-
1Report
المؤلفون: Sánchez-Lavega, A., del Rio-Gaztelurrutia, T., Hueso, R., Juárez, M. de la Torre, Martínez, G. M., Harri, A. -M., Genzer, M., Hieta, M., Polkko, J., Rodríguez-Manfredi, J. A., Lemmon, M. T., Pla-García, J., Toledo, D., Vicente-Retortillo, A., Viúdez-Moreiras, Daniel, Munguira, A., Tamppari, L. K., Newman, C., Gómez-Elvira, J., Guzewich, S., Bertrand, T., Apéstigue, V., Arruego, I., Wolff, M., Banfield, D., Jaakonaho, I., Mäkinen, T.
المصدر: Journal of Geophysical Research: Planets, 128, e2022JE007480 (2023)
مصطلحات موضوعية: Astrophysics - Earth and Planetary Astrophysics
URL الوصول: http://arxiv.org/abs/2401.12931
-
2Conference
المؤلفون: Tamppari, Leslie, K, Martínez, G, Rodríguez-Manfredi, J, A, de la Torre-Juárez, M, Polkko, J, Hieta, M, Jaakonaho, I, Genzer, M, Harri, A.-M, Savijärvi, H, Bertrand, T, Holmes, J, Mcconnochie, T, Montmessin, Franck, Smith, M, Wolff, M, Fischer, E, Conrad, P, Gómez, F, Zorzano, M.-P, Patel, P, Lemmon, M, Knutsen, E, W, Pla-García, J
المساهمون: Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Lunar and Planetary Institute Houston (LPI), Centro de Astrobiologia Madrid (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Cientificas España = Spanish National Research Council Spain (CSIC), Finnish Meteorological Institute (FMI), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), The Open University Milton Keynes (OU), Space Science Institute Boulder (SSI), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), University of Michigan Ann Arbor, University of Michigan System, Carnegie Institution for Science, University College of London London (UCL), University of Oslo (UiO)
المصدر: Tenth International Conference on Mars ; https://insu.hal.science/insu-04690178 ; Tenth International Conference on Mars, Jul 2024, Pasadena, United States. pp.LPI Contribution No. 3007, 2024, id.3038
مصطلحات موضوعية: [SDU]Sciences of the Universe [physics]
جغرافية الموضوع: United States
Time: Pasadena, United States
Relation: BIBCODE: 2024LPICo3007.3038T
-
3Academic Journal
المؤلفون: Martinez, G. M., Sebastián, E., Vicente-Retortillo, A., Smith, M. D., Johnson, J. R., Fischer, E., Savijärvi, Hannu, Toledo, D., Hueso, R., Mora-Sotomayor, L., Gillespie, H., Munguira, A., Sánchez-Lavega, A., Lemmon, M. T., Gómez, F., Polkko, J., Mandon, L., Apestigue, V., Arruego, I., Ramos, M., Conrad, P., Newman, C. E., de la Torre-Juarez, M., Jordan, F., Tamppari, L.K., McConnochie, T. H., Harri, A.-M., Genzer, M., Hieta, M., Zorzano, M.-P., Siegler, M., Prieto, O., Molina, A., Rodríguez-Manfredi, J. A.
المساهمون: Institute for Atmospheric and Earth System Research (INAR)
مصطلحات موضوعية: Mars, Mars 2020, Albedo, Climate, Radiation, Surface, Thermal inertia, Physical sciences
وصف الملف: application/pdf
Relation: German Martinez wants to acknowledge JPL funding from USRA Contract Number 1638782. A. V. R. is supported by the Spanish State Research Agency (AEI) Project MDM-2017-0737, Unidad de Excelencia "Maria de Maeztu"-Centro de Astrobiologia (INTA-CSIC), and by the Comunidad de Madrid Project S2018/NMT-4291 (TEC2SPACE-CM). J. J. acknowledges funding from Mastcam-Z ASU subcontract 15-707. R. H., A. S. L., and A. M. were supported by Grant PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/ and by Grupos Gobierno Vasco IT1742-22. F. G. acknowledges financial support from the Agencia Estatal de Investigacion of the Ministerio de Ciencia e Innovacion and the European Regional Development Fund "A way of making Europe" through project the Centre of Excellence "Maria de Maeztu" award to the Centro de Astrobiologia (MDM-2017-0737), and from the Instituto Nacional de Tecnica Aeroespacial through Project S.IGS22001. L. M. was supported by CNES and IRIS-OCAV. J. P., M. H., and A.-M. H. are thankful for the Finnish Academy Grant 310509. M.-P. Z. was supported by Grant PID2019-104205GB-C21 funded by MCIN/AEI/10.13039/501100011033. M. de la T. J. acknowledges partial funding from the National Aeronautics and Space Administration (80NM0018D0004). The JPL co-authors acknowledge funding from NASA's Space Technology Mission Directorate and the Science Mission Directorate.; Martinez , G M , Sebastián , E , Vicente-Retortillo , A , Smith , M D , Johnson , J R , Fischer , E , Savijärvi , H , Toledo , D , Hueso , R , Mora-Sotomayor , L , Gillespie , H , Munguira , A , Sánchez-Lavega , A , Lemmon , M T , Gómez , F , Polkko , J , Mandon , L , Apestigue , V , Arruego , I , Ramos , M , Conrad , P , Newman , C E , de la Torre-Juarez , M , Jordan , F , Tamppari , L K , McConnochie , T H , Harri , A-M , Genzer , M , Hieta , M , Zorzano , M-P , Siegler , M , Prieto , O , Molina , A & Rodríguez-Manfredi , J A 2023 , ' Surface Energy Budget, Albedo, and Thermal Inertia at Jezero Crater, Mars, as Observed From the Mars 2020 MEDA Instrument ' , Journal of Geophysical Research: Planets , vol. 128 , no. 2 , e2022JE007537 . https://doi.org/10.1029/2022JE007537; http://hdl.handle.net/10138/571240; 80cfb452-c6a1-4c6c-85c7-e79efacb5933; 85147127818; 001000268500012
الاتاحة: http://hdl.handle.net/10138/571240
-
4Academic Journal
المؤلفون: Rodríguez Manfredi, J. A., Torre Juárez, M. de la, Sánchez Lavega, A., Hueso, R., Martínez, G., Lemmon, M. T., Newman, C. E., Munguira, A., Hieta, M., Tamppari, L. K., Espejo Meana, Servando Carlos, Zurita, S.
المساهمون: Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Ministerio de Economía y Competitividad (MINECO). España, Ministerio de Ciencia, Innovación y Universidades (MICINN). España, Ministerio de Ciencia e Innovación (MICIN). España, Spanish State Research Agency (AEI), Gobierno Vasco, European Research Council (ERC), National Aeronautics and Space Administration
Relation: Nature Geoscience, 16 (1), 19-28.; ESP2014-54256-C4-1-R (-2-R -3-R and -4-R); SP2016-79612-C3-1-R (-2-R and -3-R); ESP2016-80320-C2-1-R; RTI2018-098728-B-C31 (-C32 and -C33); RTI2018-099825-B-C31; PID2019-109467GB-I00; PRE2020-092562; MDM-2017-0737; IT1366-19; 818602; 80NM0018D0004; https://doi.org/10.1038/s41561-022-01084-0; https://idus.us.es/handle//11441/155494
-
5Conference
المؤلفون: Martínez, Germán, M., Lasue, Jérémie, Meslin, Pierre-Yves, Chide, Baptiste, Caravaca, Gwénaël, López-Reyes, Guillermo, Tamppari, Leslie K., Beyssac, Olivier, Polkko, J., Hieta, M., Genzer, M., Harri, A.-M., Newman, Claire, Gillespie, Hartzel, Fischer, Erik, Mora, Luis, Sebastián, Eduardo, Wiens, Roger, C, Rodríguez Manfredi, Jose, Antonio
المساهمون: Lunar and Planetary Institute Houston (LPI), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Universidad de Valladolid Valladolid (UVa), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement IRD : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Finnish Meteorological Institute (FMI), Aeolis Research, University of Michigan Ann Arbor, University of Michigan System, Centro de Astrobiologia Madrid (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Cientificas España = Spanish National Research Council Spain (CSIC), Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, Purdue University West Lafayette, Lunar and Planetary Institute
المصدر: 54th Lunar and Planetary Science Conference 2023
https://hal.science/hal-04045208
54th Lunar and Planetary Science Conference 2023, Lunar and Planetary Institute, Mar 2023, The Woodlands (Texas), United States. pp.2184
https://www.hou.usra.edu/meetings/lpsc2023/مصطلحات موضوعية: Mars 2020, Mars, Jezero crater, SuperCam, frost, [SDU]Sciences of the Universe [physics], [SDU.STU]Sciences of the Universe [physics]/Earth Sciences, [SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology, [SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy
جغرافية الموضوع: The Woodlands (Texas), United States
Relation: BIBCODE: 2023LPICo2806.2184M
-
6Academic Journal
المؤلفون: Toledo, D., Apéstigue, V., Arruego, I., Lemmon, M., Gómez, L., Montoro, F., Hueso, R., Newman, C., Smith, M., Viudez‐Moreiras, D., Martínez, G., Lorenz, R., Vicente‐Retortillo, A., Sanchez‐Lavega, A., Juarez, M. de la Torre, Rodriguez‐Manfredi, J. A., Carrasco, I., Yela, M., Jimenez, J. J., García‐Menendez, E., Navarro, S., Gomez‐Elvira, F. J., Harri, A.‐M., Polkko, J., Hieta, M., Genzer, M., Murdoch, Naomi, Sebastian, E.
المساهمون: Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE)
مصطلحات موضوعية: Autre, Dust, Mars, Perseverance, Vortices
وصف الملف: application/pdf
Relation: https://oatao.univ-toulouse.fr/29495/1/Toledo_29495.pdf; HAL : hal-03978206; Toledo, D. and Apéstigue, V. and Arruego, I. and Lemmon, M. and Gómez, L. and Montoro, F. and Hueso, R. and Newman, C. and Smith, M. and Viudez‐Moreiras, D. and Martínez, G. and Lorenz, R. and Vicente‐Retortillo, A. and Sanchez‐Lavega, A. and Juarez, M. de la Torre and Rodriguez‐Manfredi, J. A. and Carrasco, I. and Yela, M. and Jimenez, J. J. and García‐Menendez, E. and Navarro, S. and Gomez‐Elvira, F. J. and Harri, A.‐M. and Polkko, J. and Hieta, M. and Genzer, M. and Murdoch, Naomi and Sebastian, E. Dust Devil Frequency of Occurrence and Radiative Effects at Jezero Crater, Mars, as Measured by MEDA Radiation and Dust Sensor (RDS). (2023) Journal of Geophysical Research: Planets, 128 (1). ISSN 2169-9097
-
7Academic Journal
المؤلفون: Rodriguez-Manfredi, J. A., de la Torre Juarez, M., Sanchez-Lavega, A., Hueso, R., Martinez, G., Lemmon, M. T., Newman, C. E., Munguira, A., Hieta, M., Tamppari, L. K., Polkko, J., Toledo, D., Sebastian, E., Smith, M. D., Jaakonaho, I., Genzer, M., De Vicente-Retortillo, A., Viudez-Moreiras, D., Ramos, M., Saiz-Lopez, A., Lepinette, A., Wolff, M., Sullivan, R. J., Gomez-Elvira, J., Apestigue, V., Conrad, P. G., Del Rio-Gaztelurrutia, T., Murdoch, Naomi, Arruego, I., Banfield, D., Boland, J., Brown, A. J., Ceballos, J., Dominguez-Pumar, M., Espejo, S., Fairén, A. G., Ferrandiz, R., Fischer, E., Garcia-Villadangos, M., Gimenez, S., Gomez-Gomez, F., Guzewich, S. D., Harri, A.-M., Jimenez, J. J., Jimenez, V., Makinen, T., Marin, M., Martin, C., Martin-Soler, J., Molina, A., Mora-Sotomayor, L., Navarro, S., Peinado, V., Perez-Grande, I., Pla-Garcia, J., Postigo, M., Prieto-Ballesteros, O., Rafkin, S. C. R., Richardson, M. I., Romeral, J., Romero, C., Savijärvi, H., Schofield, J. T., Torres, J., Urqui, R., Zurita, S.
