: Scarpa, R, Tilling, RI (Eds.), Monitoring and Mitigation of Volcano Hazards. Springer-Verlag, Berlin, pp. 221–256. Granieri, D., de’ Michieli Vitturi, M., Bisson, M., 2018. Peaklocator 1.0, a Web tool to compare extreme value areas among maps. Ann. Geophys. 61 (5) https://doi.org/ 10.4401/ag-7813. Gudmundsson, A., Fjeldskaar, I., Brenner, S.L., 2002. Propagation path-ways and fluid transport of hydrofracture in jointed and layered rocks in geothermal fields. J. Volcanol. Geotherm. Res. 116, 257–278. https://doi.org/10.1016/S0377-0273 (02)00225-1. Hardebol, N.J., Maier, C., Nick, H., Geiger, S., Bertotti, G., Boro, H., 2015. Multiscale fracture network characterization and impact on flow: A case study on the Latemar carbonate platform. J. Geophys. Res. Solid Earth 120. https://doi.org/10.1002/ 2015JB011879. Harris, A., 2013. Thermal remote sensing of active volcanoes: a user’s manual. Cambridge University press. Hochstein, M.P., Bromley, C.J., 2005. Measurement of heat flux from steaming ground. Geothermics 34, 133–160. Hochstein, M.P., Browne, P.R.L., 2000. Surface manifestations of geothermal systems with volcanic heat sources. In: Sigurdsson, H. (Ed.), Encyclopaedia of Volcanoes. Academic Press, pp. 835–855. Hooker, P.J., Bertrami, R., Lombardi, S., O’Nions, R.K., Oxburgh, E.R., 1985. Helium-3 anomalies and crust-mantle interaction in Italy. Geochim. Cosmochim. Acta 49, 2505–2513. Hurwitz, S., Robert, N., Harris, R.N., Werner, C.A., Murphy, F., 2012. Heat flow in vapour dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera. J. Geophys. Res. 117 (B10207) https://doi.org/10.1029/2012JB009463. Jaccard, P., 1901. ´Etude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull. Soc. Vaudoise Sci. Nat. 37, 547–579. Keenan, J.H., Keyes, F.G., Hill, P.G., Moore, J.G., 1969. Steam Tables: Thermodynamic Properties of Water Including Vapor, Liquid, and Solid Phases. John Wiley, Hoboken, N. J, p. 162. Lelli, M., 2021. GC-ICP-MS method as a new application for geothermal/volcanic gas characterization. In: 1st IAVCEI-CCVG Virtual Workshop, 24-26 May, 2021. Poster. Lemmon, E.W., Bell, H.B., Huber, M.L, McLinden, M.O., 2022. Thermophysical Properties of Fluid Systems. In: Linstrom, P.J., Mallard, W.G. (Eds.), NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD, p. 20899. https://doi.org/10.18434/ T4D303 retrieved June 28. Liotta, D., Brogi, A., 2020. Pliocene-Quaternary fault kinematics in the Larderello geothermal area (Italy): Insights for the interpretation of the present stress field. Geothermics 83, 101714. Magro, G., Ruggieri, G., Gianelli, G., Bellani, S., Scandiffio, G., 2003. Helium isotopes in paleofluids and present day fluids of the Larderello geothermal field: constraints on the heat source. J. Geophys. Res. 108. ECV 3-1-12. McNamara, D.D., Milicich, S.D., Massiot, C., Villamor, P., McLean, K., S´epulveda, F., Ries, W.F., 2019. Tectonic controls on Taupo Volcanic Zone geothermal expression: insights from Te Mihi, Wairakei Geothermal Field. Tectonics 38, 3011–3033. https://doi.org/10.1029/2018TC005296. Menichini, M., 2006. Thesis in Geological Science. University of Pisa. Mineo, S., Pappalardo, G., 2021. Rock emissivity measurement for infrared thermography engineering geological applications. Appl. Sci. 11, 3773. https://doi. org/10.3390/app11093773. Moeck, I.S., 2014. Catalog of geothermal play types based on geologic controls. Renewable Sustainable Energy Rev. 37, 867–882. https://doi.org/10.1016/j. rser.2014.05.032. Musumeci, G., Bocini, L., Corsi, R., 2002. Alpine tectonothermal evolution of the Tuscan Metamorphic Complex in the Larderello geothermal field (northern Apennines, Italy). J. Geol. Soc. London 159, 443–456. https://doi.org/10.1144/0016-764901- 084. Oliver, N.H.S., 1996. Review and classification of structural controls on fluid flow during regional