-
1Academic Journal
المؤلفون: V. M. Shestopalov, G. G. Lyutyi, I. V. Sanina
المصدر: Мінеральні ресурси України, Iss 2, Pp 3-12 (2019)
مصطلحات موضوعية: hydrogeological zoning, structure, aquifer system, Geology, QE1-996.5
وصف الملف: electronic resource
-
2Academic Journal
المصدر: Journal of Ecological Engineering, Vol 19, Iss 6, Pp 34-44 (2018)
مصطلحات موضوعية: groundwater, hydrogeological zoning, geodatabase, the Moon phases, earthquakes, Environmental technology. Sanitary engineering, TD1-1066, Environmental sciences, GE1-350
Relation: http://www.journalssystem.com/jeeng/HYDROGEOLOGICAL-CONDITIONS-AND-NATURAL-FACTORS-FORMING-THE-REGIME-OF-GROUNDWATER,91883,0,2.html; https://doaj.org/toc/2299-8993; https://doaj.org/article/ff82c2e40a0a46c48d09d4d21002f79d
-
3
المؤلفون: Cárdenas Giraldo, Deisy Natalia
المساهمون: Ortiz Pimienta, Carolina, Caballero Acosta, Jose Humberto
المصدر: Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombiaمصطلحات موضوعية: Hidrogeología, Groundwater storage anomaly, 627 - Ingeniería hidráulica [620 - Ingeniería y operaciones afines], Rocas cristalinas, Hydrogeological zoning, 550 - Ciencias de la tierra, Colombia, Anomalía de almacenamiento de agua subterránea, Remote sensing, Aguas subterráneas - Procesamiento de datos, Crystalline rocks, Sensores remotos, Zonificación hidrogeológica
وصف الملف: xvii, 158 páginas; application/pdf
-
4Academic Journal
المؤلفون: Ante Pavičić
المصدر: Geologia Croatica, Vol 50, Iss 2, Pp 289-298 (2010)
مصطلحات موضوعية: Karst hydrogeology, Karstification, Water retaining, Hydrogeological zoning, Kosinj reservoir, Lika, Croatia, Geology, QE1-996.5
وصف الملف: electronic resource
-
5Dissertation/ Thesis
المؤلفون: Cárdenas Giraldo, Deisy Natalia
المساهمون: Ortiz Pimienta, Carolina, Caballero Acosta, Jose Humberto
مصطلحات موضوعية: 550 - Ciencias de la tierra, 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica, Sensores remotos, Hidrogeología, Aguas subterráneas - Procesamiento de datos, Zonificación hidrogeológica, Colombia, Rocas cristalinas, Anomalía de almacenamiento de agua subterránea, Hydrogeological zoning, Crystalline rocks, Groundwater storage anomaly, Remote sensing
وصف الملف: xvii, 158 páginas; application/pdf
Relation: LaReferencia; Abdelmohsen, K., Sultan, M., Ahmed, M., Save, H., Elkaliouby, B., Emil, M., Yan, E., Abotalib, A. Z., Krishnamurthy, R. V., & Abdelmalik, K. (2019). Response of deep aquifers to climate variability. Science of the Total Environment, 677, 530–544. https://doi.org/10.1016/j.scitotenv.2019.04.316; Abdullah, A., Akhir, J. ., & Abdullah, I. (2010). Automatic Mapping of Lineaments Using Shaded Relief Images Derived from Digital Elevation Model (DEMs) in the Maran – Sungi Lembing Area, Malaysia. The Electronic Journal of Geotechnical Engineering, 15, 949–957.; Ahmadi, H., & Pekkan, E. (2021). Fault-Based Geological Lineaments Extraction Using Remote Sensing and GIS—A Review. Geosciences, 11(5), 1–31. https://doi.org/10.3390/GEOSCIENCES11050183; Ahmed, M., & Abdelmohsen, K. (2018). Quantifying Modern Recharge and Depletion Rates of the Nubian Aquifer in Egypt. Surveys in Geophysics, 39(4), 729–751. https://doi.org/10.1007/s10712-018-9465-3; Alimi, J. (n.d.). Groundwater Resources and Management in Nigeria.; ARSET. (n.d.). Sinopsis del Satélite GRACE y Sus Datos y Aplicaciones. NASA Applied Remote Sensing Training Program (ARSET).; Awange, J. L., Gebremichael, M., Forootan, E., Wakbulcho, G., Anyah, R., Ferreira, V. G., & Alemayehu, T. (2014). Characterization of Ethiopian mega hydrogeological regimes using GRACE, TRMM and GLDAS datasets. Advances in Water Resources, 74, 64–78. https://doi.org/10.1016/j.advwatres.2014.07.012; Barrero, D., Pardo, A., Vargas, C. ., & Martínez, J. . (2007). Colombian Sedimentary Basins: Nomenclature, boundaries and Petroleum Geology, a New Proposal. In Agencia Nacional de Hidrocarburos - A.N.H.- (Issues 978-958-98237-0–5). https://doi.org/ISBN: 978-958-98237-0-5; Belle, P., Lachassagne, P., Mathieu, F., Barbet, C., Brisset, N., & Gourry, J.