المساهمون: Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE)
مصطلحات موضوعية: Traitement du signal et de l'image, Perseverance, Rover, Meteorology
وصف الملف: application/pdf
Relation: https://oatao.univ-toulouse.fr/29491/1/Rodriguez-Manfredi_29491.pdf; HAL : hal-03977396; Rodriguez-Manfredi, J. A. and de la Torre Juarez, M. and Sanchez-Lavega, A. and Hueso, R. and Martinez, G. and Lemmon, M. T. and Newman, C. E. and Munguira, A. and Hieta, M. and Tamppari, L. K. and Polkko, J. and Toledo, D. and Sebastian, E. and Smith, M. D. and Jaakonaho, I. and Genzer, M. and De Vicente-Retortillo, A. and Viudez-Moreiras, D. and Ramos, M. and Saiz-Lopez, A. and Lepinette, A. and Wolff, M. and Sullivan, R. J. and Gomez-Elvira, J. and Apestigue, V. and Conrad, P. G. and Del Rio-Gaztelurrutia, T. and Murdoch, Naomi and Arruego, I. and Banfield, D. and Boland, J. and Brown, A. J. and Ceballos, J. and Dominguez-Pumar, M. and Espejo, S. and Fairén, A. G. and Ferrandiz, R. and Fischer, E. and Garcia-Villadangos, M. and Gimenez, S. and Gomez-Gomez, F. and Guzewich, S. D. and Harri, A.-M. and Jimenez, J. J. and Jimenez, V. and Makinen, T. and Marin, M. and Martin, C. and Martin-Soler, J. and Molina, A. and Mora-Sotomayor, L. and Navarro, S. and Peinado, V. and Perez-Grande, I. and Pla-Garcia, J. and Postigo, M. and Prieto-Ballesteros, O. and Rafkin, S. C. R. and Richardson, M. I. and Romeral, J. and Romero, C. and Savijärvi, H. and Schofield, J. T. and Torres, J. and Urqui, R. and Zurita, S. The diverse meteorology of Jezero crater over the first 250 sols of Perseverance on Mars. (2023) Nature Geoscience, 16 (1). 19-28. ISSN 1752-0894
-
8Academic Journal
المؤلفون: MEDA team, Polkko, J., Hieta, M., Savijärvi, H., Leino, J.
المساهمون: Institute for Atmospheric and Earth System Research (INAR)
مصطلحات موضوعية: Mars, Humidity, Water vapor, Observations, Instrument performance, Near surface, Physical sciences
وصف الملف: application/pdf
Relation: MEDA team , Polkko , J , Hieta , M , Savijärvi , H & Leino , J 2023 , ' Initial results of the relative humidity observations by MEDA instrument onboard the Mars 2020 Perseverance Rover ' , Journal of Geophysical Research: Planets , vol. 128 , no. 2 , e2022JE007447 . https://doi.org/10.1029/2022JE007447; RIS: urn:63BCA638B078EF8E33B669EFD5843E52; ORCID: /0000-0002-3669-9875/work/132085054; http://hdl.handle.net/10138/356632; d24a6b1f-a8c5-4f2c-9389-a6d46691296c; 85148579640; 000933187900001
الاتاحة: http://hdl.handle.net/10138/356632
-
9Conference
المؤلفون: de la Torre-Juárez, Manuel, Rodríguez Manfredi, Jose, Antonio, Martínez, Germán, Newman, Claire, E., Lemmon, Mark, T., Hueso, Ricardo, Munguira, Asier, Tamppari, Leslie, Sanchez-Lavega, Augustin, Apestigue, Victor, Arruego, Ignacio, Banfield, Donald, Boland, Justin, Conrad, Pamela, G., del Rio, Teresa, Vicente -Retortillo, Álvaro, Dominguez-Pumar, Manuel, Fischer, Erik, Genzer, Maria, Gimenez, S., Gómez Elvira, Javier, Gómez, Felipe, Guzewich, Scott, Harri, Ari-Matti, Hieta, M., Jimenez, Victor, Lepinette, Alain, Marín, M., Martin-Rubio, Carolina, Molina, Antonio, Montmessin, Franck, Mora-Sotomayor, Luis, Navarro, Sara, Peinado, Veronica, Pérez‐hoyos, Santiago, Pla‐garcía, Jorge, Polkko, Jouni, Romeral, Julio, Romero, C., Savijärvi, Hannu, Sebastian, E., Smith, M.D., Sullivan, Rob, J., Tate, Christian, Toledo-Carrasco, Daniel, Torres, Josefina, Urquí, Roser, Viudez-Moreiras, Daniel, Wolff, Michael, J., Zorzano, Maria-Paz, Zurita, Sofia
المساهمون: Lunar and Planetary Institute Houston (LPI), Space Science Institute Boulder (SSI), Universidad del País Vasco Espainia / Euskal Herriko Unibertsitatea España = University of the Basque Country Spain = Université du pays basque Espagne (UPV / EHU), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Instituto Nacional de Técnica Aeroespacial (INTA), Carnegie Institution for Science, Centro de Astrobiologia Madrid (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Cientificas España = Spanish National Research Council Spain (CSIC), Universitat Politècnica de Catalunya = Université polytechnique de Catalogne Barcelona (UPC), University of Michigan Ann Arbor, University of Michigan System, Finnish Meteorological Institute (FMI), NASA Goddard Space Flight Center (GSFC), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Cornell University New York
المصدر: Seventh international workshop on the Mars atmosphere: Modelling and observations ; https://insu.hal.science/insu-03698259 ; Seventh international workshop on the Mars atmosphere: Modelling and observations, Jun 2022, Paris, France
مصطلحات موضوعية: [SDU]Sciences of the Universe [physics]
-
10Conference
المؤلفون: Tamppari, Leslie K., Martinez, German, Rodríguez Manfredi, Jose, Antonio, de la Torre-Juárez, Manuel, Hieta, M., Polkko, Jouni, Jaakonaho, I., Genzer, M., Harri, Ari-Matti, Mcconnochie, Timothy, H., Montmessin, Franck, Smith, Michael D., Wolff, Mike, Fisher, Erik, Conrad, Pamela, Gómez, Felipe, Zorzano, María‐paz, Viudez-Moreiras, Daniel, Patel, Priyaben, Lemmon, Mark
المساهمون: Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Lunar and Planetary Institute Houston (LPI), Centro de Astrobiologia Madrid (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Cientificas España = Spanish National Research Council Spain (CSIC), Finnish Meteorological Institute (FMI), Space Science Institute Boulder (SSI), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), University of Michigan Ann Arbor, University of Michigan System, Carnegie Institution for Science
المصدر: Seventh International Workshop on the Mars Atmosphere: Modelling and Observations ; https://insu.hal.science/insu-03750951 ; Seventh International Workshop on the Mars Atmosphere: Modelling and Observations, Jun 2022, Paris, France
مصطلحات موضوعية: [SDU]Sciences of the Universe [physics]
-
11Academic Journal
المؤلفون: Rodríguez Manfredi, José Antonio, Torre Juárez, M. de la, Alonso, A., Apéstigue, V., Arruego, I., Atienza, T., Banfield, D., Boland, J., Carrera, M. A., Castañer, L., Ceballos-Cáceres, J., Chen-Chen, H, Cobos, A., Conrad, P.G., Cordoba, E., Río Gaztelurrutia, Teresa del, de Vicente Retortillo, A., Domínguez-Pumar, M., Díaz-Espejo, Antonio, González Fairén, Alberto, Fernández-Palma, A., Ferrándiz, Ricardo, Ferri, F., Fischer, E., García-Manchado, A., García-Villadangos, Miriam, Genzer, M., Giménez, S., Gómez-Elvira, Javier, Gómez, Felipe, Guzewich, Scott D., Harri, A-M, Hernández, C.D., Hieta, M., Hueso, R., Jaakonaho, I., Jiménez, J. J., Jiménez, V., Larman, A., Leiter, R., Lepinette, Alain, Lemmon, M.T., López, G, Madsen, S.N., Mäkinen, T., Marín, M., Martín Soler, Javier, Martínez, G., Molina-Jurado, Antonio, Mora Sotomayor, Luis, Moreno-Álvarez, J. F., Navarro, Sara, Newman, C E, Ortega, C., Parrondo, M.C., Peinado, Verónica, Peña, A., Pérez-Grande, I., Pérez-Hoyos, S., Pla-García, Jorge, Polkko, J., Postigo Cacho, Marina, Prieto-Ballesteros, Olga, Rafkin, Scot C. R., Ramos, M. Ángeles, Richardson, M. I., Romeral Planelló, Julio J., Romero, C, Runyon, K D, Saiz-Lopez, A., Sánchez-Lavega, A., Sard, I., Schofield, J. T., Sebastián-Martínez, Eduardo, Smith, M D, Sullivan, R J, Tamppari, L K, Thompson, A D, Toledo, D, Torrero, F, Torres-Redondo, Josefina, Urquí, R., Velasco, T., Viúdez-Moreiras, Daniel, Zurita, S.
المساهمون: Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Instituto Nacional de Técnica Aeroespacial (España), Centro para el Desarrollo Tecnológico Industrial (España), Eusko Jaurlaritza, European Research Council
مصطلحات موضوعية: Albedo, Atmosphere, Clouds, Dust, Instruments, MEDA instrument, Mars, Mars2020, Perseverance, Pressure, Radiation fluxes, Surface temperature, Temperatures, Thermal infrared, UV, Wind
Relation: #PLACEHOLDER_PARENT_METADATA_VALUE#; info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016MINECO/ICTI2013‐2016/ESP2014-54256-C4-1-R; info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016MINECO/ICTI2013‐2016/ESP2014-54256-C4-2-R; info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016MINECO/ICTI2013‐2016/ESP2014-54256-C4-3-R; info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016MINECO/ICTI2013‐2016/ESP2014-54256-C4-4-R; info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016MINECO/ICTI2013‐2016/AYA2015-65041-P; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/ESP2016-79612-C3-1-R; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/ESP2016-79612-C3-2-R; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/ESP2016-79612-C3-3-R; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/ESP2016-80320-C2-1-R; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/RTI2018-098728-B-C31; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/RTI2018-098728-B-C32; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/RTI2018-098728-B-C33; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/RTI2018-099825-B-C31; Space science reviews; Publisher's version; https://doi.org/10.1007/s11214-021-00816-9; Sí; Astronomy & Astrophysics 217 (3): 48 (2021); http://hdl.handle.net/10261/257952; http://dx.doi.org/10.13039/501100003086; http://dx.doi.org/10.13039/501100000781; http://dx.doi.org/10.13039/501100001872; http://dx.doi.org/10.13039/501100010687; http://dx.doi.org/10.13039/501100003329; 2-s2.0-85104412286; https://api.elsevier.com/content/abstract/scopus_id/85104412286
الاتاحة: http://hdl.handle.net/10261/257952
https://doi.org/10.1007/s11214-021-00816-9
https://doi.org/10.13039/501100003086
https://doi.org/10.13039/501100000781
https://doi.org/10.13039/501100001872
https://doi.org/10.13039/501100010687
https://doi.org/10.13039/501100003329
https://api.elsevier.com/content/abstract/scopus_id/85104412286 -
12Electronic Resource
المؤلفون: Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Ministerio de Economía y Competitividad (MINECO). España, Ministerio de Ciencia, Innovación y Universidades (MICINN). España, Ministerio de Ciencia e Innovación (MICIN). España, Spanish State Research Agency (AEI), Gobierno Vasco, European Research Council (ERC), National Aeronautics and Space Administration, Rodríguez Manfredi, J. A., Torre Juárez, M. de la, Sánchez Lavega, A., Hueso, R., Martínez, G., Lemmon, M. T., Newman, C. E., Munguira, A., Hieta, M., Tamppari, L. K., Espejo Meana, Servando Carlos, Zurita, S.