metamorphism. J. Metamorphic Geol. 14, 477–492, 1996. Panichi, C., Celati, R., Noto, P., Squarci, P., Taffi, L., Tongiorgi, E., 1974. Oxygen and hydrogen isotope studies of the Larderello, Italy, geothermal system. In: Proceedings of the Symposium on Isotope Techniques in Groundwater Hydrology (Vienna) - IAEA, 2, pp. 3–28. Panichi, C., Scandiffio, G., Baccarin, F., 1995. Variation of geochemical parameters induced by reinjection in the Larderello area. In: Proceedings of the World Geothermal Congress 1995. Florence, Italy, pp. 1845–1949. Piccinini, D., Saccorotti, G., 2018. Observation and analyses of shear wave splitting at the Larderello-Travale geothermal field, Italy. J. Volcanol. Geotherm. Res. 363, 1–9. https://doi.org/10.1016/j.jvolgeores.2018.08.004. Razzano, F., Cei, M., 2015. Geothermal power generation in Italy 2010-2014 update report. In: Proceedings of the World Geothermal Congress 2015. Melbourne, Australia, 19-25 April 2015. Ruggieri, G., Chatelineau, M., Boiron, M.C., Marignac, C., 1999. Boiling and fluid mixing in the chlorite zone of the Larderello geothermal system. Chem. Geology 154, 237–256. Sanderson, D.J., Nixon, C.W., 2015. The use of topology in fracture network characterization. J. Struct. Geol. 72, 55–66. Sanderson, D.J., Nixon, C.W., 2018. Topology, connectivity and percolation in fracture networks. J. Struct. Geol. 115, 167–177. Siler, D.L., Faulds, J., Mayhew, B., Mcnamara, D.D., 2016. Analysis of the favorability for geothermal fluid flow in 3D: Astor Pass geothermal prospect, Great Basin, northwestern Nevada, USA. Geothermics 60, 1–12. Silvestri, M., Marotta, E., Buongiorno, M.F., Avvisati, G., Belviso, P., Bellucci Sessa, E., Caputo, T., Longo, V., De Leo, V., Teggi, S., 2020. Monitoring of Surface Temperature on Parco delle Biancane (Italian Geothermal Area) Using Optical Satellite Data, UAV and Field Campaigns. Remote Sens. 12 https://doi.org/10.3390/ rA12122018. Sinclair, A.J., 1974. Selection of thresholds in geochemical data using probability graphs. J. Geochem. Expl. 3, 129–149. Tarchini, L., Carapezza, M.L., Granieri, D., Frepoli, A., Pagliuca, N.M., Ranaldi, M., 2022. Twenty Years Monitoring of Soil CO2 Flux and Seismicity at Cava dei Selci Gas Discharge (Colli Albani Volcano, Italy). Earth Space Sci. 2022 (9) https://doi.org/ 10.1029/2021EA001936 e2021EA001936. Taussi, M., Brogi, A., Liotta, D., Nisi, B., Perrini, M., Vaselli, O., Zambrano, M., Zucchi, M., 2022. CO2 and heat energy transport by enhanced fracture permeability in the Monterotondo Marittimo-Sasso Pisano transfer fault system (Larderello Geothermal Field, Italy). Geothermics 105, 102531. https://doi.org/10.1016/j. geothermics.2022.102531. Torgersen, T., 1980. Controls on pore-fluid concentration of 4He and 222Rn and the calculation of 4He/222Rn ages. J. Geochem. Explor. 13, 57–75. Truesdell, A.H., White, D.E., 1973. Production of superheated steam from vapordominated geothermal reservoirs. Geothermics 2, 154–173. Uzelli, T., Mungan, G.G., Baba, A., S¨ozbilir, H, Dirik, K., 2017. The conceptual model of the Gülbahçe geothermal system, Western Anatolia, Turkey: Based on structural and hydrogeochemical data. Geothermics 68, 67–85. https://doi.org/10.1016/j. geothermics.2017.03.003. Uzelli, T., S¸ener, M.F., D¨olek, ˙I., Baba, A., S¨ozbilir, H., Dirik, R.K., 2021. Structural controls and hydrogeochemical properties of geothermal fields in the Varto Region, East Anatolia. Turkish J. Earth Sci. https://doi.org/10.3906/yer-2106-13. Venturi, S., Tassi, F., Magi, F., Cabassi, J., Ricci, A., Capecchiacci, F., Caponi, C., Nisi, B., Vaselli, O., 2019. Carbon isotopic signature of interstitial soil gases reveals the potential role of ecosystems in mitigating geogenic greenhouse gas emissions: case studies from hydrothermal systems in Italy. Sci. Total Environ. 655, 887–898.