-C. (2019). Characterization and location of the laminated layer within hard rock weathering profiles from electrical resistivity tomography: implications for water well siting. Geological Society, London, Special Publications, 479(1), 187–205. https://doi.org/10.1144/SP479.7; Betancur, T., García, D. A., Vélez, A. J., Gómez, A. M., Flórez, C., Patiño, J., & Ortíz, J. A. (2017). Aguas subterráneas , humedales y servicios ecosistémicos en Colombia. Biota Colombiana, 18(1), 1–27. https://doi.org/10.21068/c2017.v18n01a1; Bolaños, S., Salazar, J. F., Betancur, T., & Werner, M. (2021). GRACE reveals depletion of water storage in northwestern South America between ENSO extremes. Journal of Hydrology, 596, 1–13. https://doi.org/10.1016/j.jhydrol.2020.125687; Brugeron, A., Paroissien, J. B., & Tillier, L. (2018). Référentiel hydrogéologique BDLISA version 2 : Principes de construction et évolutions (p. 69).; Central Ground Water Board - CGWB. (2012). Aquifer Systems of India.; Chilton, P. J., & Foster, S. (1995). Hydrogeological Characterisation and Water-Supply Potential of Basement Aquifers in Tropical Africa. Hydrogeology Journal, 3(1), 36–49. https://doi.org/10.1007/s100400050061; Chowdhury, A., Jha, M. K., & Chowdary, V. M. (2010). Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environmental Earth Sciences, 59(6), 1209–1222. https://doi.org/10.1007/s12665-009-0110-9; Cross, A. M. (1988). Detection of circular geological features using the Hough transform. International Journal of Remote Sensing, 9(9), 1519–1528. https://doi.org/10.1080/01431168808954956; Custodio, E. (2003). Hydrogeological similarities and differences between volcanic and hard rocks. International Conference on Groundwater in Fractured Rocks, 5.; Das, B., & Singh, S. K. (2016). Ground water potential zone mapping of semi-arid region of Kalaburgi and Yadgir districts of North Karnataka: A geospatial analysis approach. International Journal of Current Research, 8(3), 28797–28807.; Dewandel, B., Lachassagne, P., Wyns, R., Maréchal, J. C., & Krishnamurthy, N. S. (2006). A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. Journal of Hydrology, 330(1–2), 260–284. https://doi.org/10.1016/j.jhydrol.2006.03.026; Díaz-Alcaide, S., & Martínez-Santos, P. (2019). Review: Advances in groundwater potential mapping. Hydrogeology Journal, 27(7), 2307–2324. https://doi.org/10.1007/s10040-019-02001-3; DNP. (1983). Mapa Hidrogeológico General de Colombia Escala 1:500.000.; El-Naqa, A., Hammouri, N., Ibrahim, K., & El-Taj, M. (2009). Integrated Approach for Groundwater Exploration in Wadi Araba Using Remote Sensing and GIS. Jordan Journal of Civil Engineering, 3(3), 229–243.; Fenta, M. C., Anteneh, Z. L., Szanyi, J., Walker, D., Walker, D., & Walker, D. (2020). Hydrogeological framework of the volcanic aquifers and groundwater quality in Dangila Town and the surrounding area, Northwest Ethiopia. Groundwater for Sustainable Development, 11. https://doi.org/10.1016/J.GSD.2020.100408; Foster, S. (1984). African groundwater development - the challenges for hydrogeological science. Challenges in African Hydrology and Water Resources, December, 3–12.; Foster, S., Hirata, R., Gomes, D., D’Elia, M., & Paris, M. (2002). Proteccion de la Calidad del Agua Subterránea - Guía para empresas de agua, autoridades municipales y agencias ambientales. Banco Mundial.; Frappart, F., & Ramillien, G. (2018). Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) satellite mission: A review. Remote Sensing, 10(6). https://doi.org/10.3390/rs10060829; Freeze, R. ., & Cherry, J. . (1979). Groundwater. Prentice Hall.; Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2(1), 1–21. https://doi.org/10.1038/sdata.2015.66; Gilbrich, W., & Struckmeier, W. (2014). 