مصطلحات الفهرس: info:eu-repo/semantics/article
URL:
https://hdl.handle.net/11441/155494 https://doi.org/10.1038/s41561-022-01084-0
Nature Geoscience, 16 (1), 19-28.
ESP2014-54256-C4-1-R (-2-R -3-R and -4-R)
SP2016-79612-C3-1-R (-2-R and -3-R)
ESP2016-80320-C2-1-R
RTI2018-098728-B-C31 (-C32 and -C33)
RTI2018-099825-B-C31
PID2019-109467GB-I00
PRE2020-092562
MDM-2017-0737
IT1366-19
818602
80NM0018D0004https://doi.org/10.1038/s41561-022-01084-0 -
13Electronic Resource
المؤلفون: Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Ciencia e Innovación (España), Instituto Nacional de Técnica Aeroespacial (España), European Commission, National Aeronautics and Space Administration (US), NASA Jet Propulsion Laboratory, California Institute of Technology, Rodriguez-Manfredi, J. A. [0000-0003-0461-9815], Torre Juarez, Manuel de la [0000-0003-1393-5297], Sánchez-Lavega, A. [0000-0001-7234-7634], Hueso, R. [0000-0003-0169-123X], Martinez, G. [0000-0001-5885-236X], Lemmon, M. T. [0000-0002-4504-5136], Newman, C. E. [0000-0001-9990-8817], Munguira, A. [0000-0002-1677-6327], Jaakonaho, I. [0000-0001-7343-5556], Viudez-Moreiras, D. [0000-0001-8442-3788], Ramos, M. Ángeles [0000-0003-3648-6818], Saiz-Lopez, A. [0000-0002-0060-1581], Lepinette, A. [0000-0002-5213-3521], Sullivan, R. J. [0000-0003-4191-598X], Apestigue, V. [0000-0002-4349-8019], Río Gaztelurrutia, Teresa del [0000-0001-8552-226X], Murdoch, N. [0000-0002-9701-4075], Arruego, I. [0000-0001-9705-9743], Banfield, D. [0000-0003-2664-0164], Brown, A. J. [0000-0002-9352-6989], Ceballos, J. [0000-0002-6727-1062], Dominguez-Pumar, M. [0000-0001-5439-7953], Espejo, S. [0000-0003-2609-2663], Fischer, E. [0000-0002-2098-5295], Guzewich, S. D. [0000-0003-1149-7385], Makinen, T. [0000-0001-9489-8154], Martin, C. [0000-0002-8898-4061], Molina, A. [0000-0002-5038-2022], Mora-Sotomayor, L. [0000-0002-8209-1190], Navarro, S. [0000-0001-8606-7799], Perez-Grande, I. [0000-0002-7145-2835], Romero, C. [0000-0001-5442-2581], Rodríguez-Manfredi, José Antonio, Torre Juarez, Manuel de la, Sánchez-Lavega, A., Hueso, R., Martínez, G., Lemmon, M. T., Newman, C. E., Munguira, A., Hieta, M., Tamppari, L. K., Polkko, J., Toledo, D., Sebastian, E., Smith, M. D., Jaakonaho, I., Genzer, M., Vicente-Retortillo, A. de, Viúdez-Moreiras, Daniel, Ramos, M. Ángeles, Saiz-Lopez, A., Lepinette, A., Wolff, M., Sullivan, R. J., Gómez-Elvira, Javier, Apestigue, V., Conrad, P. G., Río Gaztelurrutia, Teresa del, Murdoch, N., Arruego, I., Banfield, D., Boland, J., Brown, A. J., Ceballos, J., Dominguez-Pumar, M., Espejo, S., Fairén, A. G., Ferrandiz, R., Fischer, E., García-Villadangos, Miriam, Gimenez, S., Gomez-Gomez, F., Guzewich, S. D., Harri, A. M., Jimenez, J. J., Jimenez, V., Makinen, T., Marin, M., Martín, C., Martin-Soler, J., Molina, A., Mora-Sotomayor, L., Navarro, S., Peinado, V., Pérez-Grande, I., Pla-Garcia, J., Postigo, M., Prieto-Ballesteros, Olga, Rafkin, Scot C. R., Richardson, M. I., Romeral, J., Romero, C., Savijärvi, H., Schofield, J. T., Torres, J., Urqui, R., Zurita, S.
مصطلحات الفهرس: artículo
URL:
http://hdl.handle.net/10261/288536 https://api.elsevier.com/content/abstract/scopus_id/85145950264 https://doi.org/10.1038/s41561-022-01084-0
Nature Geoscience
Publisher's versionhttps://doi.org/10.1038/s41561-022-01084-0
Sí
info:eu-repo/grantAgreement/MINECO//ESP2014-54256-C4-1-R/ES/CIENCIA Y TECNOLOGIA DE INSTRUMENTOS ESPACIALES PARA LA CARACTERIZACION DEL AMBIENTE MARCIANO EN MULTIPLES MISIONES DE NASA: REMS, TWINS Y MEDA
info:eu-repo/grantAgreement/MINECO//ESP2014-54256-C4-2-R/ES/CIENCIA Y TECNOLOGIA DE INSTRUMENTOS ESPACIALES PARA LA CARACTERIZACION DEL AMBIENTE MARCIANO EN MULTIPLES MISIONES DE NASA Y ESA: SENSOR DE VIENTO 3D
info:eu-repo/grantAgreement/MINECO//ESP2014-54256-C4-3-R/ES/INSTRUMENTACION PARA LA INVESTIGACION Y CIENCIA ATMOSFERICA EN MARTE
info:eu-repo/grantAgreement/MINECO//ESP2014-54256-C4-4-R/ES/MICROELECTRONICA DE ESPACIO PARA INSTRUMENTACION AMBIENTAL EN MARTE
info:eu-repo/grantAgreement/MICIU//ESP2016-79612-C3-1-R
info:eu-repo/grantAgreement/MICIU//ESP2016-79612-C3-2-R
info:eu-repo/grantAgreement/MICIU//ESP2016-79612-C3-3-R
info:eu-repo/grantAgreement/MICINN//ESP2016-80320-C2-1-R
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098728-B-C31/ES/CIENCIA Y TECN. DE INSTRUM. ESPACIALES PARA CARACTERIZACION DE AMBIENTE MARCIANO EN VARIAS MISIONES DE NASA - III: REMS (FASE E), TWINS (FASE E) Y MEDA (FIN FASE D Y FASE E)
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098728-B-C32/ES/CALIBRACION DEL SENSOR DE VIENTO DE MEDA Y ASIC DEL SENSOR DE VIENTO ESFERICO
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098728-B-C33/ES/INSTRUMENTACION PARA CARACTERIZAR EL ENTORNO MARCIANO EN MISIONES DE LA NASA: SENSORES DE VIENTO PARA MEDA (CONCLUSION DE LAS FASES D Y E)
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099825-B-C31/ES/INSTRUMENTACION PARA LA INVESTIGACION ATMOSFERICA EN LA SUPERFICIE DE MARTE
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109467GB-I00/ES/ATMOSFERAS PLANETARIAS DEL SISTEMA SOLAR
info:eu-repo/grantAgreement/MICINN//PRE2020-092562
info:eu-repo/grantAgreement/EC/H2020/818602 -
14
المؤلفون: Martínez, Germán, Lasue, Jérémie, Meslin, Pierre-Yves, Chide, Baptiste, Caravaca, Gwénaël, López-Reyes, Guillermo, Tamppari, Leslie K., Beyssac, Olivier, Polkko, J., Hieta, M., Genzer, M., Harri, A.-M., Newman, Claire, Gillespie, Hartzel, Fischer, Erik, Mora, Luis, Sebastián, Eduardo, Wiens, Roger, Rodríguez Manfredi, Jose
المساهمون: Lunar and Planetary Institute [Houston] (LPI), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Universidad de Valladolid [Valladolid] (UVa), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Finnish Meteorological Institute (FMI), Aeolis Research, University of Michigan [Ann Arbor], University of Michigan System, Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, Lunar and Planetary Institute
المصدر: 54th Lunar and Planetary Science Conference 2023
54th Lunar and Planetary Science Conference 2023, Lunar and Planetary Institute, Mar 2023, The Woodlands (Texas), United States. pp.2184مصطلحات موضوعية: Jezero crater, [SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology, SuperCam, [SDU]Sciences of the Universe [physics], [SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy, Mars 2020, Mars, [SDU.STU]Sciences of the Universe [physics]/Earth Sciences, frost
-
15Academic Journal
المؤلفون: Polkko, J., Hieta, M., Harri, A.-M., Tamppari, L., Martínez, G., Viúdez-Moreiras, D., Savijärvi, H., Conrad, P., Zorzano Mier, M. P., La Torre Juarez, M., Hueso, R., Munguira, A., Leino, J., Gómez, F., Jaakonaho, I., Fischer, E., Genzer, M., Apestigue, V., Arruego, I., Banfield, D., Lepinette, A., Paton, M., Rodriguez-Manfredi, J. A., Sánchez Lavega, A., Sebastian, E., Toledo, D., Vicente-Retortillo, A.
