يعرض 1 - 20 نتائج من 99 نتيجة بحث عن '"Holický, Petr"', وقت الاستعلام: 0.54s تنقيح النتائج
  1. 1
    Book

    المؤلفون: Holický, Petr (1951- ). Autor

    المساهمون: Zelený, Miroslav (1971- )., Polska Akademia Nauk. Instytut Matematyczny. Instytucja sprawcza,Wydawca Instytucja sprawcza,Wydawca pbl

    المصدر: Bibliografia na stronie 75. Indeks.

    مصطلحات موضوعية: Topologia

  2. 2
    Academic Journal

    المؤلفون: Holický, Petr

    المصدر: Proceedings of the American Mathematical Society, 2006 May 01. 134(5), 1519-1525.

  3. 3
    Academic Journal

    المؤلفون: Holický, Petr, Keleti, Tamás

    المصدر: Proceedings of the American Mathematical Society, 2005 Jun 01. 133(6), 1851-1859.

  4. 4
    Academic Journal

    المؤلفون: Holický, Petr, Laczkovich, Miklós

    المصدر: Proceedings of the American Mathematical Society, 2004 Nov 01. 132(11), 3345-3347.

  5. 5
  6. 6
  7. 7
    Academic Journal

    المؤلفون: Holický, Petr

    المصدر: Proceedings of the American Mathematical Society, 1994 Mar 01. 120(3), 951-958.

  8. 8
    Academic Journal

    المؤلفون: Frolík, Zdenĕk, Holický, Petr

    المصدر: Proceedings of the American Mathematical Society, 1981 Jul 01. 82(3), 359-365.

  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal

    المؤلفون: Holický, Petr

    المصدر: Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas ; volume 104, issue 2, page 257-282 ; ISSN 1578-7303 1579-1505

  15. 15
    Dissertation/ Thesis
  16. 16
    Academic Journal
  17. 17
    Academic Journal

    المؤلفون: Holický, Petr, Komínek, Václav

    وصف الملف: application/pdf

    Relation: mr:MR2309961; zbl:Zbl 1174.54024; reference:[1] Z. Frolík: A measurable map with analytic domain and metrizable range is quotient.Bull. Amer. Math. Soc. 76 (1970), 1112–1117. MR 0265539, 10.1090/S0002-9904-1970-12584-8; reference:[2] Z. Frolík and P. Holický: Applications of Luzinian separation principles (non-separable case).Fund. Math. 117 (1983), 165–185. MR 0719837, 10.4064/fm-117-3-165-185; reference:[3] R. W. Hansell: On characterizing non-separable analytic and extended Borel sets as types of continuous images.Proc. London Math. Soc. 28 (1974), 683–699. Zbl 0313.54044, MR 0362269; reference:[4] R. W. Hansell: Descriptive sets and the topology of nonseparable Banach spaces.Serdica Math. J. 27 (2001), 1–66. Zbl 0982.46012, MR 1828793; reference:[5] R. W. Hansell: Descriptive topology.Recent Progress in General Topology, M. Hušek and J. van Mill (eds.), North-Holland, Amsterdam, London, New York, Tokyo, 1992, pp. 275–315. Zbl 0805.54036, MR 1229129; reference:[6] P. Holický: Čech analytic and almost $K$-descriptive spaces.Czech. Math. J. 43 (1993), 451–466. MR 1249614; reference:[7] P. Holický: Luzin theorems for scattered-$K$-analytic spaces and Borel measures on them.Atti Sem. Mat. Fis. Univ. Modena XLIV (1996), 395–413. MR 1428772; reference:[8] P. Holický: Generalized analytic spaces, completeness and fragmentability.Czech. Math. J. 51 (2001), 791–818. MR 1864043, 10.1023/A:1013769030260; reference:[9] P. Holický and V. Komínek: On projections of nonseparable Souslin and Borel sets along separable spaces.Acta Univ. Carolin. Math. Phys. 42 (2001), 33–41. MR 1900390; reference:[10] P. Holický and J. Pelant: Internal descriptions of absolute Borel classes.Topology Appl. 141 (2004), 87–104. MR 2058682; reference:[11] P. Holický and M. Zelený: A converse of the Arsenin-Kunugui theorem on Borel sets with $\sigma $-compact sections.Fund. Math. 165 (2000), 191–202. MR 1805424; reference:[12] J. E. Jayne and C. A. Rogers: Upper semicontinuous set-valued functions.Acta Math. 149 (1982), 87–125. MR 0674168, 10.1007/BF02392351; reference:[13] J. Kaniewski and R. Pol: Borel-measurable selectors for compact-valued mappings in the non-separable case.Bull. Pol. Acad. Sci. Math. 23 (1975), 1043–1050. MR 0410657; reference:[14] A. S. Kechris: Classical Descriptive Set Theory.Springer, New York etc., 1995. Zbl 0819.04002, MR 1321597; reference:[15] V. Komínek: A remark on the uniformization in metric spaces.Acta Univ. Carolin. Math. Phys. 40 (1999), 65–74. MR 1751542; reference:[16] R. Purves: Bimeasurable functions.Fund. Math. 58 (1966), 149–157. Zbl 0143.07101, MR 0199339, 10.4064/fm-58-2-149-157; reference:[17] C. A. Rogers and R. C. Willmott: On the uniformization of sets in topological spaces.Acta Math. 120 (1968), 1–52. MR 0237733, 10.1007/BF02394605

  18. 18
    Academic Journal
  19. 19
    Academic Journal

    المؤلفون: Fuka, Jaroslav, Holický, Petr

    وصف الملف: application/pdf

    Relation: mr:MR2259495; zbl:Zbl 1121.54058; reference:[1] Bartoszyński T., Judah H., Shelah S.: The Cichoń diagram.J. Symbolic Logic 58 (1993), 401-423. MR 1233917; reference:[2] Fuka J.: On the $\delta $-convergence.Acta Universitatis Purkynianae 42, Czech-Polish Mathematical School, Ústí nad Labem, 1999, 63-64.; reference:[3] Jech T.: Set Theory, Second Edition.Perspectives in Mathematical Logic, Springer, Berlin, 1997. MR 1492987; reference:[4] Just W., Weese M.: Discovering Modern Set Theory. II.Graduate Studies in Mathematics, Vol. 18, American Mathematical Society, Providence, 1997. Zbl 0887.03036, MR 1474727; reference:[5] Kechris A.S.: Classical Descriptive Set Theory.Springer, New York, 1995. Zbl 0819.04002, MR 1321597; reference:[6] Martin D.A., Solovay R.M.: Internal Cohen extensions.Ann. Math. Logic 2 (1970), 143-178. Zbl 0222.02075, MR 0270904; reference:[7] Solovay R.M., Tennenbaum S.: Iterated Cohen extensions and Souslin's problem.Ann. of Math. 94 (1971), 201-245. Zbl 0244.02023, MR 0294139; reference:[8] Tichonov A.N.: On the regularization of ill-posed problems (Russian).Dokl. Akad. Nauk SSSR 153 (1963), 49-52. MR 0162378

  20. 20
    Book