50 Years of Hydro(geo)logical Mapping Activities.; Gómez, J. (2022). La geología como condicionante del paisaje - YouTube. Sociedad Geográfica de Colombia. https://www.youtube.com/watch?v=a4_Zl-iBHX8; Gómez, J., Montes, N. ., & Compiladores. (2020). Atlas Geológico de Colombia 2020 - Escala 1:500.000. Servicio Geológico Colombiano.; Gómez, L. A. (2017). Dinámica espacio temporal del almacenamiento de agua en el suelo en el Norte de Suramérica. Universidad Nacional de Colombia.; González de Vallejo, L., Ferrer, M., Ortuño, L., & Oteo, C. (2002). Ingeniería Geológica. Pearson Educación.; Guarín, G., & Poveda, G. (2013). Variabilidad Espacial Y Temporal Del Almacenamiento De Agua En El Suelo En Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 37(142), 89–113.; Guihéneuf, N., Boisson, A., Bour, O., Dewandel, B., Perrin, J., Dausse, A., Viossanges, M., Chandra, S., Ahmed, S., & Maréchal, J. C. (2014). Groundwater flows in weathered crystalline rocks: Impact of piezometric variations and depth-dependent fracture connectivity. Journal of Hydrology, 511, 320–324.; Gun, J., Vasak, S., & Reckman, J. (2008). Scale-dependent hydrogeological zoning for effective communication and efficient information management on groundwater. 33rd International Geological Congress.; Henry, C. M., Allen, D. M., & Huang, J. (2011). Groundwater storage variability and annual recharge using well-hydrograph and GRACE satellite data. Hydrogeology Journal, 19(4), 741–755. https://doi.org/10.1007/s10040-011-0724-3; Herbich, P., Woźnicka, M., & Witczak, S. (2010). Hydrogeological cartography as a tool supporting water management, spatial planning and environmental protection. Przeglad Geologiczny, 58(9 PART 1), 746–753.; Herms, I., & Arnó, G. (2016). Cartografía Hidrogeológica.; Hoyos, F. (2012). GEOTECNIA diccionario básico.; Huat, B. B. ., Toll, D. ., & Prasad, A. (Eds. . (2012). Handbook of Tropical Residual Soils Engineering. CRC Press.; IDEAM. (2010). Estudio Nacional de Agua 2010.; IDEAM. (2013a). Aguas Subterráneas en Colombia Una Visión General.; IDEAM. (2013b). Zonificación y Codificación de Unidades Hidrográficas e Hidrogeológicas de Colombia.; IDEAM. (2015a). Estudio Nacional del Agua 2014. IDEAM.; IDEAM. (2015b). Principios básicos para el conocimiento y monitoreo de las aguas subterráneas - Contenidos del Taller de Formación (p. 180).; IDEAM. (2019). Estudio Nacional del Agua 2018. IDEAM.; IGAC. (1997). Mapa Regiones Naturales de Colombia. Escala 1:5.000.000.; INGEOMINAS. (1977). Mapa Hidrogeológico de Colombia Escala 1:3.000.000.; INGEOMINAS. (1987). Memoria del Mapa Hidrogeológico de Colombia Edición 1987.; INGEOMINAS. (2004a). Atlas de Aguas Subterráneas de Colombia a escala 1:500.000.; INGEOMINAS. (2004b). Programa de exploración de aguas subterráneas – PEXAS.; INGEOMINAS. (2011). Mapa litoestratigráfico con permeabilidades de Colombia escala 1:500.000.; ISPRA. (2018). Carta Idrogeologica D’Italia – 1:50.000 (p. 71).; Joshi, A. K. (1989). Automatic detection of lineaments from Landsat data. Digest - International Geoscience and Remote Sensing Symposium (IGARSS), 1, 85–88. https://doi.org/10.1109/IGARSS.1989.567160; Koike, K., Nagano, S., & Ohmi, M. (1995). Lineament analysis of satellite images using a Segment Tracing Algorithm (STA). Computers & Geosciences, 21(9), 1091–1104. https://doi.org/10.1016/0098-3004(95)00042-7; Krishnamurthy, J., Venkatesa Kumar, N., Jayaraman, V., & Manivel, M. (1996). An approach to demarcate ground water potential zones through remote sensing and a geographical information system. International Journal of Remote Sensing, 17(10), 1867–1884. https://doi.org/10.1080/01431169608948744; Kumar, P. K. D., Gopinath, G., & Seralathan, P. (2007). Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India. International Journal of Remote Sensing, 28(24), 5583–5601. https://doi.org/10.1080/01431160601086050; Kuriakose, S. L., Devkota, S., Rossiter, D. G., & Jetten, V. G. (2009). Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India. CATENA, 79(1), 27–38. https://doi.org/10.1016/J.CATENA.2009.05.005; Lachassagne, P. (2008). Overview of the hydrogeology of hard rock aquifers: Applications for their survey, management, modelling and protection. In Groundwater Dynamics in Hard Rock Aquifers: Sustainable Management and Optimal Monitoring Network Design (pp. 40–63). Springer Netherlands. https://doi.org/10.1007/978-1-4020-6540-8_3; Lachassagne, P., Aunay, B., Frissant, N., Guilbert, M., & Malard, A. (2014). High-resolution conceptual hydrogeological model of complex basaltic volcanic islands: a Mayotte, Comoros, case study. Terra Nova, 26(4), 15 p. https://doi.org/10.1111/TER.12102; Lachassagne, P., Dewandel, B., & Wyns, R. (2014a). Hydrogeology of Hard Rock Aquifers. In S. Eslamian (Ed.), Handbook of Engineering Hydrology (pp. 297–326). CRC Press. https://doi.org/10.1201/b15625-18; Lachassagne, P., Dewandel, B., & Wyns, R. (2014b). The conceptual model of weathered hard rock aquifers and its practical applications. In J. M. Sharp (Ed.), Fractured Rock Hydrogeology (IAH Select, Vol. 20, pp. 35–68). CRC Press. https://doi.org/10.1201/b17016-7; Lachassagne, P., Dewandel, B., & Wyns, R. (2021). Review: Hydrogeology of weathered crystalline/hard-rock aquifers—guidelines for the operational survey and management of their groundwater resources. Hydrogeology Journal 2021, 1–34. https://doi.org/10.1007/S10040-021-02339-7; Lachassagne, P., Wyns, R., Bérard, P., Bruel, T., Chéry, L., Coutand, T., Desprats, J. F., & Le Strat, P. (2001). Exploitation of high-yields in hard-rock aquifers: Downscaling methodology combining GIS and multicriteria analysis to delineate field prospecting zones. Ground Water, 39(4), 568–581. https://doi.org/10.1111/j.1745-6584.2001.tb02345.x; Lachassagne, P., Wyns, R., & Dewandel, B. (2011). The fracture permeability of Hard Rock Aquifers is due neither to tectonics, nor to unloading, but to weathering processes. Terra Nova, 23(3), 145–161. https://doi.org/10.1111/j.1365-3121.2011.00998.x; Landerer, F. W., & Swenson, S. C. (2012). Accuracy of scaled GRACE terrestrial water storage estimates. Water Resources Research, 48(4), 4531. https://doi.org/10.1029/2011WR011453; Li, B., Rodell, M., Kumar, S., Beaudoing, H. K., Getirana, A., Zaitchik, B. F., de Goncalves, L. G., Cossetin, C., Bhanja, S., Mukherjee, A., Tian, S., Tangdamrongsub, N., Long, D., Nanteza, J., Lee, J., Policelli, F., Goni, I. B., Daira, D., Bila, M., … Bettadpur, S. (2019). Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges. Water Resources Research, 55(9), 7564–7586. https://doi.org/10.1029/2018WR024618; MacDonald, A. ., & Davies, J. (2000). A brief review of groundwater for rural water supply in sub-Saharan Africa - BGS Technical Report WC/00/33.; Maréchal, J. C., Dewandel, B., & Subrahmanyam, K. (2004). Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer. Water Resources Research, 40(11). https://doi.org/10.1029/2004WR003137; Maréchal, J. C., Selles, A., Dewandel, B., Boisson, A., Perrin, J., & Ahmed, S. (2018). An observatory of groundwater in crystalline rock aquifers exposed to a changing environment: Hyderabad, India. Vadose Zone Journal, 17(1), 1–14. https://doi.org/10.2136/vzj2018.04.0076; Margat, J., & Gun, J. (2013). Groundwater around the World (CRC Press (ed.)). https://doi.org/https://doi.org/10.1201/b13977; Marghany, M., & Hashim, M. (2010). Lineament mapping using multispectral remote sensing satellite data. Research Journal of Applied Sciences, 5(2), 126–130. https://doi.org/10.3923/RJASCI.2010.126.130; Masoud, A., & Koike, K. (2017). Applicability of computer-aided comprehensive tool (LINDA: LINeament Detection and Analysis) and shaded digital elevation model for characterizing and interpreting morphotectonic features from lineaments. Computers & Geosciences, 106, 89–100. https://doi.org/10.1016/J.CAGEO.2017.06.006; Maxey, G. B. (1964). Hydrostratigraphic units. Journal of Hydrology, 2(2), 124–129. https://doi.org/10.1016/0022-1694(64)90023-X; Mehta, A. (n.d.). Satélites, sensores y modelos de sistemas terrestres de la NASA usados para la gestión de recursos hídricos - NASA Applied Remote Sensing Training Program (ARSET).; Mehta, A., Podest, E., & McCartney, S. (2020). Groundwater Monitoring using Observations from NASA’s Gravity Recovery and Climate Experiment (GRACE) Missions - NASA Applied Remote Sensing Training Program (ARSET).; Meijerink, A. M. J. (1996). Remote sensing applications to hydrology: groundwater. Hydrological Sciences Journal, 41(4), 549–561. https://doi.org/10.1080/02626669609491525; Meijerink, A. M. J., Bannert, D., Batelaan, O., Lubczynski, M. ., & Pointet, T. (2007). Remote Sensing Applications to Groundwater. IHP-VI, Series on Groundwater No.16 (UNESCO (ed.)).; Mohamed, A. (2019). Hydro-geophysical study of the groundwater storage variations over the Libyan area and its connection to the Dakhla basin in Egypt. Journal of African Earth Sciences, 157(December 2018), 103508. https://doi.org/10.1016/j.jafrearsci.2019.05.016; Mohamed, A., Sultan, M., Ahmed, M., Yan, E., & Ahmed, E. (2017). Aquifer recharge, depletion, and connectivity: Inferences from GRACE, land surface models, and geochemical and geophysical data. Bulletin of the Geological Society of America, 129(5–6), 534–546. https://doi.org/10.1130/B31460.1; Monreal, R., Rangel, M., Grijalva, A., Minjarez, I., & Morales, M. (2011). Metodología para la definición de unidades hidroestratigráficas: Caso del acuífero del valle del río Yaqui, Sonora, México. Boletin de La Sociedad Geológica Mexicana, 63(1), 119–135. https://doi.org/10.18268/bsgm2011v63n1a10; Nag, S. K., & Chowdhury, P. (2019). Decipherment of potential zones for groundwater occurrence: a study in Khatra Block, Bankura District, West Bengal, using geospatial techniques. Environmental Earth Sciences, 78(2), 1–14. https://doi.org/10.1007/S12665-018-8034-X; Oliveira, J., Brito, A., De Carlo, R., & Feijó, T. (2014). Manual de Cartografia Hidrogeológica (Servicio Geológico de Brasil - CPRM (ed.)).; Ospina, D. L., & Vargas, C. A. (2018). Monitoring runoff coefficients and groundwater levels using data from GRACE, GLDAS, and hydrometeorological stations: analysis of a Colombian foreland basin. Hydrogeology Journal, 26(8), 2769–2779. https://doi.org/10.1007/s10040-018-1824-0; Pantaleone, D. V., Vincenzo, A., Fulvio, C., Silvia, F., Cesaria, M., Giuseppina, M., Ilaria, M., Vincenzo, P., Rosa, S. A., Gianpietro, S., Giuseppe, T., & Pietro, C. (2018). Hydrogeology of continental southern Italy. Journal of Maps, 14(2), 230–241. https://doi.org/10.1080/17445647.2018.1454352; Petit, V., Hanot, F., & Pointet, T. (2003). Référentiel hydrogéologique BD RHF. Guide méthodologique de découpage des entités. BRGM/RP-52261-FR (p. 101). https://doi.org/PNR61; Portal, A., Belle, P., Mathieu, F., Lachassagne, P., & Brisset, N. (2017). Identification and characterization of hard rocks weathering profile by electrical resistivity imaging. 23rd European Meeting of Environmental and Engineering Geophysics. https://doi.org/10.3997/2214-4609.201702054; Prasad, R. K., Mondal, N. C., Banerjee, P., Nandakumar, M. V., & Singh, V. S. (2008). Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology, 55(3), 467–475. https://doi.org/10.1007/S00254-007-0992-3/FIGURES/9; Rahmati, O., Nazari Samani, A., Mahdavi, M., Pourghasemi, H. R., & Zeinivand, H. (2015). Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences, 8(9), 7059–7071. https://doi.org/10.1007/S12517-014-1668-4/FIGURES/5; Rahnama, M., & Gloaguen, R. (2014). TecLines: A MATLAB-Based Toolbox for Tectonic Lineament Analysis from Satellite Images and DEMs, Part 1: Line Segment Detection and Extraction. Remote Sensing 2014, Vol. 6, Pages 5938-5958, 6(7), 5938–5958. https://doi.org/10.3390/RS6075938; Ramírez, T. . (2016). Análisis de la problemática Socioambiental generada por la Construcción de Túneles Viales en Colombia: Caso de estudio Túnel de Occidente. Universidad Nacional de Colombia.; Ramli, M. F., Yusof, N., Yusoff, M. K., Juahir, H., & Shafri, H. Z. M. (2010). Lineament mapping and its application in landslide hazard assessment: A review. Bulletin of Engineering Geology and the Environment, 69(2), 215–233. https://doi.org/10.1007/S10064-009-0255-5; Razandi, Y., Pourghasemi, H. R., Neisani, N. S., & Rahmati, O. (2015). Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, 8(4), 867–883. https://doi.org/10.1007/S12145-015-0220-8/FIGURES/5; Richey, A. S., Thomas, B. F., Lo, M.-H., Reager, J. T., Famiglietti, J. S., Voss, K., Swenson, S., & Rodell, M. (2015). Quantifying renewable groundwater stress with GRACE. Water Resources Research, 51(7), 5217–5238. https://doi.org/10.1002/2015WR017349; Richts, A., Struckmeier, W. F., & Zaepke, M. (2011). WHYMAP and the Groundwater Resources Map of the World 1:25,000,000. In Sustaining Groundwater Resources (pp. 159–173). https://doi.org/10.1007/978-90-481-3426-7; Rodell, M., Chen, J., Kato, H., Famiglietti, J. S., Nigro, J., & Wilson, C. R. (2007). Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeology Journal, 15(1), 159–166. https://doi.org/10.1007/S10040-006-0103-7/FIGURES/5; Rodell, M., & Famiglietti, J. S. (1999). Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resources Research, 35(9), 2705–2723. https://doi.org/10.1029/1999WR900141; Rodell, M., & Famiglietti, J. S. (2002). The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US. Journal of Hydrology, 263(1–4), 245–256. https://doi.org/10.1016/S0022-1694(02)00060-4; Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., & Toll, D. (2004). The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3), 381–394. https://doi.org/10.1175/BAMS-85-3-381; Rui, H., & Beaudoing, H. (2021). README Document for NASA GLDAS Version 2 Data Products. Goddard Earth Sciences Data and Information Services Center (GES DISC). NASA.; Scanlon, B. R., Longuevergne, L., & Long, D. (2012). Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resources Research, 48(4), 1–9. https://doi.org/10.1029/2011WR011312; SGC. (2020). Atlas Geológico de Colombia 2020. https://www2.sgc.gov.co/MGC/Paginas/agc_500K2020.aspx; Shafique, M., van der Meijde, M., & Rossiter, D. G. (2011). Geophysical and remote sensing-based approach to model regolith thickness in a data-sparse environment. CATENA, 87(1), 11–19. https://doi.org/10.1016/J.CATENA.2011.04.004; Shafique, M., van der Meijde, M., & Ullah, S. (2011). Regolith modeling and its relation to earthquake induced building damage: A remote sensing approach. Journal of Asian Earth Sciences, 42(1–2), 65–75. https://doi.org/10.1016/J.JSEAES.2011.04.004; Sharpe, D., Russell, H., Dyke, L., Grasby, S., Gleeson, T., Michaud, Y., Savard, M., Mei, M., & Wozniak, P. (2010). Hydrogeological regions of Canada - Chapter 8.; Sima, J. (n.d.). Hydrogeological zones Czech Republic. Retrieved November 6, 2019, from http://www.geology.cz/projekt681900/english/learning-resources; Singhal, B. B. ., & Gupta, R. . (2010). Applied Hydrogeology of Fractured Rocks (Second Edi). Springer. https://doi.org/10.1007/978-90-481-8799-7; Soto-Pinto, C., Arellano-Baeza, A., & Sánchez, G. (2013). A new code for automatic detection and analysis of the lineament patterns for geophysical and geological purposes (ADALGEO). Computers and Geosciences, 57, 93–103. https://doi.org/10.1016/J.CAGEO.2013.03.019; Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions American Geophysical Union, 38(6), 913–920. https://doi.org/10.1029/TR038I006P00913; Struckmeier, W., & Margat, J. (1995). Hydrogeological Maps A Guide and a Standard Legend (International Association of Hydrogeologists (ed.)).; Suárez, J. (2009). Deslizamientos Tomo I: Análisis Geotécnico.; Tarbuck, E. J., Lutgens, F. K., & Tasa, D. (2005). Ciencias de la Tierra. Pearson Educación S.A.; Taylor, R. G., & Howard, K. W. F. (1999). The influence of tectonic setting on the hydrological characteristics of deeply weathered terrains: evidence from Uganda. Journal of Hydrology, 218(1–2), 44–71. https://doi.org/10.1016/S0022-1694(99)00024-4; Thomas, A. C., Reager, J. T., Famiglietti, J. S., & Rodell, M. (2014). A GRACE-based water storage deficit approach for hydrological drought