مصطلحات موضوعية: observations, instrument performance, near surface, Mars, humidity, water vapor, Geological Sciences, Science
وصف الملف: application/pdf
Relation: Polkko, J.; Hieta, M.; Harri, A.-M.; Tamppari, L.; Martínez, G.; Viúdez-Moreiras, D.; Savijärvi, H.; Conrad, P.; Zorzano Mier, M. P.; La Torre Juarez, M.; Hueso, R.; Munguira, A.; Leino, J.; Gómez, F.; Jaakonaho, I.; Fischer, E.; Genzer, M.; Apestigue, V.; Arruego, I.; Banfield, D.; Lepinette, A.; Paton, M.; Rodriguez-Manfredi, J. A.; Sánchez Lavega, A.; Sebastian, E.; Toledo, D.; Vicente-Retortillo, A. (2023). "Initial Results of the Relative Humidity Observations by MEDA Instrument Onboard the Mars 2020 Perseverance Rover." Journal of Geophysical Research: Planets 128(2): n/a-n/a.; https://hdl.handle.net/2027.42/175939; Journal of Geophysical Research: Planets; Savijärvi, H. I., Harri, A.-M., & Kemppinen, O. ( 2016 ). The diurnal water cycle at Curiosity: Role of exchange with the regolith. Icarus, 265, 63 – 69. https://doi.org/10.1016/j.icarus.2015.10.008; JCGM. ( 2008 ). Evaluation of measurement data Guide to the expression of uncertainty in measurement, JCGM 100:2008 [Computer software manual]. Pavillon de Breteuil, F-92312 Sèvres CEDEX, France. (Retrieved from https://www.bipm.org/en/publications/guides ); Lemmon, M. T., Smith, M. D., Viudez-Moreiras, D., de la Torre-Juarez, M., Vicente-Retortillo, A., Munguira, A., et al. ( 2022 ). Dust, sand, and winds within an active martian storm in Jezero Crater. Geophysical Research Letters, 49 ( 17 ), e00126. https://doi.org/10.1029/2022GL100126; Maltagliati, L., Montmessin, F., Fedorova, A., Korablev, O., Forget, F., & Bertaux, J. L. ( 2011 ). Evidence of water vapor in excess of saturation in the atmosphere of Mars. Science, 333 ( 6051 ), 1868 – 1871. https://doi.org/10.1126/science.1207957; Mangold, N., Gupta, S., Gasnault, O., Dromart, G., Tarnas, J. D., Sholes, S. F., et al. ( 2021 ). Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars. Science, 374 ( 6568 ), 711 – 717. https://doi.org/10.1126/science.abl4051; Martínez, G. M., Sebastián, E., Vicente-Retortillo, A., Smith, M. D., Johnson, J. R., Fischer, E., et al. ( 2023 ). Surface energy budget, albedo and thermal inertia at Jezero Crater, Mars, as observed from the Mars 2020 MEDA instrument. Journal of Geophysical Research: Planets, 128, e2022JE007537. https://doi.org/10.1029/2022JE007537; Martínez, G. M., Fischer, E., Rennó, N. O., Sebastián, E., Kemppinen, O., Bridges, N., et al. ( 2016 ). Likely frost events at Gale crater: Analysis from MSL/REMS measurements. Icarus, 280, 93 – 102. https://doi.org/10.1016/j.icarus.2015.12.004; Smith, D. E., Zuber, M. T., Solomon, S. C., Phillips, R. J., Head, J. W., Garvin, J. B., et al. ( 1999 ). The global topography of Mars and implications for surface evolution. Science, 284 ( 5419 ), 1495 – 1503. https://doi.org/10.1126/science.284.5419.1495; Martínez, G. M., Newman, C. N., De Vicente-Retortillo, A., Fischer, E., Renno, N. O., Richardson, M. I., et al. ( 2017 ). The modern near-surface martian climate: A review of in-situ meteorological data from Viking to curiosity. Space Science Reviews, 212 ( 1–2 ), 295 – 338. https://doi.org/10.1007/s11214-017-0360-x; Martín-Torres, F. J., Zorzano, M.-P., Valentín-Serrano, P., Harri, A.-M., Genzer, M., Kemppinen, O., et al. ( 2015 ). Transient liquid water and water activity at Gale crater on Mars. Nature Geoscience, 8 ( 5 ), 357 – 361. https://doi.org/10.1038/ngeo2412; McConnochie, T. H., Smith, M. D., Wolff, M. J., Bender, S., Lemmon, M., Wiens, R. C., et al. ( 2018 ). Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy. Icarus, 307, 294 – 326. https://doi.org/10.1016/j.icarus.2017.10.043; Melchiorri, R., Encrenaz, T., Drossart, P., Fouchet, T., Forget, F., Titov, D., et al. ( 2009 ). OMEGA/Mars Express: South Pole Region, water vapor daily variability. Icarus, 201 ( 1 ), 102 – 112. https://doi.org/10.1016/j.icarus.2008.12.018; Milton, D. J. ( 1973 ). Water and processes of degradation in the Martian landscape. Journal of Geophysical Research, 78 ( 20 ), 4037 – 4047. https://doi.org/10.1029/JB078i020p04037; Morris, R. V., Klingelhöfer, G., Schröder, C., Rodionov, D. S., Yen, A., Ming, D. W., et al. ( 2006 ). Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. Journal of Geophysical Research (Planets), 111 ( E12 ), E12S15. https://doi.org/10.1029/2006JE002791; Munguira, A., Hueso, R., Sánchez-Lavega, A., de la Torre-Juarez, M., Martínez, G. M., Newman, C. E., et al. ( 2023 ). Near surface atmospheric temperatures at Jezero from Mars 2020 MEDA measurements. Journal of Geophysical Research: Planets, 128, e2022JE007559. https://doi.org/10.1029/2022JE007559; Navarro-González, R., Rainey, F. A., Molina, P., Bagaley, D. R., Hollen, B. J., de la Rosa, J., et al. ( 2003 ). Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science, 302 ( 5647 ), 1018 – 1021. https://doi.org/10.1126/science.1089143; Pla-García, J., Rafkin, S. C. R., Martinez, G. M., Vicente-Retortillo, Á., Newman, C. E., Savijärvi, H., et al. ( 2020 ). Meteorological predictions for Mars 2020 perseverance rover landing site at Jezero Crater. Space Science Reviews, 216 ( 8 ), 148. https://doi.org/10.1007/s11214-020-00763-x; Polkko, J. ( 2022 ). Data for the manuscript “initial results of the relative humidity observations by meda instrument onboard the mMars2020 perseverance rover” submitted to JGR planets m2020 special issue “crater floor” [dataset]. FMI. https://doi.org/10.23728/fmi-b2share.daab03d71fc94bcd893b6c97adce497f; Rodriguez-Manfredi, J. A., & de la Torre Juarez, M. ( 2021 ). Mars 2020 MEDA bundle [dataset]. NASA. https://doi.org/10.17189/1522849; Rodriguez-Manfredi, J. A., de la Torre Juárez, M., Alonso, A., Apéstigue, V., Arruego, I., Atienza, T., et al.MEDA Team. ( 2021 ). The Mars environmental dynamics analyzer, MEDA. A suite of environmental sensors for the Mars 2020 mission. Space Science Reviews, 217 ( 3 ), 48. https://doi.org/10.1007/s11214-021-00816-9; Savijärvi, H. I., & Harri, A. M. ( 2021 ). Water vapor adsorption on Mars. Icarus, 357, 114270. https://doi.org/10.1016/j.icarus.2020.114270; Savijärvi, H. I., Harri, A. M., & Kemppinen, O. ( 2015 ). Mars Science Laboratory diurnal moisture observations and column simulations. Journal of Geophysical Research (Planets), 120 ( 5 ), 1011 – 1021. https://doi.org/10.1002/2014JE004732; Savijärvi, H. I., Martinez, G., Harri, A.-M., & Paton, M. ( 2020a ). Curiosity observations and column model integrations for a Martian global dust event. Icarus, 337, 113515. https://doi.org/10.1016/j.icarus.2019.113515; Savijärvi, H. I., Martinez, G. M., Fischer, E., Renno, N. O., Tamppari, L. K., Zent, A., & Harri, A. M. ( 2020b ). Humidity observations and column simulations for a warm period at the Mars Phoenix lander site: Constraining the adsorptive properties of regolith. Icarus, 343, 113688. https://doi.org/10.1016/j.icarus.2020.113688; Savijärvi, H. I., Martinez, G. M., Vicente-Retortillo, A., & Harri, A. M. ( 2022 ). Surface energy budget at Curiosity through observations and column modeling. Icarus, 376, 114900. https://doi.org/10.1016/j.icarus.2022.114900; Savijärvi, H. I., McConnochie, T. H., Harri, A.-M., & Paton, M. ( 2019 ). Water vapor mixing ratios and air temperatures for three Martian years from Curiosity. Icarus, 326, 170 – 175. https://doi.org/10.1016/j.icarus.2019.03.020; Savijärvi, H. I., & Siili, T. ( 1993 ). The Martian slope winds and the nocturnal PBL jet. Journal of the Atmospheric Sciences, 50 ( 1 ), 77 – 88. https://doi.org/10.1175/1520-0469(1993)050〈0077:TMSWAT〉2.0.CO;2; Sebastián, E., Martínez, G., Ramos, M., Pérez-Grande, I., Sobrado, J., & Rodríguez Manfredi, J. A. ( 2021 ). Thermal calibration of the MEDA-TIRS radiometer onboard NASA’s Perseverance rover. Acta Astronautica, 182, 144 – 159. https://doi.org/10.1016/j.actaastro.2021.02.006; Sindoni, G., Formisano, V., & Geminale, A. ( 2011 ). Observations of water vapour and carbon monoxide in the Martian atmosphere with the SWC of PFS/MEX. Planetary and Space Science, 59 ( 2–3 ), 149 – 162. https://doi.org/10.1016/j.pss.2010.12.006; Smith, M. D. ( 2002 ). The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer. Journal of Geophysical Research: Planets, 107 ( E11 ), 5115 – 5125-19. https://doi.org/10.1029/2001JE001522; Smith, M. D. ( 2004 ). Interannual variability in TES atmospheric observations of Mars during 1999-2003. Icarus, 167 ( 1 ), 148 – 165. https://doi.org/10.1016/j.icarus.2003.09.010; Smith, M. D., Daerden, F., Neary, L., & Khayat, A. ( 2018 ). The climatology of carbon monoxide and water vapor on Mars as observed by CRISM and modeled by the GEM-Mars general circulation model. Icarus, 301, 117 – 131. https://doi.org/10.1016/j.icarus.2017.09.027; Smith, M. D., Pearl, J. C., Conrath, B. J., & Christensen, P. R. ( 2001 ). Thermal emission spectrometer results: Mars atmospheric thermal structure and aerosol distribution. Journal of Geophysical Research, 106 ( E10 ), 23929 – 23945. https://doi.org/10.1029/2000JE001321; Smith, M. D., Wolff, M. J., Clancy, R. T., & Murchie, S. L. ( 2009 ). Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide. Journal of Geophysical Research: Planets, 114 ( E9 ), E00D03. https://doi.org/10.1029/2008JE003288; Smith, P. H., Tamppari, L. K., Arvidson, R. E., Bass, D., Blaney, D., Boynton, W. V., et al. ( 2009 ). H2O at the Phoenix landing s i te. Science, 325 ( 5936 ), 58 – 61. https://doi.org/10.1126/science.1172339; Spinrad, H., Münch, G., & Kaplan, L. D. ( 1963 ). Letter to the editor: The detection of water vapor on Mars. The Astrophysical Journal, 137, 1319. https://doi.org/10.1086/147613; Sprague, A. L., Hunten, D. M., Doose, L. R., & Hill, R. E. ( 2003 ). Mars atmospheric water vapor abundance: 1996–1997. Icarus, 163 ( 1 ), 88 – 101. https://doi.org/10.1016/S0019-1035(03)00072-1; Sprague, A. L., Hunten, D. M., Hill, R. E., Rizk, B., & Wells, W. K. ( 1996 ). Martian water vapor, 1988-1995. Journal of Geophysical Research, 101 ( E10 ), 23229 – 23254. https://doi.org/10.1029/96JE02265; Steele, L. J., Balme, M. R., Lewis, S. R., & Spiga, A. ( 2017 ). The water cycle and regolith-atmosphere interaction at Gale crater, Mars. Icarus, 289, 56 – 79. https://doi.org/10.1016/j.icarus.2017.02.010; Tamppari, L. K., & Lemmon, M. T. ( 2020 ). Near-surface atmospheric water vapor enhancement at the Mars Phoenix lander site. Icarus, 343, 113624. https://doi.org/10.1016/j.icarus.2020.113624; Vaisala-Oyj ( 2020 ). Humicap technology description (Tech. Rep. No. B210781EN-D). Retrieved from https://www.vaisala.com/sites/default/files/documents/HUMICAP-Technology-description-B210781EN.pdf; Viúdez-Moreiras, D., de la Torre, M., Gómez-Elvira, J., Lorenz, R., Apéstigue, V., Guzewich, S., et al. ( 2022 ). Winds at the Mars 2020 landing site.part 2: Wind variability and turbulence. Journal of Geophysical Research: Planets, 127 ( 12 ), e2022JE007523. https://doi.org/10.1029/2022JE007523; Viúdez-Moreiras, D., Lemmon, M., Newman, C., Guzewich, S., Mischna, M., Gómez-Elvira, J., et al. ( 2022 ). Winds at the Mars 2020 landing site: 1. Near-surface wind patterns at Jezero Crater. Journal of Geophysical Research: Planets, 127 ( 12 ), e2022JE007522. https://doi.org/10.1029/2022JE007522; Viúdez-Moreiras, D., Newman, C. E., de la Torre, M., Martínez, G., Guzewich, S., Lemmon, M., et al. ( 2019 ). Effects of the MY34/2018 global dust storm as measured by MSL REMS in Gale Crater. Journal of Geophysical Research: Planets, 124 ( 7 ), 1899 – 1912. https://doi.org/10.1029/2019JE005985; VTT-Ltd. ( 2022 ). Uncertainty evaluation of meda hs humidity measurements (Tech. Rep.). (“State Research Center (VTT) consultation report with Finnish Meteorological Institute, 2022 by Tabandeh, S. and Högström, R.”); Whiteway, J. A., Komguem, L., Dickinson, C., Cook, C., Illnicki, M., Seabrook, J., et al. ( 2009 ). Mars water-ice clouds and precipitation. Science, 325 ( 5936 ), 68 – 70. https://doi.org/10.1126/science.1172344; Young, I., Crawford, J., Nunan, N., Otten, W., & Spiers, A. ( 2008 ). Chapter 4 microbial distribution in soils: Physics and scaling. In (Vol. 100, p. 81 – 121 ). Academic Press. https://doi.org/10.1016/S0065-2113(08)00604-4; Zent, A. P., Hecht, M. H., Cobos, D. R., Wood, S. E., Hudson, T. L., Milkovich, S. M., et al. ( 2010 ). Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix. Journal of Geophysical Research, 115 ( 2 ), E00E14. https://doi.org/10.1029/2009JE003420; Zent, A. P., Hecht, M. H., Hudson, T. L., Wood, S. E., & Chevrier, V. F. ( 2016 ). A revised calibration function and results for the Phoenix mission TECP relative humidity sensor. Journal of Geophysical Research: Planets, 121 ( 4 ), 626 – 651. https://doi.org/10.1002/2015JE004933; Aoki, S., Vandaele, A. C., Daerden, F., Villanueva, G. L., Liuzzi, G., Thomas, I. R., et al. ( 2019 ). Water vapor vertical profiles on Mars in dust storms observed by TGO/NOMAD. Journal of Geophysical Research: Planets, 124 ( 12 ), 3482 – 3497. https://doi.org/10.1029/2019JE006109; Azua-Bustos, A., Caro-Lara, L., & Vicuña, R. ( 2015 ). Discovery and microbial content of the driest site of the hyperarid Atacama Desert, Chile. Environmental Microbiology Reports, 7 ( 3 ), 388 – 394. https://doi.org/10.1111/1758-2229.12261; Banfield, D., Stern, J., Davila, A., Johnson, S. S., Brain, D., Wordsworth, R., et al. (Eds.) ( 2020 ). Mepag (2020), Mars scientific goals, objectives, investigations, and priorities: 2020 (white paper), (White paper posted March, 2020 by the Mars exploration program analysis group (MEPAG). Retrieved from https://mepag.jpl.nasa.gov/reports.cfm; Böhm, C., Reyers, M., Schween, J. H., & Crewell, S. ( 2020 ). Water vapor variability in the Atacama Desert during the 20th century. Global and Planetary Change, 190, 103192. https://doi.org/10.1016/j.gloplacha.2020.103192; Buck, A. L. ( 1981 ). New equations for computing vapor pressure and enhancement factor. Journal of Applied Meteorology, 20 ( 12 ), 1527 – 1532. https://doi.org/10.1175/1520-0450(1981)0202.0.CO;2; CáCeres, L., Gómez-Silva, B., Garró, X., RodríGuez, V., Monardes, V., & McKay, C. P. ( 2007 ). Relative humidity patterns and fog water precipitation in the Atacama Desert and biological implications. Journal of Geophysical Research, 112 ( G4 ), G04S14. https://doi.org/10.1029/2006JG000344; Chatain, A., Spiga, A., Banfield, D., Forget, F., & Murdoch, N. ( 2021 ). Seasonal variability of the daytime and nighttime atmospheric turbulence experienced by InSight on Mars. Geophysical Research Letters, 48 ( 22 ), e95453. https://doi.org/10.1029/2021GL095453; Choe, Y.-H., Kim, M., & Lee, Y. K. ( 2021 ). Distinct microbial communities in adjacent rock and soil substrates on a high arctic polar desert. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.607396; Christensen, P. R., Anderson, D. L., Chase, S. C., Clark, R. N., Kieffer, H. H., Malin, M. C., et al. ( 1992 ). Thermal emission spectrometer experiment: Mars observer mission. Journal of Geophysical Research, 97 ( E5 ), 7719 – 7734. https://doi.org/10.1029/92JE00453; Clancy, R. T., Grossman, A. W., & Muhleman, D. O. ( 1992 ). Mapping Mars water vapor with the very large array. Icarus, 100 ( 1 ), 48 – 59. https://doi.org/10.1016/0019-1035(92)90017-2; Clancy, R. T., Grossman, A. W., Wolff, M. J., James, P. B., Rudy, D. J., Billawala, Y. N., et al. ( 1996 ). Water vapor saturation at low altitudes around Mars aphelion: A key to Mars climate? Icarus, 122 ( 1 ), 36 – 62. https://doi.org/10.1006/icar.1996.0108; Conrath, B., Curran, R., Hanel, R., Kunde, V., Maguire, W., Pearl, J., et al. ( 1973 ). Atmospheric and surface properties of Mars obtained by infrared spectroscopy on mariner 9. Journal of Geophysical Research, 78 ( 20 ), 4267 – 4278. https://doi.org/10.1029/JB078i020p04267; Encrenaz, T., Lellouch, E., Cernicharo, J., Paubert, G., & Gulkis, S. ( 1995 ). A tentative detection of the 183-GHz water vapor line in the Martian atmosphere: Constraints upon the H 2 O abundance and vertical distribution. Icarus, 113 ( 1 ), 110 – 118. https://doi.org/10.1006/icar.1995.1009; Encrenaz, T., Lellouch, E., Paubert, G., & Gulkis, S. ( 2001 ). The water vapor vertical distribution on mars from millimeter transitions of HDO and H 2 18 O. Planetary and Space Science, 49 ( 7 ), 731 – 741. https://doi.org/10.1016/S0032-0633(01)00009-5; Encrenaz, T., Melchiorri, R., Fouchet, T., Drossart, P., Lellouch, E., Gondet, B., et al. ( 2005 ). A mapping of Martian water sublimation during early northern summer using OMEGA/Mars Express. Astronomy and Astrophysics, 441 ( 3 ), L9 – L12. https://doi.org/10.1051/0004-6361:200500171; Farmer, C. B., Davies, D. W., Holland, A. L., Laporte, D. D., & Doms, P. E. ( 1977 ). Mars: Water vapor observations from the Viking orbiters. Journal of Geophysical Research, 82 ( B28 ), 4225 – 4248. https://doi.org/10.1029/JS082i028p04225; Fedorova, A., Korablev, O., Bertaux, J.-L., Rodin, A., Kiselev, A., & Perrier, S. ( 2006 ). Mars water vapor abundance from SPICAM IR spectrometer: Seasonal and geographic distributions. Journal of Geophysical Research: Planets, 111 ( E9 ), E09S08. https://doi.org/10.1029/2006JE002695; Fedorova, A., Montmessin, F., Korablev, O., Lefèvre, F., Trokhimovskiy, A., & Bertaux, J.-L. ( 2021 ). Multi-Annual monitoring of the water vapor vertical distribution on Mars by SPICAM on Mars express. Journal of Geophysical Research: Planets, 126 ( 1 ), e06616. https://doi.org/10.1029/2020JE006616; Fedorova, A., Rodin, A. V., & Baklanova, I. V. ( 2004 ). MAWD observations revisited: Seasonal behavior of water vapor in the Martian atmosphere. Icarus, 171 ( 1 ), 54 – 67. https://doi.org/10.1016/j.icarus.2004.04.017; Fischer, E., Martínez, G. M., Rennó, N. O., Tamppari, L. K., & Zent, A. P. ( 2019 ). Relative humidity on Mars: New results from the Phoenix TECP sensor. Journal of Geophysical Research: Planets, 124 ( 11 ), 2780 – 2792. https://doi.org/10.1029/2019JE006080; Fouchet, T., Lellouch, E., Ignatiev, N. I., Forget, F., Titov, D. V., Tschimmel, M., et al. ( 2007 ). Martian water vapor: Mars express PFS/LW observations. Icarus, 190 ( 1 ), 32 – 49. https://doi.org/10.1016/j.icarus.2007.03.003; Gomez-Elvira, J. ( 2013 ). Mars Science Laboratory rover environmental monitoring station edr data v1.0 [Dataset]. NASA. https://doi.org/10.17189/1523032; Gómez-Elvira, J., Armiens, C., Castañer, L., Domínguez, M., Genzer, M., Gómez, F., et al. ( 2012 ). REMS: The environmental sensor suite for the Mars Science Laboratory rover. Space Science Reviews, 170 ( 1–4 ), 583 – 640. https://doi.org/10.1007/s11214-012-9921-1; Harri, A. M., Genzer, M., Kemppinen, O., Gomez-Elvira, J., Haberle, R., Polkko, J., et al. ( 2014 ). Mars Science Laboratory relative humidity observations: Initial results. Journal of Geophysical Research: Planets, 119 ( 9 ), 2132 – 2147. https://doi.org/10.1002/2013JE004514; Heavens, N. G., Kleinböhl, A., Chaffin, M. S., Halekas, J. S., Kass, D. M., Hayne, P. O., et al. ( 2018 ). Hydrogen escape from Mars enhanced by deep convection in dust storms. Nature Astronomy, 2, 126 – 132. https://doi.org/10.1038/s41550-017-0353-4; Hieta, M., Genzer, M., Polkko, J., Jaakonaho, I., Tabandeh, S., Lorek, A., et al. ( 2022 ). MEDA HS: Relative humidity sensor for the Mars 2020 Perseverance rover. Planetary and Space Science, 223, 105590. https://doi.org/10.1016/j.pss.2022.105590; Imre Friedmann, E. ( 1982 ). Endolithic microorganisms in the Antarctic cold desert. Science, 215 ( 4536 ), 1045 – 1053. https://doi.org/10.1126/science.215.4536.1045; Jakosky, B. M. ( 1985 ). The seasonal cycle of water on Mars. Space Science Reviews, 41 ( 1–2 ), 131 – 200. https://doi.org/10.1007/BF00241348; Jakosky, B. M., & Farmer, C. B. ( 1982 ). The seasonal and global behavior of water vapor in the Mars atmosphere—Complete global results of the Viking atmospheric water detector experiment. Journal of Geophysical Research, 87 ( B4 ), 2999 – 3019. https://doi.org/10.1029/JB087iB04p02999; Jakosky, B. M., & Haberle, R. M. ( 1992 ). In M. George (Ed.), The seasonal behavior of water on Mars (pp. 969 – 1016 ).; Jakosky, B. M., Zent, A. P., & Zurek, R. W. ( 1997 ). The Mars water cycle: Determining the role of exchange with the regolith. Icarus, 130 ( 1 ), 87 – 95. https://doi.org/10.1006/icar.1997.5799
-
16Academic Journal
المؤلفون: Martínez, G. M., Sebastián, E., Vicente-Retortillo, A., Smith, M. D., Johnson, J. R., Fischer, E., Savijärvi, H., Toledo, D., Hueso, R., Mora-Sotomayor, L., Gillespie, H., Munguira, A., Sánchez-Lavega, A., Lemmon, M. T., Gómez, F., Polkko, J., Mandon, L., Apéstigue, V., Arruego, I., Ramos, M., Conrad, P., Newman, C. E., Torre-Juarez, M. De La, Jordan, F., Tamppari, L. K., McConnochie, T. H., Harri, A.-M., Genzer, M., Hieta, M., Zorzano, M.-P., Siegler, M., Prieto, O., Molina, A., Rodríguez-Manfredi, J. A.
