يعرض 1 - 17 نتائج من 17 نتيجة بحث عن '"Hydrogeological zoning"', وقت الاستعلام: 0.49s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
  4. 4
    Academic Journal
  5. 5
    Dissertation/ Thesis

    المساهمون: Ortiz Pimienta, Carolina, Caballero Acosta, Jose Humberto

    وصف الملف: xvii, 158 páginas; application/pdf

    Relation: LaReferencia; Abdelmohsen, K., Sultan, M., Ahmed, M., Save, H., Elkaliouby, B., Emil, M., Yan, E., Abotalib, A. Z., Krishnamurthy, R. V., & Abdelmalik, K. (2019). Response of deep aquifers to climate variability. Science of the Total Environment, 677, 530–544. https://doi.org/10.1016/j.scitotenv.2019.04.316; Abdullah, A., Akhir, J. ., & Abdullah, I. (2010). Automatic Mapping of Lineaments Using Shaded Relief Images Derived from Digital Elevation Model (DEMs) in the Maran – Sungi Lembing Area, Malaysia. The Electronic Journal of Geotechnical Engineering, 15, 949–957.; Ahmadi, H., & Pekkan, E. (2021). Fault-Based Geological Lineaments Extraction Using Remote Sensing and GIS—A Review. Geosciences, 11(5), 1–31. https://doi.org/10.3390/GEOSCIENCES11050183; Ahmed, M., & Abdelmohsen, K. (2018). Quantifying Modern Recharge and Depletion Rates of the Nubian Aquifer in Egypt. Surveys in Geophysics, 39(4), 729–751. https://doi.org/10.1007/s10712-018-9465-3; Alimi, J. (n.d.). Groundwater Resources and Management in Nigeria.; ARSET. (n.d.). Sinopsis del Satélite GRACE y Sus Datos y Aplicaciones. NASA Applied Remote Sensing Training Program (ARSET).; Awange, J. L., Gebremichael, M., Forootan, E., Wakbulcho, G., Anyah, R., Ferreira, V. G., & Alemayehu, T. (2014). Characterization of Ethiopian mega hydrogeological regimes using GRACE, TRMM and GLDAS datasets. Advances in Water Resources, 74, 64–78. https://doi.org/10.1016/j.advwatres.2014.07.012; Barrero, D., Pardo, A., Vargas, C. ., & Martínez, J. . (2007). Colombian Sedimentary Basins: Nomenclature, boundaries and Petroleum Geology, a New Proposal. In Agencia Nacional de Hidrocarburos - A.N.H.- (Issues 978-958-98237-0–5). https://doi.org/ISBN: 978-958-98237-0-5; Belle, P., Lachassagne, P., Mathieu, F., Barbet, C., Brisset, N., & Gourry, J.-C. (2019). Characterization and location of the laminated layer within hard rock weathering profiles from electrical resistivity tomography: implications for water well siting. Geological Society, London, Special Publications, 479(1), 187–205. https://doi.org/10.1144/SP479.7; Betancur, T., García, D. A., Vélez, A. J., Gómez, A. M., Flórez, C., Patiño, J., & Ortíz, J. A. (2017). Aguas subterráneas , humedales y servicios ecosistémicos en Colombia. Biota Colombiana, 18(1), 1–27. https://doi.org/10.21068/c2017.v18n01a1; Bolaños, S., Salazar, J. F., Betancur, T., & Werner, M. (2021). GRACE reveals depletion of water storage in northwestern South America between ENSO extremes. Journal of Hydrology, 596, 1–13. https://doi.org/10.1016/j.jhydrol.2020.125687; Brugeron, A., Paroissien, J. B., & Tillier, L. (2018). Référentiel hydrogéologique BDLISA version 2 : Principes de construction et évolutions (p. 69).; Central Ground Water Board - CGWB. (2012). Aquifer Systems of India.; Chilton, P. J., & Foster, S. (1995). Hydrogeological Characterisation and Water-Supply Potential of Basement Aquifers in Tropical Africa. Hydrogeology Journal, 3(1), 36–49. https://doi.org/10.1007/s100400050061; Chowdhury, A., Jha, M. K., & Chowdary, V. M. (2010). Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environmental Earth Sciences, 59(6), 1209–1222. https://doi.org/10.1007/s12665-009-0110-9; Cross, A. M. (1988). Detection of circular geological features using the Hough transform. International Journal of Remote Sensing, 9(9), 1519–1528. https://doi.org/10.1080/01431168808954956; Custodio, E. (2003). Hydrogeological similarities and differences between volcanic and hard rocks. International Conference on Groundwater in Fractured Rocks, 5.; Das, B., & Singh, S. K. (2016). Ground water potential zone mapping of semi-arid region of Kalaburgi and Yadgir districts of North Karnataka: A geospatial analysis approach. International Journal of Current Research, 8(3), 28797–28807.; Dewandel, B., Lachassagne, P., Wyns, R., Maréchal, J. C., & Krishnamurthy, N. S. (2006). A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. Journal of Hydrology, 330(1–2), 260–284. https://doi.org/10.1016/j.jhydrol.2006.03.026; Díaz-Alcaide, S., & Martínez-Santos, P. (2019). Review: Advances in groundwater potential mapping. Hydrogeology Journal, 27(7), 2307–2324. https://doi.org/10.1007/s10040-019-02001-3; DNP. (1983). Mapa Hidrogeológico General de Colombia Escala 1:500.000.; El-Naqa, A., Hammouri, N., Ibrahim, K., & El-Taj, M. (2009). Integrated Approach for Groundwater Exploration in Wadi Araba Using Remote Sensing and GIS. Jordan Journal of Civil Engineering, 3(3), 229–243.; Fenta, M. C., Anteneh, Z. L., Szanyi, J., Walker, D., Walker, D., & Walker, D. (2020). Hydrogeological framework of the volcanic aquifers and groundwater quality in Dangila Town and the surrounding area, Northwest Ethiopia. Groundwater for Sustainable Development, 11. https://doi.org/10.1016/J.GSD.2020.100408; Foster, S. (1984). African groundwater development - the challenges for hydrogeological science. Challenges in African Hydrology and Water Resources, December, 3–12.; Foster, S., Hirata, R., Gomes, D., D’Elia, M., & Paris, M. (2002). Proteccion de la Calidad del Agua Subterránea - Guía para empresas de agua, autoridades municipales y agencias ambientales. Banco Mundial.; Frappart, F., & Ramillien, G. (2018). Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) satellite mission: A review. Remote Sensing, 10(6). https://doi.org/10.3390/rs10060829; Freeze, R. ., & Cherry, J. . (1979). Groundwater. Prentice Hall.; Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2(1), 1–21. https://doi.org/10.1038/sdata.2015.66; Gilbrich, W., & Struckmeier, W. (2014). 50 Years of Hydro(geo)logical Mapping Activities.; Gómez, J. (2022). La geología como condicionante del paisaje - YouTube. Sociedad Geográfica de Colombia. https://www.youtube.com/watch?v=a4_Zl-iBHX8; Gómez, J., Montes, N. ., & Compiladores. (2020). Atlas Geológico de Colombia 2020 - Escala 1:500.000. Servicio Geológico Colombiano.; Gómez, L. A. (2017). Dinámica espacio temporal del almacenamiento de agua en el suelo en el Norte de Suramérica. Universidad Nacional de Colombia.; González de Vallejo, L., Ferrer, M., Ortuño, L., & Oteo, C. (2002). Ingeniería Geológica. Pearson Educación.; Guarín, G., & Poveda, G. (2013). Variabilidad Espacial Y Temporal Del Almacenamiento De Agua En El Suelo En Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 37(142), 89–113.; Guihéneuf, N., Boisson, A., Bour, O., Dewandel, B., Perrin, J., Dausse, A., Viossanges, M., Chandra, S., Ahmed, S., & Maréchal, J. C. (2014). Groundwater flows in weathered crystalline rocks: Impact of piezometric variations and depth-dependent fracture connectivity. Journal of Hydrology, 511, 320–324.; Gun, J., Vasak, S., & Reckman, J. (2008). Scale-dependent hydrogeological zoning for effective communication and efficient information management on groundwater. 