-
3Dissertation/ Thesis
المؤلفون: Weber, Stefan
مصطلحات موضوعية: hydrothermales Gas, isotopische Thermometrie, hydrothermal gas, isotopic thermometry, 550 Geowissenschaften, 35.26 Massenspektrometrie, 38.32 Geochemie, 43.12 Umweltchemie, Isotop, Hydrothermalquelle, Mittelatlantischer Rücken, Thermometrie, Gasgehalt, Temperaturmessung, Temperatur, Kritische Temperatur, ddc:550
-
4
المؤلفون: Tassi F.[1, Cabassi J.[1, Calabrese S.[3], Nisi B.[4], Venturi S.[1, Capecchiacci F.[1, Giannini L.[1], Vaselli O.[1
المساهمون: Tassi, F, Cabassi, J, Calabrese, S, Nisi, B, Venturi, S, Capecchiacci, F, Giannini, L, Vaselli, O
المصدر: Applied geochemistry 66 (2016): 234–241. doi:10.1016/j.apgeochem.2016.01.002
info:cnr-pdr/source/autori:Tassi F.[1,2], Cabassi J.[1,2], Calabrese S.[3], Nisi B.[4], Venturi S.[1,2], Capecchiacci F.[1,2], Giannini L.[1], Vaselli O.[1,2]/titolo:Diffuse soil gas emissions of gaseous elemental mercury (GEM) from hydrothermal-volcanic systems: An innovative approach by using the static closed-chamber method/doi:10.1016%2Fj.apgeochem.2016.01.002/rivista:Applied geochemistry/anno:2016/pagina_da:234/pagina_a:241/intervallo_pagine:234–241/volume:66مصطلحات موضوعية: GEM flux, Diffuse soil degassing, Air pollutant, Hydrothermal gas, 010504 meteorology & atmospheric sciences, Calibration curve, Mineralogy, chemistry.chemical_element, GEM flux, 010502 geochemistry & geophysics, 01 natural sciences, Impact crater, Geochemistry and Petrology, Environmental Chemistry, 0105 earth and related environmental sciences, geography, geography.geographical_feature_category, Soil gas, Air pollutant, Hydrothermal gas, Diffuse soil degassing, Inlet, Pollution, Settore GEO/08 - Geochimica E Vulcanologia, Volumetric flow rate, Mercury (element), chemistry, Contour line, Soil water, Fluid geochemistry
-
5
المؤلفون: Cabassi J.[1], Venturi S.[1, Di Bennardo F.[2], Nisi B.[1], Tassi F.[1, Magi F.[2, 3, Ricci A.[5, Picchi G.[2], O. Vaselli O.[1
المصدر: Journal of geochemical exploration 228 (2021): 1–9. doi:10.1016/j.gexplo.2021.106824
info:cnr-pdr/source/autori:Cabassi J.[1], Venturi S.[1,2], Di Bennardo F.[2], Nisi B.[1], Tassi F.[1,2], Magi F.[2,3,4], Ricci A.[5,6], Picchi G.[2], O. Vaselli O.[1,2]/titolo:Flux measurements of gaseous elemental mercury (GEM) from the geothermal area of "Le Biancane" natural park (Monterotondo Marittimo, Grosseto, Italy): Biogeochemical processes controlling GEM emission/doi:10.1016%2Fj.gexplo.2021.106824/rivista:Journal of geochemical exploration/anno:2021/pagina_da:1/pagina_a:9/intervallo_pagine:1–9/volume:228مصطلحات موضوعية: Biogeochemical cycle, GEM flux, diffuse soil degassing, static closed chamber, hydrothermal gas, Elemental mercury, 010501 environmental sciences, Closed chamber, 010502 geochemistry & geophysics, 01 natural sciences, Hydrothermal circulation, Flux (metallurgy), Geochemistry and Petrology, Natural park, Environmental chemistry, Soil water, Environmental science, Economic Geology, Geothermal gradient, 0105 earth and related environmental sciences
-
6
المؤلفون: Felipe Aguilera, Manuel Inostroza, F. Capecchiacci, Franco Tassi, José Pablo Sepúlveda, Andrea Rizzo
المساهمون: Inostroza, M, Tassi, F, Sepulveda, J, Capecchiacci, F, Rizzo, A, Aguilera, F
مصطلحات موضوعية: geography, geography.geographical_feature_category, Geothermal potential, δ18O, Colpitas-Taapaca geothermal system, Mineralogy, Geology, Aquifer, 010502 geochemistry & geophysics, Total dissolved solids, 01 natural sciences, Hydrothermal circulation, Mantle (geology), Waves and shallow water, hydrothermal gas, Volcano, Fluid geochemistry, General Earth and Planetary Sciences, Volcanic-hydrothermal system, Geothermal gradient, 0105 earth and related environmental sciences
وصف الملف: STAMPA
-
7Academic Journal
المؤلفون: Tamburello, G., Moune, S., Allard, P., Venugopal, S., Robert, V., Rosas-Carbajal, M., Deroussi, S., Kitou, G. T., Didier, T., Komorowski, J. C., /Beauducel, François, De Chabalier, J. B., Le Marchand, A., Le Friant, A., Bonifacie, M., Dessert, C., Moretti, R.