characterization. Geophysical Research Letters, 41(5), 1537–1545. https://doi.org/10.1002/2014GL059323; Thomas, B. F., Famiglietti, J. S., Landerer, F. W., Wiese, D. N., Molotch, N. P., & Argus, D. F. (2017). GRACE Groundwater Drought Index: Evaluation of California Central Valley groundwater drought. Remote Sensing of Environment, 198, 384–392. https://doi.org/10.1016/j.rse.2017.06.026; UNESCO. (1985). Aguas subterráneas en rocas duras - Proyecto 8.6 del Programa Hidrológico Internacional.; Urrea, V. (2017). Variabilidad espacial y temporal del ciclo anual de lluvia en Colombia. Universidad Nacional de Colombia sede Medellín.; USGS. (1992). Ground Water Atlas of The United States - Hydrologic Investigations Atlas 730-J.; USGS. (1995). Ground Water Atlas of The United States - Hydrologic Investigations Atlas 730-M.; Vargas, N. O. (2001). Zonas hidrogeológicas homogéneas de Colombia.; Vargas, N. O. (2005). Zonas hidrogeológicas homogéneas de Colombia. 17.; Vargas, N. O. (2006). Zonas hidrogeológicas homogéneas de Colombia. Boletín Geológico y Minero, 117(1), 47–61.; Wendland, F., Blum, A., Coetsiers, M., Gorova, R., Griffioen, J., Grima, J., Hinsby, K., Kunkel, R., Marandi, A., Melo, T., Panagopoulos, A., Pauwels, H., Ruisi, M., Traversa, P., Vermooten, J. S. ., & Walraevens, K. (2007). European aquifer typology: a practical framework for an overview of major groundwater composition at European scale. Environmental Geology. https://doi.org/10.1007/s00254-007-0966-5; Wesley, L. (2010). Geotechnical Engineering in Residual Soils. John Wiley & Sons, Inc.; Worthington, S. R. H., Davies, G. J., & Alexander, E. C. (2016). Enhancement of bedrock permeability by weathering. Earth-Science Reviews, 160, 188–202. https://doi.org/10.1016/J.EARSCIREV.2016.07.002; Wright, E. P., & Burgess, W. G. (1992). The hydrogeology of crystalline basement aquifers in Africa. Geological Society Special Publication, 66, 1–27. https://doi.org/10.1144/GSL.SP.1992.066.01.01; Wu, Q., Si, B., He, H., & Wu, P. (2019). Determining regional-scale groundwater recharge with GRACE and GLDAS. Remote Sensing, 11(2). https://doi.org/10.3390/rs11020154; Wyns, R., Baltassat, J.-M., Lachassagne, P., Legchenko, A., Vairon, J., & Mathieu, F. (2004). Application of proton magnetic resonance soundings to groundwater reserve mapping in weathered basement rocks (Brittany, France). Bulletin de La Société Géologique de France, 175(1), 21–34. https://doi.org/10.2113/175.1.21; Zaporozec, A. (1972). Groundwater zoning in water resources management. Journal of the American Water Resources Association, 8(6), 1137–1143.; Zlatopolsky, A. A. (1992). Program LESSA (Lineament Extraction and Stripe Statistical Analysis) automated linear image features analysis—experimental results. Computers & Geosciences, 18(9), 1121–1126. https://doi.org/10.1016/0098-3004(92)90036-Q; https://repositorio.unal.edu.co/handle/unal/82871; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
6
المؤلفون: G. G. Lyutyi, I. V. Sanina, V. M. Shestopalov
المصدر: Мінеральні ресурси України, Iss 2, Pp 3-12 (2019)
مصطلحات موضوعية: QE1-996.5, Hydrogeology, business.industry, lcsh:QE1-996.5, Distribution (economics), Geology, First order, lcsh:Geology, aquifer system, Groundwater resources, structure, Zoning, Water resource management, business, hydrogeological zoning
-
7Academic JournalСтворення регіональних прогностичних геоінформаційних моделей глибини залягання рівнів грунтових вод
المؤلفون: Давибіда, Л. І.
مصطلحات موضوعية: гідрогеологічне районування, інформаційний аналіз, просторовий аналіз, грід, hydrogeological zoning, information analysis, spatial analysis, grid
Relation: Давибіда, Л. І. Створення регіональних прогностичних геоінформаційних моделей глибини залягання рівнів грунтових вод / Л. І. Давибіда // Науковий вісник Івано-Франківського національного технічного університету нафти і газу. - 2014. - № 1. - С. 26-35.; http://elar.nung.edu.ua/handle/123456789/2539
-
8Academic Journal
المؤلفون: Давибіда, Л. І.