33rd International Geological Congress.; Henry, C. M., Allen, D. M., & Huang, J. (2011). Groundwater storage variability and annual recharge using well-hydrograph and GRACE satellite data. Hydrogeology Journal, 19(4), 741–755. https://doi.org/10.1007/s10040-011-0724-3; Herbich, P., Woźnicka, M., & Witczak, S. (2010). Hydrogeological cartography as a tool supporting water management, spatial planning and environmental protection. Przeglad Geologiczny, 58(9 PART 1), 746–753.; Herms, I., & Arnó, G. (2016). Cartografía Hidrogeológica.; Hoyos, F. (2012). GEOTECNIA diccionario básico.; Huat, B. B. ., Toll, D. ., & Prasad, A. (Eds. . (2012). Handbook of Tropical Residual Soils Engineering. CRC Press.; IDEAM. (2010). Estudio Nacional de Agua 2010.; IDEAM. (2013a). Aguas Subterráneas en Colombia Una Visión General.; IDEAM. (2013b). Zonificación y Codificación de Unidades Hidrográficas e Hidrogeológicas de Colombia.; IDEAM. (2015a). Estudio Nacional del Agua 2014. IDEAM.; IDEAM. (2015b). Principios básicos para el conocimiento y monitoreo de las aguas subterráneas - Contenidos del Taller de Formación (p. 180).; IDEAM. (2019). Estudio Nacional del Agua 2018. IDEAM.; IGAC. (1997). Mapa Regiones Naturales de Colombia. Escala 1:5.000.000.; INGEOMINAS. (1977). Mapa Hidrogeológico de Colombia Escala 1:3.000.000.; INGEOMINAS. (1987). Memoria del Mapa Hidrogeológico de Colombia Edición 1987.; INGEOMINAS. (2004a). Atlas de Aguas Subterráneas de Colombia a escala 1:500.000.; INGEOMINAS. (2004b). Programa de exploración de aguas subterráneas – PEXAS.; INGEOMINAS. (2011). Mapa litoestratigráfico con permeabilidades de Colombia escala 1:500.000.; ISPRA. (2018). Carta Idrogeologica D’Italia – 1:50.000 (p. 71).; Joshi, A. K. (1989). Automatic detection of lineaments from Landsat data. Digest - International Geoscience and Remote Sensing Symposium (IGARSS), 1, 85–88. https://doi.org/10.1109/IGARSS.1989.567160; Koike, K., Nagano, S., & Ohmi, M. (1995). Lineament analysis of satellite images using a Segment Tracing Algorithm (STA). Computers & Geosciences, 21(9), 1091–1104. https://doi.org/10.1016/0098-3004(95)00042-7; Krishnamurthy, J., Venkatesa Kumar, N., Jayaraman, V., & Manivel, M. (1996). An approach to demarcate ground water potential zones through remote sensing and a geographical information system. International Journal of Remote Sensing, 17(10), 1867–1884. https://doi.org/10.1080/01431169608948744; Kumar, P. K. D., Gopinath, G., & Seralathan, P. (2007). Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India. International Journal of Remote Sensing, 28(24), 5583–5601. https://doi.org/10.1080/01431160601086050; Kuriakose, S. L., Devkota, S., Rossiter, D. G., & Jetten, V. G. (2009). Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India. CATENA, 79(1), 27–38. https://doi.org/10.1016/J.CATENA.2009.05.005; Lachassagne, P. (2008). Overview of the hydrogeology of hard rock aquifers: Applications for their survey, management, modelling and protection. In Groundwater Dynamics in Hard Rock Aquifers: Sustainable Management and Optimal Monitoring Network Design (pp. 40–63). Springer Netherlands. https://doi.org/10.1007/978-1-4020-6540-8_3; Lachassagne, P., Aunay, B., Frissant, N., Guilbert, M., & Malard, A. (2014). High-resolution conceptual hydrogeological model of complex basaltic volcanic islands: a Mayotte, Comoros, case study. Terra Nova, 26(4), 15 p. https://doi.org/10.1111/TER.12102; Lachassagne, P., Dewandel, B., & Wyns, R. (2014a). Hydrogeology of Hard Rock Aquifers. In S. Eslamian (Ed.), Handbook of Engineering Hydrology (pp. 297–326). CRC Press. https://doi.org/10.1201/b15625-18; Lachassagne, P., Dewandel, B., & Wyns, R. (2014b). The conceptual model of weathered hard rock aquifers and its practical applications. In J. M. Sharp (Ed.), Fractured Rock Hydrogeology (IAH Select, Vol. 20, pp. 35–68). CRC Press. https://doi.org/10.1201/b17016-7; Lachassagne, P., Dewandel, B., & Wyns, R. (2021). Review: Hydrogeology of weathered crystalline/hard-rock aquifers—guidelines for the operational survey and management of their groundwater