مصطلحات موضوعية: la soufriere, guadeloupe, volcanic gas, volcanic unrest, hydrothermal gas, multigas, extensometry
جغرافية الموضوع: LA SOUFRIERE VOLCAN
Time: GUADELOUPE
Relation: https://www.documentation.ird.fr/hor/fdi:010077458; oai:ird.fr:fdi:010077458; Tamburello G., Moune S., Allard P., Venugopal S., Robert V., Rosas-Carbajal M., Deroussi S., Kitou G. T., Didier T., Komorowski J. C., Beauducel François, De Chabalier J. B., Le Marchand A., Le Friant A., Bonifacie M., Dessert C., Moretti R. Spatio-temporal relationships between fumarolic activity, hydrothermal fluid circulation and geophysical signals at an arc volcano in degassing unrest : La Soufriere of Guadeloupe (French West Indies). 2019, 9 (11), p. art. 480 [25 p.]
-
8Academic Journal
المؤلفون: Grassa, F., Capasso, G., Oliveri, Y., Sollami, A., Carreira, P., Carvalho, M. R., Marques, J. M., Nunes, J. C.
المساهمون: Grassa, F., Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia, Capasso, G., Oliveri, Y., Sollami, A., Carreira, P., Instituto Tecnológico e Nuclear, Sacavém, Portugal, Carvalho, M. R., Faculdade de Ciências de Lisboa, Departamento de Geologia, CeGUL, Lisboa, Portugal, Marques, J. M., Instituto Superior Técnico, Lisboa, Portugal, Nunes, J. C., Department of Geosciences, University of the Azores, Sao Miguel, Azores, Portugal
مصطلحات موضوعية: Argon-36, isotope measurement and technique, nitrogen-15, volcanic and hydrothermal gas, 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry, 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes, 04. Solid Earth::04.08. Volcanology::04.08.01. Gases, 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
وصف الملف: application/pdf
Relation: Isotopes in Environmental and Health Studies; 2/46 (2010); http://hdl.handle.net/2122/5664; [1] B. Marty and F. Humbert, Nitrogen and Argon Isotopes in Oceanic Basalts, Earth Plan. Sci. Lett. 152, 101 (1997). [2] Y. Sano, N. Takahata,Y. Nishio, T.P. Fischer, and S.N. Williams, Volcanic Flux of Nitrogen from the Earth, Chem. Geol. 171, 263 (2001). [3] S. Inguaggiato, Y. Taran, F. Grassa, G. Capasso, R. Favara, N. Varley, and E. Faber, Nitrogen Isotopes in Thermal Fluids of a Forearc Region (Jalisco Block, Mexico): Evidence for Heavy Nitrogen from Continental Crust. Geochem. Geophys. Geosyst. 5, Q12003 (2004). [4] B. Marty and N. Dauphas The Nitrogen Record of Crust–Mantle Interaction and Mantle Convection from Archean to Present, Earth Plan. Sci. Lett. 206, 397 (2003). [5] Y. Sano, N. Takahata, Y. Nishio, and B. Marty, Nitrogen Recycling in Subduction Zones, Geophys. Res. Lett. 25, 2289 (1998). [6] M.M. Zimmer, T.P. Fischer, D.R. Hilton, G.E. Alvarado, Z.D. Sharp, and J.A. Walker, Nitrogen Systematics and Gas Fluxes of Subduction Zones: Insights from Costa Rica Arc Volatiles, Geochem. Geophys. Geosyst. 5, Q05J11 (2004). [7] L.E. Clor, T.P. Fischer, D.R. Hilton, Z.D. Sharp, and U. Hartono, Volatile and N Isotope Chemistry of the Molucca Sea Collision Zone: Tracing Source Components Along the Sangihe Arc, Indonesia, Geochem. Geophys. Geosyst. 