المصدر: Scientific Bulletin of Ivano-Frankivsk National Technical University of Oil and Gas; No. 1(36) (2014): SCIENTIFIC BULLETIN IVANO-FRANKIVSK NATIONAL TECHNICAL UNIVERSITY OF OIL AND GAS; 26-36 ; Науковий вісник; № 1(36) (2014): SCIENTIFIC BULLETIN IVANO-FRANKIVSK NATIONAL TECHNICAL UNIVERSITY OF OIL AND GAS; 26-36 ; Науковий вісник Івано-Франківського національного технічного університету нафти і газу; № 1(36) (2014): НАУКОВИЙ ВІСНИК ІВАНО-ФРАНКІВСЬКОГО НАЦІОНАЛЬНОГО ТЕХНІЧНОГО УНІВЕРСИТЕТУ НАФТИ І ГАЗУ ; 26-36 ; 2415-3524 ; 1993-9965
مصطلحات موضوعية: hydrogeological zoning, information analysis, spatial analysis, grid, гідрогеологічне районування, інформаційний аналіз, просторовий аналіз, грід
وصف الملف: application/pdf
-
9
مصطلحات موضوعية: hydrogeological map, водоносный горизонт, aquifer, гидрогеологическая карта, структурный этаж, подземные воды, осадочный бассейн, Balkhash depression, Балхашская впадина, грунтовые воды, sedimentary basin, confined waters, hydrogeological conditions, groundwater, гидрогеологические условия, напорные воды, structural floor, hydrogeological zoning, гидрогеологическое районирование
-
10
المصدر: Journal of Ecological Engineering, Vol 19, Iss 6, Pp 34-44 (2018)
مصطلحات موضوعية: lcsh:GE1-350, Hydrogeology, the Moon phases, geodatabase, Natural (archaeology), lcsh:TD1-1066, groundwater, Environmental science, lcsh:Environmental technology. Sanitary engineering, Water resource management, hydrogeological zoning, earthquakes, Ecology, Evolution, Behavior and Systematics, Groundwater, lcsh:Environmental sciences, General Environmental Science
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ff47c1966b158083c23879aa38cc3428
http://www.journalssystem.com/jeeng/HYDROGEOLOGICAL -CONDITIONS-AND-NATURAL-FACTORS-FORMING-THE-REGIME-OF-GROUNDWATER,91883,0,2.html -
11
مصطلحات موضوعية: geophysical methods, natural resources of groundwater, естественные ресурсы подземных вод, геофизические методы, hydrogeological zoning, гидрогеологическое районирование
-
12
المؤلفون: A. Pavičić
المصدر: Geologia Croatica, Vol 50, Iss 2, Pp 289-298 (2010)
Geologia Croatica
Volume 50
Issue 2مصطلحات موضوعية: Karst hydrogeology, Karstification, Water retaining, Hydrogeological zoning, Kosinj reservoir, Lika, Croatia, lcsh:Geology, lcsh:QE1-996.5
وصف الملف: application/pdf
-
13Створення регіональних прогностичних геоінформаційних моделей глибини залягання рівнів грунтових вод
مصطلحات موضوعية: spatial analysis, гідрогеологічне районування, просторовий аналіз, hydrogeological zoning, grid, інформаційний аналіз, грід, information analysis
-
14
-
15Periodical
المؤلفون: Davybida, L., Kasiyanchuk, D., Shtohryn, L., Kuzmenko, E., Tymkiv, M.
المصدر: Journal of Ecological Engineering.
مصطلحات موضوعية: groundwater, hydrogeological zoning, geodatabase, Moon phases, earthquakes
-
16Periodical
المؤلفون: Marszałek, H.
مصطلحات موضوعية: strefowość hydrogeologiczna, skały krystaliczne, Kotlina Jeleniogórska, Sudety Zachodnie, hydrogeological zoning, hard rocks, Jelenia Góra Basin, Western Sudetes
-
17Electronic Resource
المؤلفون: A. Pavičić
المصدر: Geologia Croatica; ISSN 1330-030X (Print); ISSN 1333-4875 (Online); Volume 50; Issue 2
مصطلحات الفهرس: Karst hydrogeology; Karstification; Water retaining; Hydrogeological zoning; Kosinj reservoir; Lika; Croatia, text, info:eu-repo/semantics/conferenceObject, info:eu-repo/semantics/publishedVersion