resources. Hydrogeology Journal 2021, 1–34. https://doi.org/10.1007/S10040-021-02339-7; Lachassagne, P., Wyns, R., Bérard, P., Bruel, T., Chéry, L., Coutand, T., Desprats, J. F., & Le Strat, P. (2001). Exploitation of high-yields in hard-rock aquifers: Downscaling methodology combining GIS and multicriteria analysis to delineate field prospecting zones. Ground Water, 39(4), 568–581. https://doi.org/10.1111/j.1745-6584.2001.tb02345.x; Lachassagne, P., Wyns, R., & Dewandel, B. (2011). The fracture permeability of Hard Rock Aquifers is due neither to tectonics, nor to unloading, but to weathering processes. Terra Nova, 23(3), 145–161. https://doi.org/10.1111/j.1365-3121.2011.00998.x; Landerer, F. W., & Swenson, S. C. (2012). Accuracy of scaled GRACE terrestrial water storage estimates. Water Resources Research, 48(4), 4531. https://doi.org/10.1029/2011WR011453; Li, B., Rodell, M., Kumar, S., Beaudoing, H. K., Getirana, A., Zaitchik, B. F., de Goncalves, L. G., Cossetin, C., Bhanja, S., Mukherjee, A., Tian, S., Tangdamrongsub, N., Long, D., Nanteza, J., Lee, J., Policelli, F., Goni, I. B., Daira, D., Bila, M., … Bettadpur, S. (2019). Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges. Water Resources Research, 55(9), 7564–7586. https://doi.org/10.1029/2018WR024618; MacDonald, A. ., & Davies, J. (2000). A brief review of groundwater for rural water supply in sub-Saharan Africa - BGS Technical Report WC/00/33.; Maréchal, J. C., Dewandel, B., & Subrahmanyam, K. (2004). Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer. Water Resources Research, 40(11). https://doi.org/10.1029/2004WR003137; Maréchal, J. C., Selles, A., Dewandel, B., Boisson, A., Perrin, J., & Ahmed, S. (2018). An observatory of groundwater in crystalline rock aquifers exposed to a changing environment: Hyderabad, India. Vadose Zone Journal, 17(1), 1–14. https://doi.org/10.2136/vzj2018.04.0076; Margat, J., & Gun, J. (2013). Groundwater around the World (CRC Press (ed.)). https://doi.org/https://doi.org/10.1201/b13977; Marghany, M., & Hashim, M. (2010). Lineament mapping using multispectral remote sensing satellite data. Research Journal of Applied Sciences, 5(2), 126–130. https://doi.org/10.3923/RJASCI.2010.126.130; Masoud, A., & Koike, K. (2017). Applicability of computer-aided comprehensive tool (LINDA: LINeament Detection and Analysis) and shaded digital elevation model for characterizing and interpreting morphotectonic features from lineaments. Computers & Geosciences, 106, 89–100. https://doi.org/10.1016/J.CAGEO.2017.06.006; Maxey, G. B. (1964). Hydrostratigraphic units. Journal of Hydrology, 2(2), 124–129. https://doi.org/10.1016/0022-1694(64)90023-X; Mehta, A. (n.d.). Satélites, sensores y modelos de sistemas terrestres de la NASA usados para la gestión de recursos hídricos - NASA Applied Remote Sensing Training Program (ARSET).; Mehta, A., Podest, E., & McCartney, S. (2020). Groundwater Monitoring using Observations from NASA’s Gravity Recovery and Climate Experiment (GRACE) Missions - NASA Applied Remote Sensing Training Program (ARSET).; Meijerink, A. M. J. (1996). Remote sensing applications to hydrology: groundwater. Hydrological Sciences Journal, 41(4), 549–561. https://doi.org/10.1080/02626669609491525; Meijerink, A. M. J., Bannert, D., Batelaan, O., Lubczynski, M. ., & Pointet, T. (2007). Remote Sensing Applications to Groundwater. IHP-VI, Series on Groundwater No.16 (UNESCO (ed.)).; Mohamed, A. (2019). Hydro-geophysical study of the groundwater storage variations over the Libyan area and its connection to the Dakhla basin in Egypt. Journal of African Earth Sciences, 157(December 2018), 103508. https://doi.org/10.1016/j.jafrearsci.2019.05.016; Mohamed, A., Sultan, M., Ahmed, M., Yan, E., & Ahmed, E. (2017). Aquifer