6, Q03J14 (2005). [8] T.P. Fischer, N.C. Sturchio, J. Stix, G.Arehart, D. Counce, and S.N.Williams,The Chemical and Isotopic Composition of Fumarolic Gases and Spring Discharges from Galeras Volcano, Colombia, J. Volcanol. Geotherm. Res. 77, 229 (1997). [9] T.P. Fischer, N. Takahata, Y. Sano, H. Sumino, and D.H. Hilton, Nitrogen Isotopes of the Mantle: Insights from Mineral Separates, Geophys. Res. Lett. 32, L11305 (2005). [10] I.N. Tolstikhin and B. Marty, The Evolution of TerrestrialVolatiles:AView from Helium, Neon, Argon and Nitrogen Isotope Modeling, Chem. Geol. 147, 27 (1998). [11] T. Matsumoto, D. Pinti, J. Matsuda, and S. Umino, Recycled Noble Gas and Nitrogen in the Subcontinental Lithospheric Mantle: Implications from N–He–Ar in Fluid Inclusions of SE Australian Xenoliths, Geochem. J. 36, 209 (2002). [12] R.K. Mohapatra, D. Harrison, U. Ott, J.D. Gilmour, and M. Trieloff, Noble Gas and Nitrogen Isotopic Components in Oceanic Island Basalts, Chem. Geol. 266, 29 (2009). [13] C. Ballentine and B. Sherwood Lollar, Regional Groundwater Focusing of Nitrogen and Noble Gases into the Hugoton-Panhandle Giant Gas Field, USA, Geochim. Cosmochim. Acta 66, 2483 (2002). [14] K.A. Farley, R.J. Poreda andT.C. Onstott, Noble Gases in Deformed Xenoliths from an Ocean Island: Characterisation of a Metasomatic Fluid, in Noble Gas Geochemistry and Cosmochemistry, edited by J. Matsuda (Terra Scientific, Tokyo, 1994), pp. 159–178. [15] P.G. Burnard, D.W. Graham, and G. Turner, Vesicle-specific Noble Gas Analyses of ‘Popping Rock’: Implication for Primordial Noble Gases, Earth Sci. 276, 568 (1997). [16] A.O. Nier, A Redetermination of the Relative Abundances of the Isotopes of Carbon, Nitrogen, Oxygen, Argon and Potassium, Phys. Rev. 77, 789 (1950). [17] M. Ozima, and F.A. Podosek, Noble Gas Geochemistry (Cambridge University Press, Cambrige, 1983). [18] W.F. Giggenbach and R.L. Gougel, Methods for the Collection and Analyses of Geothermal and VolcanicWater and Gas Samples (DSIR, Chemical Division, Petone, New Zealand, 1989). [19] R.F.Weiss, The Solubility of Nitrogen, Oxygen and Argon inWater and Seawater, Deep Sea Res. 17, 721 (1970). [20] F. Barberi, F. Innocenti, G. Ferrara, J.Keller, and L.Villari, Evolution of AeolianArcVolcanism (SouthernTyrrhenian Sea), Earth Planet. Sci. Lett. 21, 269 (1974). [21] M. Martelli, P.M. Nuccio, F.M. Stuart, R. Burgess, R.M. Ellam, and F. Italiano, Helium Strontium Isotopic Constrains on Mantle Evolution Beneath the Roman Comagmatic Province, Italy. Earth Planet. Sci. Lett. 224, 295 (2004). [22] C. Beier, A. Stracke, and K.M. Haase, The Peculiar Geochemical Signatures of (Azores) Lavas: Metasomatised or Recycled Mantle Sources? Earth Plan. Sci. Lett. 259, 186 (2007). [23] T. Elliott, J. Blichert-Toft, A. Heumann, G. Koetsier, and V. Forjaz, The Origin of Enriched Mantle Beneath São Miguel, Azores, Geochim. Cosmochim. Acta 71, 219 (2007). [24] P. Madureira, M. Moreira, J. Mata, and C.J. Allègre, Primitive Neon Isotopes inTerceira Island (Azores Archipelago), Earth Plan. Sci. Lett. 233, 429 (2005). [25] M. Moreira, R. Doucelance, B. Dupre, M. Kurz, and C.J. Allègre, Helium and Lead Isotope Geochemistry in the Azores Archipelago, Earth Plan. Sci. Lett. 169, 189 (1999). [26] P.M. Carreira, J.M. Marques, M.R. Carvalho, G. Capasso, and F. Grassa, Mantle-Derived Carbon in Hercynian Granites. Stable Isotopes Signatures and C/He Associations in the ThermomineralWaters, N-Portugal, J. Volcanol. Geotherm. Res. 189, 49 (2010). [27] A. Caracausi, R. Favara, F. Italiano, P.M. Nuccio, A. Paonita, and A. Rizzo, Active Geodynamics of the Central Mediterranean Sea: Tensional Tectonic Evidences in Western Sicily from Mantle-Derived Helium, Geophys. Res. Lett. 32, L04312 (2005); doi:10.1029/2004GL021608. [28] P. Allard, P. Jean-Baptiste,W. D’Alessandro, F. Parello, B. Parisi, and C. Flehoc, Mantle-Derived Helium and Carbon in Groundwaters and Gases of Mount Etna, Italy, Earth Plan. Sci. Lett. 148, 501 (1997). [29] W. D’Alessandro, L. Brusca, K. Kyriakopoulos, G. Michas, and G. Papadakis, Methana, the Westernmost Active Volcanic System of the South Aegean Arc (Greece): Insight from Fluids Geochemistry, J. Volcanol. Geotherm. Res. 178, 818 (2008).; http://hdl.handle.net/2122/6363
-
9
المؤلفون: Tassi F. [1, 2], Fiebig J. [3], Vaselli O. [1, 2], Nocentini M. [1]
المصدر: Chemical geology (Online) 310-311 (2012): 36–48.
info:cnr-pdr/source/autori:Tassi F. [1, 2]; Fiebig J. [3]; Vaselli O. [1, 2]; Nocentini M. [1]/titolo:Origins of methane discharging from volcanic-hydrothermal, geothermal and cold emissions in Italy./doi:/rivista:Chemical geology (Online)/anno:2012/pagina_da:36/pagina_a:48/intervallo_pagine:36–48/volume:310-311مصطلحات موضوعية: light hydrocarbons, hydrothermal gas, methane origin, volcanic gas, methane isotopes
-
10Academic Journal
المؤلفون: Kösters, J., Diaz-Bone, R.A., Planer-Friedrich, B., Rothweiler, B., Hirner, A.V.
مصطلحات موضوعية: GC/MS, speciation, compost, hydrothermal gas, organometal(loid) compound, organoarsenic, yellowstone
Time: 570, 610, 620, 660, 540
Relation: Journal of Molecular Structure; https://publica.fraunhofer.de/handle/publica/203196
-
11Dissertation/ Thesis
المؤلفون: Weber, Stefan
المساهمون: Michaelis, Walter (Prof. Dr.)
مصطلحات موضوعية: hydrothermales Gas, isotopische Thermometrie, hydrothermal gas, isotopic thermometry, 550 Geowissenschaften, 35.26 Massenspektrometrie, 38.32 Geochemie, 43.12 Umweltchemie, Isotop, Hydrothermalquelle, Mittelatlantischer Rücken, Thermometrie, Gasgehalt, Temperaturmessung, Temperatur, Kritische Temperatur, ddc:550
Relation: http://nbn-resolving.de/urn:nbn:de:gbv:18-41478; https://ediss.sub.uni-hamburg.de/handle/ediss/2588
-
12
المؤلفون: B. Rothweiler, Jan Kösters, Alfred V. Hirner, Britta Planer-Friedrich, Roland A. Diaz-Bone
المساهمون: Publica
مصطلحات موضوعية: Analyte, compost, organometal(loid) compound, media_common.quotation_subject, GC/MS, Organic Chemistry, Chemie, chemistry.chemical_element, Ionic bonding, organoarsenic, Analytical Chemistry, Inorganic Chemistry, Speciation, hydrothermal gas, chemistry, Antimony, speciation, Environmental chemistry, Gas chromatography–mass spectrometry, Tin, Tellurium, yellowstone, Spectroscopy, Arsenic, media_common
-
13
المساهمون: Calabrese, S, Daskalopoulou, K, Kyriakopoulos, K, D’Alessandro, W
مصطلحات موضوعية: Greece, hydrothermal, gas hazard, Settore GEO/08 - Geochimica E Vulcanologia