مصطلحات موضوعية: climate, surface, radiation, Mars 2020, albedo, thermal inertia, Mars, Geological Sciences, Science
وصف الملف: application/pdf
Relation: Martínez, G. M.; Sebastián, E.; Vicente-Retortillo, A.; Smith, M. D.; Johnson, J. R.; Fischer, E.; Savijärvi, H.; Toledo, D.; Hueso, R.; Mora-Sotomayor, L.; Gillespie, H.; Munguira, A.; Sánchez-Lavega, A.; Lemmon, M. T.; Gómez, F.; Polkko, J.; Mandon, L.; Apéstigue, V.; Arruego, I.; Ramos, M.; Conrad, P.; Newman, C. E.; Torre-Juarez, M. De La; Jordan, F.; Tamppari, L. K.; McConnochie, T. H.; Harri, A.-M.; Genzer, M.; Hieta, M.; Zorzano, M.-P.; Siegler, M.; Prieto, O.; Molina, A.; Rodríguez-Manfredi, J. A. (2023). "Surface Energy Budget, Albedo, and Thermal Inertia at Jezero Crater, Mars, as Observed From the Mars 2020 MEDA Instrument." Journal of Geophysical Research: Planets 128(2): n/a-n/a.; https://hdl.handle.net/2027.42/175750; Journal of Geophysical Research: Planets; Putzig, N. E., Mellon, M. T., Kretke, K. A., & Arvidson, R. E. ( 2005 ). Global thermal inertia and surface properties of Mars from the MGS mapping mission. Icarus, 173 ( 2 ), 325 – 341. https://doi.org/10.1016/j.icarus.2004.08.017; Johnson, J. R., Grundy, W., Lemmon, M. T., Liang, W., Bell, J. F., III, Hayes, A. G., & Deen, R. G. ( 2021 ). Spectrophotometric properties of materials observed by Pancam on the Mars exploration rovers: 4. Final mission observations. Icarus, 357, 114261. https://doi.org/10.1016/j.icarus.2020.114261; Johnson, J. R., Grundy, W., Lemmon, M. T., Liang, W., Bell, J. F., III, Hayes, A. G., & Deen, R. G. ( 2022 ). Spectrophotometric properties of materials observed by Mastcam on the Mars Science Laboratory at Gale Crater: 1. Bradbury landing to cooperstown. Planetary and Space Science, 222, 105563. https://doi.org/10.1016/j.pss.2022.105563; Johnson, J. R., Grundy, W. M., Lemmon, M. T., Bell, J. F., III, Johnson, M. J., Deen, R. G., et al. ( 2006a ). Spectrophotometric properties of materials observed by Pancam on the Mars exploration rovers: 1. Spirit. Journal of Geophysical Research, 111 ( E2 ), E02S14. https://doi.org/10.1029/2005je002494; Johnson, J. R., Grundy, W. M., Lemmon, M. T., Bell, J. F., III, Johnson, M. J., Deen, R., et al. ( 2006b ). Spectrophotometric properties of materials observed by Pancam on the Mars exploration rovers: 2. Opportunity. Journal of Geophysical Research, 111 ( E12 ), E12S16. https://doi.org/10.1029/2006je002762; Johnson, J. R., Kirk, R., Soderblom, L. A., Gaddis, L., Reid, R. J., Britt, D. T., et al. ( 1999 ). Preliminary results on photometric properties of materials at the Sagan Memorial Station, Mars. Journal of Geophysical Research, 104 ( E4 ), 8809 – 8830. https://doi.org/10.1029/98je02247; Kahre, M. A., Murphy, J. R., Chanover, N. J., Africano, J. L., Roberts, L. C., & Kervin, P. W. ( 2005 ). Observing the Martian surface albedo pattern: Comparing the AEOS and TES data sets. Icarus, 179 ( 1 ), 55 – 62. https://doi.org/10.1016/j.icarus.2005.06.011; Kieffer, H. H., Martin, T. Z., Peterfreund, A. R., Jakosky, B. M., Miner, E. D., & Palluconi, F. D. ( 1977 ). Thermal and albedo mapping of Mars during the Viking primary mission. Journal of Geophysical Research, 82 ( 28 ), 4249 – 4291. https://doi.org/10.1029/js082i028p04249; Lemmon, M. T., Smith, M. D., Viúdez-Moreiras, D., de la Torre-Juarez, M., Vicente- Retortillo, A., Munguira, A., et al. ( 2022 ). Dust, sand, and winds within an active Martian storm in Jezero Crater. Geophysical Research Letters, 49 ( 17 ), e2022GL100126. https://doi.org/10.1029/2022gl100126; Madeleine, J. B., Forget, F., Millour, E., Montabone, L., & Wolff, M. J. ( 2011 ). Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model. Journal of Geophysical Research, 116 ( E11 ), E1101. https://doi.org/10.1029/2011je003855; Maki, J., Thiessen, D., Pourangi, A., Kobzeff, P., Litwin, T., Scherr, L., et al. ( 2012 ). The Mars Science Laboratory engineering cameras. Space Science Reviews, 170 ( 1 ), 77 – 93. https://doi.org/10.1007/s11214-012-9882-4; Maki, J. N., Bell, J. F., III, Herkenhoff, K. E., Squyres, S. W., Kiely, A., Klimesh, M., et al. ( 2003 ). Mars exploration rover engineering cameras. Journal of Geophysical Research, 108 ( E12 ), 8071. https://doi.org/10.1029/2003je002077; Mandon, L., Quantin-Nataf, C., Thollot, P., Mangold, N., Lozac’h, L., Dromart, G., et al. ( 2020 ). Refining the age, emplacement and alteration scenarios of the olivine-rich unit in the Nili Fossae region, Mars. Icarus, 336, 113436. https://doi.org/10.1016/j.icarus.2019.113436; Martínez, G., Valero, F., & Vázquez, L. ( 2009 ). Characterization of the Martian surface layer. Journal of the Atmospheric Sciences, 66 ( 1 ), 187 – 198. https://doi.org/10.1175/2008jas2765.1; Martínez, G. M. ( 2022 ). Downwelling LW flux and aerosol opacity at Jezero Crater, Mars, as derived from MEDA/TIRS. Retrieved from https://repository.hou.usra.edu/handle/20.500.11753/1839; Martínez, G. M., Newman, C. N., De Vicente-Retortillo, A., Fischer, E., Renno, N. O., Richardson, M. I., et al. ( 2017 ). The modern near-surface Martian climate: A review of in-situ meteorological data from Viking to curiosity. Space Science Reviews, 212 ( 1–2 ), 295 – 338. https://doi.org/10.1007/s11214-017-0360-x; Martínez, G. M., Rennó, N., Fischer, E., Borlina, C. S., Hallet, B., De La Torre Juárez, M., et al. ( 2014 ). Surface energy budget and thermal inertia at Gale Crater: Calculations from ground-based measurements. Journal of Geophysical Research: Planets, 119 ( 8 ), 1822 – 1838. https://doi.org/10.1002/2014je004618; Martínez, G. M., Vicente-Retortillo, A., Vasavada, A. R., Newman, C. E., Fischer, E., Rennó, N. O., et al. ( 2021 ). The surface energy budget at gale crater during the first 2500 sols of the Mars Science Laboratory mission. Journal of Geophysical Research: Planets, 126 ( 9 ), e2020JE006804. https://doi.org/10.1029/2020je006804; Mellon, M. T., Jakosky, B. M., Kieffer, H. H., & Christensen, P. R. ( 2000 ). High-resolution thermal inertia mapping from the Mars global surveyor thermal emission spectrometer. Icarus, 148 ( 2 ), 437 – 455. https://doi.org/10.1006/icar.2000.6503; Monin, A. S., & Obukhov, A. M. ( 1954 ). Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnon sloe atmosfery (Basic laws of turbulent mixing in the atmosphere near the ground). Trudy Geofiz. Inst. AN SSSR, 24, 163 – 187.; Montmessin, F., Gondet, B., Bibring, J. P., Langevin, Y., Drossart, P., Forget, F., & Fouchet, T. ( 2007 ). Hyperspectral imaging of convective CO 2 ice clouds in the equatorial mesosphere of Mars. Journal of Geophysical Research, 112 ( E11 ), E11S90. https://doi.org/10.1029/2007je002944; Munguira, A., Hueso, R., Sánchez-Lavega, A., de la Torre-Juarez, M., Martinez, G. M., Newman, C., et al. ( 2022 ). Mars 2020 MEDA measurements of near surface atmospheric temperatures at Jezero. In Seventh international works hop on the Mars atmosphere: Modelling and observations (p. 1509 ).; Newman, C. E., Hueso, R., Lemmon, M. T., Munguira, A., Vicente-Retortillo, Á., Apestigue, V., et al. ( 2022 ). The dynamic atmospheric and aeolian environment of Jezero Crater, Mars. Science Advances, 8 ( 21 ), eabn3783. https://doi.org/10.1126/sciadv.abn3783; Pérez-Izquierdo, J., Sebastián, E., Martínez, G. M., Bravo, A., Ramos, M., & Manfredi, J. A. R. ( 2018 ). The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) instrument onboard Mars 2020, a general description and performance analysis. Measurement, 122, 432 – 442. https://doi.org/10.1016/j.measurement.2017.12.004; Piqueux, S., Müller, N., Grott, M., Siegler, M., Millour, E., Forget, F., et al. ( 2021 ). Soil thermophysical properties near the insight lander derived from 50 sols of radiometer measurements. Journal of Geophysical Research: Planets, 126 ( 8 ), e2021JE006859. https://doi.org/10.1029/2021je006859; Presley, M. A., & Christensen, P. R. ( 1997 ). The effect of bulk density and particle size sorting on the thermal conductivity of particulate materials under Martian atmospheric pressures. Journal of Geophysical Research, 102 ( E4 ), 9221 – 9229. https://doi.org/10.1029/97je00271; Putzig, N. E., Barratt, E. M., Mellon, M. T., & Michaels, T. I. ( 2013 ). MARSTHERM: A web-based system providing thermophysical analysis tools for Mars research. In AGU Fall Meeting Abstracts, (Vol. 2013, p. P43C-2023 ).; Putzig, N. E., & Mellon, M. T. ( 2007 ). Apparent thermal inertia and the surface heterogeneity of Mars. Icarus, 191 ( 1 ), 68 – 94. https://doi.org/10.1016/j.icarus.2007.05.013; Rice, M. S., Reynolds, M., Studer-Ellis, G., Bell, J. F., III, Johnson, J. R., Herkenhoff, K. E., et al. ( 2018 ). The albedo of Mars: Six Mars years of observations from Pancam on the Mars exploration rovers and comparisons to MOC, CTX and HiRISE. Icarus, 314, 159 – 174. https://doi.org/10.1016/j.icarus.2018.05.017; Rodriguez-Manfredi, J. A., & de la Torre Juarez, M. ( 2021 ). Mars 2020 perseverance rover Mars environmental Dynamics analyzer (MEDA) experiment data record (EDR) and reduced data record (RDR) data products archive bundle. PDS Atmospheres Node, 10, 1522849. https://doi.org/10.17189/1522849; Rodríguez-Manfredi, J. A., De la Torre Juárez, M., Alonso, A., Apéstigue, V., Arruego, I., Atienza, T., et al. ( 2021 ). The Mars Environmental Dynamics Analyzer, MEDA. A suite of environmental sensors for the Mars 2020 mission. Space Science Reviews, 217 ( 3 ), 1 – 86. https://doi.org/10.1007/s11214-021-00816-9; Sánchez-Lavega, A., del Rio-Gaztelurrrutia, T., Hueso, R., de la Torre Juárez, M., Martínez, G. M., Harri, A. M., et al. ( 2022 ). Mars 2020 Perseverance rover studies of the Martian atmosphere over Jezero from 1 pressure measurements. Journal of Geophysical Research: Planets, 128 ( 1 ), e2022JE007480. https://doi.org/10.1029/2022JE007480; Savijärvi, H., & Määttänen, A. ( 2010 ). Boundary-layer simulations for the Mars Phoenix lander site. Quarterly Journal of the Royal Meteorological Society, 136 ( 651 ), 1497 – 1505. https://doi.org/10.1002/qj.650; Savijärvi, H., Martinez, G., Harri, A. M., & Paton, M. ( 2020 ). Curiosity observations and column model integrations for a Martian global dust event. Icarus, 337, 113515. https://doi.org/10.1016/j.icarus.2019.113515; Savijärvi, H. I., & Harri, A. M. ( 2021 ). Water vapor adsorption on Mars. Icarus, 357, 114270. https://doi.org/10.1016/j.icarus.2020.114270; Savijärvi, H. I., Martínez, G., & Harri, A.