recharge, depletion, and connectivity: Inferences from GRACE, land surface models, and geochemical and geophysical data. Bulletin of the Geological Society of America, 129(5–6), 534–546. https://doi.org/10.1130/B31460.1; Monreal, R., Rangel, M., Grijalva, A., Minjarez, I., & Morales, M. (2011). Metodología para la definición de unidades hidroestratigráficas: Caso del acuífero del valle del río Yaqui, Sonora, México. Boletin de La Sociedad Geológica Mexicana, 63(1), 119–135. https://doi.org/10.18268/bsgm2011v63n1a10; Nag, S. K., & Chowdhury, P. (2019). Decipherment of potential zones for groundwater occurrence: a study in Khatra Block, Bankura District, West Bengal, using geospatial techniques. Environmental Earth Sciences, 78(2), 1–14. https://doi.org/10.1007/S12665-018-8034-X; Oliveira, J., Brito, A., De Carlo, R., & Feijó, T. (2014). Manual de Cartografia Hidrogeológica (Servicio Geológico de Brasil - CPRM (ed.)).; Ospina, D. L., & Vargas, C. A. (2018). Monitoring runoff coefficients and groundwater levels using data from GRACE, GLDAS, and hydrometeorological stations: analysis of a Colombian foreland basin. Hydrogeology Journal, 26(8), 2769–2779. https://doi.org/10.1007/s10040-018-1824-0; Pantaleone, D. V., Vincenzo, A., Fulvio, C., Silvia, F., Cesaria, M., Giuseppina, M., Ilaria, M., Vincenzo, P., Rosa, S. A., Gianpietro, S., Giuseppe, T., & Pietro, C. (2018). Hydrogeology of continental southern Italy. Journal of Maps, 14(2), 230–241. https://doi.org/10.1080/17445647.2018.1454352; Petit, V., Hanot, F., & Pointet, T. (2003). Référentiel hydrogéologique BD RHF. Guide méthodologique de découpage des entités. BRGM/RP-52261-FR (p. 101). https://doi.org/PNR61; Portal, A., Belle, P., Mathieu, F., Lachassagne, P., & Brisset, N. (2017). Identification and characterization of hard rocks weathering profile by electrical resistivity imaging. 23rd European Meeting of Environmental and Engineering Geophysics. https://doi.org/10.3997/2214-4609.201702054; Prasad, R. K., Mondal, N. C., Banerjee, P., Nandakumar, M. V., & Singh, V. S. (2008). Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology, 55(3), 467–475. https://doi.org/10.1007/S00254-007-0992-3/FIGURES/9; Rahmati, O., Nazari Samani, A., Mahdavi, M., Pourghasemi, H. R., & Zeinivand, H. (2015). Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences, 8(9), 7059–7071. https://doi.org/10.1007/S12517-014-1668-4/FIGURES/5; Rahnama, M., & Gloaguen, R. (2014). TecLines: A MATLAB-Based Toolbox for Tectonic Lineament Analysis from Satellite Images and DEMs, Part 1: Line Segment Detection and Extraction. Remote Sensing 2014, Vol. 6, Pages 5938-5958, 6(7), 5938–5958. https://doi.org/10.3390/RS6075938; Ramírez, T. . (2016). Análisis de la problemática Socioambiental generada por la Construcción de Túneles Viales en Colombia: Caso de estudio Túnel de Occidente. Universidad Nacional de Colombia.; Ramli, M. F., Yusof, N., Yusoff, M. K., Juahir, H., & Shafri, H. Z. M. (2010). Lineament mapping and its application in landslide hazard assessment: A review. Bulletin of Engineering Geology and the Environment, 69(2), 215–233. https://doi.org/10.1007/S10064-009-0255-5; Razandi, Y., Pourghasemi, H. R., Neisani, N. S., & Rahmati, O. (2015). Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, 8(4), 867–883. https://doi.org/10.1007/S12145-015-0220-8/FIGURES/5; Richey, A. S., Thomas, B. F., Lo, M.-H., Reager, J. T., Famiglietti, J. S., Voss, K., Swenson, S., & Rodell, M. (2015). Quantifying renewable groundwater stress with GRACE. Water Resources Research, 51(7), 5217–5238. https://doi.org/10.1002/2015WR017349; Richts, A., Struckmeier, W. F., & Zaepke, M. (2011). WHYMAP and the Groundwater Resources Map of the World 1:25,000,000. In Sustaining Groundwater Resources (pp. 159–173). https://doi.org/10.1007/978-90-481-3426-7; Rodell, M., Chen, J., Kato, H., Famiglietti, J. S., Nigro, J., & Wilson, C. R. (2007). Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeology Journal, 15(1), 159–166. https://doi.org/10.1007/S10040-006-0103-7/FIGURES/5; Rodell, M., & Famiglietti, J. S. (1999). Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resources Research, 35(9), 2705–2723. https://doi.org/10.1029/1999WR900141; Rodell, M., & Famiglietti, J. S. (2002). The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US. Journal of Hydrology, 263(1–4), 245–256. https://doi.org/10.1016/S0022-1694(02)00060-4; Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., & Toll, D. (2004). The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3), 381–394. https://doi.org/10.1175/BAMS-85-3-381; Rui, H., & Beaudoing, H. (2021). README Document for NASA GLDAS Version 2 Data Products. Goddard Earth Sciences Data and Information Services Center (GES DISC). NASA.; Scanlon, B. R., Longuevergne, L., & Long, D. (2012). Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resources Research, 48(4), 1–9. https://doi.org/10.1029/2011WR011312; SGC. (2020). Atlas Geológico de Colombia 2020. https://www2.sgc.gov.co/MGC/Paginas/agc_500K2020.aspx; Shafique, M., van der Meijde, M., & Rossiter, D. G. (2011). Geophysical and remote sensing-based approach to model regolith thickness in a data-sparse environment. CATENA, 87(1), 11–19. https://doi.org/10.1016/J.CATENA.2011.04.004; Shafique, M., van der Meijde, M., & Ullah, S. (2011). Regolith modeling and its relation to earthquake induced building damage: A remote sensing approach. Journal of Asian Earth Sciences, 42(1–2), 65–75. https://doi.org/10.1016/J.JSEAES.2011.04.004; Sharpe, D., Russell, H., Dyke, L., Grasby, S., Gleeson, T., Michaud, Y., Savard, M., Mei, M., & Wozniak, P. (2010). Hydrogeological regions of Canada - Chapter 8.; Sima, J. (n.d.). Hydrogeological zones Czech Republic. Retrieved November 6, 2019, from http://www.geology.cz/projekt681900/english/learning-resources; Singhal, B. B. ., & Gupta, R. . (2010). Applied Hydrogeology of Fractured Rocks (Second Edi). Springer. https://doi.org/10.1007/978-90-481-8799-7; Soto-Pinto, C., Arellano-Baeza, A., & Sánchez, G. (2013). A new code for automatic detection and analysis of the lineament patterns for geophysical and geological purposes (ADALGEO). Computers and Geosciences, 57, 93–103. https://doi.org/10.1016/J.CAGEO.2013.03.019; Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions American Geophysical Union, 38(6), 913–920. https://doi.org/10.1029/TR038I006P00913; Struckmeier, W., & Margat, J. (1995). Hydrogeological Maps A Guide and a Standard Legend (International Association of Hydrogeologists (ed.)).; Suárez, J. (2009). Deslizamientos Tomo I: Análisis Geotécnico.; Tarbuck, E. J., Lutgens, F. K., & Tasa, D. (2005). Ciencias de la Tierra. Pearson Educación S.A.; Taylor, R. G., & Howard, K. W. F. (1999). The influence of tectonic setting on the hydrological characteristics of deeply weathered terrains: evidence from Uganda. Journal of Hydrology, 218(1–2), 44–71. https://doi.org/10.1016/S0022-1694(99)00024-4; Thomas, A. C., Reager, J. T., Famiglietti, J. S., & Rodell, M. (2014). A GRACE-based water storage deficit approach for hydrological drought characterization. Geophysical Research Letters, 41(5), 1537–1545. https://doi.org/10.1002/2014GL059323; Thomas, B. F., Famiglietti, J. S., Landerer, F. W., Wiese, D. N., Molotch, N. P., & Argus, D. F. (2017). GRACE Groundwater Drought Index: Evaluation of California Central Valley groundwater drought. Remote Sensing of Environment, 198, 384–392. https://doi.org/10.1016/j.rse.2017.06.026; UNESCO. (1985). Aguas subterráneas en rocas duras - Proyecto 8.6 del Programa Hidrológico Internacional.; Urrea, V. (2017). Variabilidad espacial y temporal del ciclo anual de lluvia en Colombia. Universidad Nacional de Colombia sede Medellín.; USGS. (1992). Ground Water Atlas of The United States - Hydrologic Investigations Atlas 730-J.; USGS. (1995). Ground Water Atlas of The United States - Hydrologic Investigations Atlas 730-M.; Vargas, N. O. (2001). Zonas hidrogeológicas homogéneas de Colombia.; Vargas, N. O. (2005). Zonas hidrogeológicas homogéneas de Colombia. 17.; Vargas, N. O. (2006). Zonas hidrogeológicas homogéneas de Colombia. Boletín Geológico y Minero, 117(1), 47–61.; Wendland, F., Blum, A., Coetsiers, M., Gorova, R., Griffioen, J., Grima, J., Hinsby, K., Kunkel, R., Marandi, A., Melo, T., Panagopoulos, A., Pauwels, H., Ruisi, M., Traversa, P., Vermooten, J. S. ., & Walraevens, K. (2007). European aquifer typology: a practical framework for an overview of major groundwater composition at European scale. Environmental Geology. https://doi.org/10.1007/s00254-007-0966-5; Wesley, L. (2010). Geotechnical Engineering in Residual Soils. John Wiley & Sons, Inc.; Worthington, S. R. H., Davies, G. J., & Alexander, E. C. (2016). Enhancement of bedrock permeability by weathering. Earth-Science Reviews, 160, 188–202. https://doi.org/10.1016/J.EARSCIREV.2016.07.002; Wright, E. P., & Burgess, W. G. (1992). The hydrogeology of crystalline basement aquifers in Africa. Geological Society Special Publication, 66, 1–27. https://doi.org/10.1144/GSL.SP.1992.066.01.01; Wu, Q., Si, B., He, H., & Wu, P. (2019). Determining regional-scale groundwater recharge with GRACE and GLDAS. Remote Sensing, 11(2). https://doi.org/10.3390/rs11020154; Wyns, R., Baltassat, J.-M., Lachassagne, P., Legchenko, A., Vairon, J., & Mathieu, F. (2004). Application of proton magnetic resonance soundings to groundwater reserve mapping in weathered basement rocks (Brittany, France). Bulletin de La Société Géologique de France, 175(1), 21–34. https://doi.org/10.2113/175.1.21; Zaporozec, A. (1972). Groundwater zoning in water resources management. Journal of the American Water Resources Association, 8(6), 1137–1143.; Zlatopolsky, A. A. (1992). Program LESSA (Lineament Extraction and Stripe Statistical Analysis) automated linear image features analysis—experimental results. Computers & Geosciences, 18(9), 1121–1126. https://doi.org/10.1016/0098-3004(92)90036-Q; https://repositorio.unal.edu.co/handle/unal/82871; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  6. 6
  7. 7
    Academic Journal

    المؤلفون: Давибіда, Л. І.

    Relation: Давибіда, Л. І. Створення регіональних прогностичних геоінформаційних моделей глибини залягання рівнів грунтових вод / Л. І. Давибіда // Науковий вісник Івано-Франківського національного технічного університету нафти і газу. - 2014. - № 1. - С. 26-35.; http://elar.nung.edu.ua/handle/123456789/2539

  8. 8
    Academic Journal

    المؤلفون: Давибіда, Л. І.

    المصدر: Scientific Bulletin of Ivano-Frankivsk National Technical University of Oil and Gas; No. 1(36) (2014): SCIENTIFIC BULLETIN IVANO-FRANKIVSK NATIONAL TECHNICAL UNIVERSITY OF OIL AND GAS; 26-36 ; Науковий вісник; № 1(36) (2014): SCIENTIFIC BULLETIN IVANO-FRANKIVSK NATIONAL TECHNICAL UNIVERSITY OF OIL AND GAS; 26-36 ; Науковий вісник Івано-Франківського національного технічного університету нафти і газу; № 1(36) (2014): НАУКОВИЙ ВІСНИК ІВАНО-ФРАНКІВСЬКОГО НАЦІОНАЛЬНОГО ТЕХНІЧНОГО УНІВЕРСИТЕТУ НАФТИ І ГАЗУ ; 26-36 ; 2415-3524 ; 1993-9965

    وصف الملف: application/pdf

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
    Periodical
  16. 16
    Periodical
  17. 17
    Electronic Resource