-M. ( 2022 ). Surface energy fluxes and temperatures at Jezero Crater, Mars. Journal of Geophysical Research: Planets. https://doi.org/10.1029/2022je007438; Sebastián, E., Armiens, C., Gomez-Elvira, J., Zorzano, M. P., Martinez-Frias, J., Esteban, B., & Ramos, M. ( 2010 ). The rover environmental monitoring station ground temperature sensor: A pyrometer for measuring ground temperature on Mars. Sensors, 10 ( 10 ), 9211 – 9231. https://doi.org/10.3390/s101009211; Sebastián, E., Martínez, G., Ramos, M., Haenschke, F., Ferrándiz, R., Fernández, M., & Manfredi, J. A. R. ( 2020 ). Radiometric and angular calibration tests for the MEDA-TIRS radiometer onboard NASA’s Mars 2020 mission. Measurement, 164, 107968. https://doi.org/10.1016/j.measurement.2020.107968; Sebastián, E., Martínez, G., Ramos, M., Perez-Grande, I., Sobrado, J., & Manfredi, J. A. R. ( 2021 ). Thermal calibration of the MEDA-TIRS radiometer onboard NASA’s perseverance rover. Acta Astronautica, 182, 144 – 159. https://doi.org/10.1016/j.actaastro.2021.02.006; Shepard, M. K. ( 2017 ). Introduction to planetary photometry. Cambridge University Press.; Smith, M. D., Martínez, G. M., Sebastián, E., Lemmon, M. T., Wolff, M. J., Apéstigue, V., et al. ( 2022 ). Diurnal and seasonal variations of aerosol optical depth observed by MEDA/TIRS at Jezero Crater, Mars. Journal of Geophysical Research: Planets, e2022JE007560. https://doi.org/10.1029/2022je007560; Smith, M. D., Wolff, M. J., Spanovich, N., Ghosh, A., Banfield, D., Christensen, P. R., et al. ( 2006 ). One Martian year of atmospheric observations using MER mini-TES. Journal of Geophysical Research, 111 ( E12 ), E12S13. https://doi.org/10.1029/2006je002770; Spohn, T., Grott, M., Smrekar, S. E., Knollenberg, J., Hudson, T. L., Krause, C., et al. ( 2018 ). The Heat flow and physical properties package (HP3) for the InSight mission. Space Science Reviews, 214 ( 5 ), 33. https://doi.org/10.1007/s11214-018-0531-4; Stull, R. ( 1988 ). An introduction to boundary layer meteorology (p. 670 ). Springer.; Sutton, J. L., Leovy, C. B., & Tillman, J. E. ( 1978 ). Diurnal variations of the Martian surface layer meteorological parameters during the first 45 sols at two Viking lander sites. Journal of the Atmospheric Sciences, 35 ( 12 ), 2346 – 2355. https://doi.org/10.1175/1520-0469(1978)0352.0.co;2; Toledo, D., Apéstigue, V., Arruego, I., Lemmon, M., Gómez, L., de Montoro, F., et al. ( 2023 ). Dust devil frequency of occurrence and radiative effects at Jezero Crater, Mars, as measured by MEDA Radiation and Dust Sensor (RDS). Journal of Geophysical Research: Planets. https://doi.org/10.1029/2022JE007494; Vasavada, A. R., Piqueux, S., Lewis, K. W., Lemmon, M. T., & Smith, M. D. ( 2017 ). Thermophysical properties along Curiosity’s traverse in Gale Crater, Mars, derived from the REMS ground temperature sensor. Icarus, 284, 372 – 386. https://doi.org/10.1016/j.icarus.2016.11.035; Vicente-Retortillo, A., Martínez, G. M., Lemmon, M. T., Hueso, R., Sullivan, R., Newman, C. E., et al. ( 2022 ). Changes in surface albedo induced by dust devils and the MY 36 Ls 155 dust storm at Jezero Crater. In Seventh international workshop on the Mars atmosphere: Modelling and observations (p. 1512 ).; Vicente-Retortillo, Á., Martínez, G. M., Renno, N., Newman, C. E., Ordonez-Etxeberria, I., Lemmon, M. T., et al. ( 2018 ). Seasonal deposition and lifting of dust on Mars as observed by the Curiosity rover. Scientific Reports, 8 ( 1 ), 1 – 8. https://doi.org/10.1038/s41598-018-35946-8; Vicente-Retortillo, A., Martínez, G. M., Rennó, N. O., Lemmon, M. T., de la Torre-Juárez, M., & Gómez-Elvira, J. ( 2020 ). In situ UV measurements by MSL/REMS: Dust deposition and angular response corrections. Space Science Reviews, 216 ( 5 ), 1 – 19. https://doi.org/10.1007/s11214-020-00722-6; Vicente-Retortillo, Á., Valero, F., Vázquez, L., & Martínez, G. M. ( 2015 ). A model to calculate solar radiation fluxes on the Martian surface. Journal of Space Weather and Space Climate, 5, A33. https://doi.org/10.1051/swsc/2015035; Vincendon, M., Audouard, J., Altieri, F., & Ody, A. ( 2015 ). Mars Express measurements of surface albedo changes over 2004–2010. Icarus, 251, 145 – 163. https://doi.org/10.1016/j.icarus.2014.10.029; Viúdez-Moreiras, D., de la Torre, D., Gómez-Elvira, J., Lorenz, R. D., Apéstigue, V., Guzewich, S., et al. ( 2022 ). Winds at the Mars 2020 landing site. Part 2: Wind variability and turbulence. Journal of Geophysical Research: Planets. e2022JE007523. https://doi.org/10.1029/2022JE007523; Viúdez-Moreiras, D., Lemmon, M., Newman, C. E., Guzewich, S., Mischna, M., Gómez-Elvira, J., et al. ( 2022 ). Winds at the Mars 2020 landing site. Part 1: Near-surface wind patterns at Jezero Crater. Journal of Geophysical Research: Planets. e2022JE007522. https://doi.org/10.1029/2022JE007522; Wolff, M. J., Lopéz-Valverde, M. I. G. U. E. L., Madeleine, J. B., Wilson, R. J., Smith, M. D., Fouchet, T., & Delory, G. T. ( 2017 ). Radiative process: Techniques and applications. The Atmosphere and Climate of Mars, 18, 106.; Zent, A. P., Hecht, M. H., Cobos, D. R., Wood, S. E., Hudson, T. L., Milkovich, S. M., et al. ( 2010 ). Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix. Journal of Geophysical Research, 115 ( E3 ), E00E14. https://doi.org/10.1029/2009je003420; Zhang, Y. F., Wang, X. P., Hu, R., Pan, Y. X., & Zhang, H. ( 2014 ). Variation of albedo to soil moisture for sand dunes and biological soil crusts in arid desert ecosystems. Environmental Earth Sciences, 71 ( 3 ), 1281 – 1288. https://doi.org/10.1007/s12665-013-2532-7; Apéstigue, V., Gonzalo, A., Jiménez, J. J., Boland, J., Lemmon, M., de Mingo, J. R., et al. ( 2022 ). Radiation and dust sensor for Mars environmental dynamic analyzer onboard M2020 rover. Sensors, 22 ( 8 ), 2907. https://doi.org/10.3390/s22082907; Banfield, D., Spiga, A., Newman, C., Forget, F., Lemmon, M., Lorenz, R., et al. ( 2020 ). The atmosphere of Mars as observed by InSight. Nature Geoscience, 13 ( 3 ), 190 – 198.; Bell, J. F., III, Rice, M. S., Johnson, J. R., & Hare, T. M. ( 2008 ). Surface albedo observations at Gusev crater and Meridiani Planum, Mars. Journal of Geophysical Research, 113 ( E6 ), E06S18. https://doi.org/10.1029/2007je002976; Chide, B., Bertrand, T., Lorenz, R. D., Munguira, A., Hueso, R., Sánchez-Lavega, A., et al. ( 2022 ). Acoustics reveals short-term air temperature fluctuations near Mars’ surface. Geophysical Research Letters, 49 ( 21 ), e2022GL100333. https://doi.org/10.1029/2022gl100333; Christensen, P. R. ( 1988 ). Global albedo variations on Mars: Implications for active aeolian transport, deposition, and erosion. Journal of Geophysical Research, 93 ( B7 ), 7611 – 7624. https://doi.org/10.1029/jb093ib07p07611; Christensen, P. R., Banfield, J. L., Hamilton, V. E., Ruff, S. W., Kieffer, H. H., Titus, T. N., et al. ( 2001 ). Mars Global surveyor thermal emission spectrometer experiment: Investigation description and surface science results. Journal of Geophysical Research, 106 ( E10 ), 23823 – 23871. https://doi.org/10.1029/2000je001370; Christensen, P. R., Engle, E., Anwar, S., Dickenshied, S., Noss, D., Gorelick, N., & Weiss-Malik, M. ( 2009 ). JMARS-a planetary GIS. In AGU fall meeting Abstracts (Vol. 2009, p. IN22A-06 ).; Christian, J. R., Arvidson, R. E., O’Sullivan, J. A., Vasavada, A. R., & Weitz, C. M. ( 2022 ). CRISM-based high spatial resolution thermal inertia mapping along curiosity’s traverses in Gale Crater. Journal of Geophysical Research: Planets, 127 ( 5 ), e2021JE007076. https://doi.org/10.1029/2021je007076; Creecy, E., Li, L., Jiang, X., Smith, M., Kass, D., Kleinböhl, A., & Martínez, G. ( 2022 ). Mars’ emitted energy and seasonal energy imbalance. Proceedings of the National Academy of Sciences of the United States of America, 119 ( 21 ), e2121084119. https://doi.org/10.1073/pnas.2121084119; Edwards, C. S., Piqueux, S., Hamilton, V. E., Fergason, R. L., Herkenhoff, K. E., Vasavada, A. R., et al. ( 2018 ). The thermophysical properties of the Bagnold Dunes, Mars: Ground-truthing orbital data. Journal of Geophysical Research: Planets, 123 ( 5 ), 1307 – 1326. https://doi.org/10.1029/2017je005501; Elsasser, W. M. ( 1942 ). Heat transfer by infrared radiation in the atmosphere. Harvard Meteor. Studies, 6, 107.; Farley, K. A., Williford, K. H., Stack, K. M., Bhartia, R., Chen, A., de la Torre, M., et al. ( 2020 ). Mars 2020 mission overview. Space Science Reviews, 216 ( 8 ), 1 – 41. https://doi.org/10.1007/s11214-020-00762-y; Fenton, L. K., Geissler, P. E., & Haberle, R. M. ( 2007 ). Global warming and climate forcing by recent albedo changes on Mars. Nature, 446 ( 7136 ), 646 – 649. https://doi.org/10.1038/nature05718; Fergason, R., Christensen, P., Golombek, M., & Parker, T. ( 2012 ). Surface properties of the Mars Science Laboratory candidate landing sites: Characterization from orbit and predictions. Space Science Reviews, 170 ( 1–4 ), 739 – 773. https://doi.org/10.1007/s11214-012-9891-3; Fergason, R. L., Christensen, P. R., Bell, J. F., III, Golombek, M. P., Herkenhoff, K. E., & Kieffer, H. H. ( 2006 ). Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES-derived thermal inertia. Journal of Geophysical Research, 111 ( E2 ), E02S21. https://doi.org/10.1029/2005JE002583; Fergason, R. L., Christensen, P. R., & Kieffer, H. H. ( 2006 ). High-resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): Thermal model and applications. Journal of Geophysical Research, 111 ( E12 ), E12004. https://doi.org/10.1029/2006je002735; Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., et al. ( 1999 ). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. Journal of Geophysical Research, 104 ( E10 ), 24155 – 24175. https://doi.org/10.1029/1999je001025; Garrat, J. R. ( 1992 ). The atmospheric boundary layer. Cambridge Atmos. Cambridge Univ. Press.; Geissler, P. E., Fenton, L. K., Enga, M. T., & Mukherjee, P. ( 2016 ). Orbital monitoring of Martian surface changes. Icarus, 278, 279 – 300. https://doi.org/10.1016/j.icarus.2016.05.023; Grott, M., Spohn, T., Knollenberg, J., Krause, C., Hudson, T. L., Piqueux, S., et al. ( 2021 ). Thermal conductivity of the Martian soil at the InSight landing site from HP 3 active heating experiments. Journal of Geophysical Research: Planets, 126 ( 7 ), e2021JE006861. https://doi.org/10.1029/2021je006861; Guinness, E. A., Arvidson, R. E., Clark, I. H., & Shepard, M. K. ( 1997 ). Optical scattering properties of terrestrial varnished basalts compared with rocks and soils at the Viking lander sites. Journal of Geophysical Research, 102 ( E12 ), 28687 – 28703. https://doi.org/10.1029/97je03018; Haberle, R. M., Houben, H. C., Hertenstein, R., & Herdtle, T. ( 1993 ). A boundary-layer model for Mars: Comparison with Viking lander and entry data. Journal of the Atmospheric Sciences, 50 ( 11 ), 1544 – 1559. https://doi.org/10.1175/1520-0469(1993)0502.0.co;2; Hamilton, V. E., Vasavada, A. R., Sebastián, E., de la Torre Juárez, M., Ramos, M., Armiens, C., et al. ( 2014 ). Observations and preliminary science results from the first 100 sols of MSL Rover Environmental Monitoring Station ground temperature sensor measurements at Gale Crater. Journal of Geophysical Research: Planets, 119 ( 4 ), 745 – 770. https://doi.org/10.1002/2013je004520; Hébrard, E., Listowski, C., Coll, P., Marticorena, B., Bergametti, G., Määttänen, A., et al. ( 2012 ). An aerodynamic roughness length map derived from extended Martian rock abundance data. Journal of Geophysical Research, 117 ( E4 ), E04008. https://doi.org/10.1029/2011je003942; Hieta, M., Polkko, J., Jaakonaho, I., Genzer, M., Harri, A. M., Martinez, G. M., et al. ( 2022 ). First results of the relative humidity sensor on board M2020 perseverance rover. In Seventh international workshop on the Mars atmosphere: Modelling and observations (p. 3519 ).; Hueso, R., Newman, C. E., del Rio-Gaztelurrutia, T., Munguira, A., Sanchez-Lavega, A., Toledo, D., et al. ( 2022 ). Convective vortices and dust devils detected and characterized by Mars 2020. Journal of Geophysical Research: Planets, e2022JE007516. https://doi.org/10.1029/2022JE007516. (under minor revisions; this issue).
-
17Academic Journal
المؤلفون: Esposito, Francesca, Debei, Stefano, Bettanini, C., Molfese, C., Arruego Rodríguez, I., Colombatti, G., Harri, A.-M., Montmessin, Franck, Wilson, C., Aboudan, A., Schipani, P., Marty, L., Álvarez, F., J., Apestigue, V., Bellucci, G., Berthelier, Jean-Jacques, Brucato, J., R., Calcutt, S., Chiodini, S., Cortecchia, F., Cozzolino, F., Cucciarrè, F., Deniskina, N., Déprez, Grégoire, Di Achille, G., Ferri, F., Forget, François, Franzese, G., Friso, E., Genzer, M., Hassen-Khodja, Rafik, Haukka, H., Hieta, M., Jimenez, J., J., Josset, J.-L., Kahanpää, H., Karatekin, Ö., Landis, G., Lapauw, Laurent, Lorenz, R., Martinez-Oter, J., Mennella, V., Möhlmann, D., Moirin, David, Molinaro, R., Nikkanen, T., Palomba, E., Patel, M., R., Pommereau, Jean-Pierre, Popa, C., I., Rafkin, S., Rannou, Pascal, Renno, N., O., Rivas, J., Schmidt, W., Segato, E., Silvestro, S., Spiga, A., Toledo, D., Trautner, R., Valero, F., Vivat, Francis, Witasse, O., Yela, M., Mugnuolo, R., Marchetti, E., Pirrotta, S.
المساهمون: INAF - Osservatorio Astronomico di Capodimonte (OAC), Istituto Nazionale di Astrofisica (INAF), Centro di Ateneo di Studi e Attività Spaziali “Giuseppe Colombo” (CISAS), Università degli Studi di Padova = University of Padua (Unipd), Instituto Nacional de Técnica Aeroespacial (INTA), Finnish Meteorological Institute (FMI), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), University of Oxford, Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), INAF - Osservatorio Astrofisico di Arcetri (OAA), INAF - Osservatorio Astronomico di Bologna (OABO), Osservatorio Astronomico d'Abruzzo, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-École nationale des ponts et chaussées (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL), Dipartimento di Fisica "Ettore Pancini", University of Naples Federico II = Università degli studi di Napoli Federico II, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Space Exploration Institute Neuchâtel (SPACE - X), Royal Observatory of Belgium = Observatoire Royal de Belgique (ROB), NASA Glenn Research Center, NASA, Johns Hopkins University Applied Physics Laboratory Laurel, MD (APL), DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt Berlin (DLR), The Open University Milton Keynes (OU), STRATO - LATMOS, Southwest Research Institute San Antonio (SwRI), Groupe de spectrométrie moléculaire et atmosphérique (GSMA), Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), University of Michigan Ann Arbor, University of Michigan System, Université de Reims Champagne-Ardenne (URCA), European Space Research and Technology Centre (ESTEC), Agence Spatiale Européenne = European Space Agency (ESA), Departamento de Astrofisica y Ciencias de la Atmósfera, Universidad Complutense de Madrid = Complutense University of Madrid Madrid (UCM), Agenzia Spaziale Italiana (ASI)
المصدر: ISSN: 0038-6308.
مصطلحات موضوعية: Meteorological station, Atmospheric electric field, Mars, DREAMS, Schiaparelli, ExoMars, Dust storm season, [SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]
-
18Academic Journal
المؤلفون: Sánchez‐Lavega, A., del Rio‐Gaztelurrutia, T., Hueso, R., Juárez, M. de la Torre, Martínez, G. M., Harri, A.‐M., Genzer, M., Hieta, M., Polkko, J., Rodríguez‐Manfredi, J. A., Lemmon, M. T., Pla‐García, J., Toledo, D., Vicente‐Retortillo, A., Viúdez‐Moreiras, D., Munguira, A., Tamppari, L. K., Newman, C., Gómez‐Elvira, J., Guzewich, S.
المصدر: Journal of Geophysical Research. Planets; Jan2023, Vol. 128 Issue 1, p1-20, 20p
مصطلحات موضوعية: MARTIAN atmosphere, PRESSURE measurement, ATMOSPHERIC tides, MARS rovers, GRAVITY waves, DUST storms
-
19
المؤلفون: Rodríguez-Manfredi, José Antonio, Torre Juárez, Manuel de la, Alonso, A., Apéstigue, V., Arruego, I., Atienza, T., Banfield, D., Boland, J., Carrera, M. A., Castañer, L., Ceballos, J., Chen-Chen, H., Cobos, A., Conrad, P.G., Cordoba, E., Río-Gaztelurrutia, T. del, Vicente-Retortillo, A. de, Domínguez-Pumar, M., Espejo, S., Gómez-Elvira, Javier, Gómez, F., Fairen, A.G., Fernández-Palma, A., Ferrándiz, R., Ferri, F., Fischer, E., García-Manchado, A., García-Villadangos, M., Genzer, M., Giménez, S., Guzewich, Scott D., Harri, A.M., Hernández, C.D., Hieta, M., Hueso, R., Jaakonaho, I., Jiménez, J.J., Jiménez, V., Larman, A., Leiter, R., Lepinette, A., Lemmon, M.T., López, G., Madsen, S.N., Mäkinen, T., Marín, M., Martín-Soler, J., Martínez, G., Molina, A., Mora-Sotomayor, L., Moreno-Álvarez, J.F., Navarro, S., Ortega, C., Parrondo, M.C., Peinado, V., Peña, A., Pérez-Grande, I., Pérez-Hoyos, S., Pla-García, J., Postigo, M., Prieto-Ballesteros, Olga, Ramos, M., Romeral, J., Romero, C., Saiz-Lopez, A., Sánchez-Lavega, A., Sard, I., Sebastian, E., Toledo, D., Torrero, F., Torres, J., Urquí, R., Velasco, T., Viúdez-Moreiras, D., Zurita, S.
المساهمون: Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Instituto Nacional de Técnica Aeroespacial (España), Eusko Jaurlaritza, National Aeronautics and Space Administration (US)
المصدر: Digital.CSIC. Repositorio Institucional del CSIC
instname -
20Electronic Resource
المؤلفون: Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Instituto Nacional de Técnica Aeroespacial (España), Centro para el Desarrollo Tecnológico Industrial (España), Eusko Jaurlaritza, European Research Council, Rodríguez Manfredi, José Antonio, Torre Juárez, M. de la, Alonso, A., Apéstigue, V., Arruego, I., Atienza, T., Banfield, D., Boland, J., Carrera, M. A., Castañer, L., Ceballos-Cáceres, J., Chen-Chen, H, Cobos, A., Conrad, P.G., Cordoba, E., Río Gaztelurrutia, Teresa del, de Vicente Retortillo, A., Domínguez-Pumar, M., Díaz-Espejo, Antonio, González Fairén, Alberto, Fernández-Palma, A., Ferrándiz, Ricardo, Ferri, F., Fischer, E., García-Manchado, A., García-Villadangos, Miriam, Genzer, M., Giménez, S., Gómez-Elvira, Javier, Gómez, Felipe, Guzewich, Scott D., Harri, A-M, Hernández, C.D., Hieta, M., Hueso, R., Jaakonaho, I., Jiménez, J. J., Jiménez, V., Larman, A., Leiter, R., Lepinette, Alain, Lemmon, M.T., López, G, Madsen, S.N., Mäkinen, T., Marín, M., Martín Soler, Javier, Martínez, G., Molina-Jurado, Antonio, Mora Sotomayor, Luis, Moreno-Álvarez, J. F., Navarro, Sara, Newman, C E, Ortega, C., Parrondo, M.C., Peinado, Verónica, Peña, A., Pérez-Grande, I., Pérez-Hoyos, S., Pla-García, Jorge, Polkko, J., Postigo Cacho, Marina, Prieto-Ballesteros, Olga, Rafkin, Scot C. R., Ramos, M. Ángeles, Richardson, M. I., Romeral Planelló, Julio J., Romero, C, Runyon, K D, Saiz-Lopez, A., Sánchez-Lavega, A., Sard, I., Schofield, J. T., Sebastián-Martínez, Eduardo, Smith, M D, Sullivan, R J, Tamppari, L K, Thompson, A D, Toledo, D, Torrero, F, Torres-Redondo, Josefina, Urquí, R., Velasco, T., Viúdez-Moreiras, Daniel, Zurita, S.
مصطلحات الفهرس: Albedo, Atmosphere, Clouds, Dust, Instruments, MEDA instrument, Mars, Mars2020, Perseverance, Pressure, Radiation fluxes, Surface temperature, Temperatures, Thermal infrared, UV, Wind, artículo
URL:
http://hdl.handle.net/10261/257952 https://api.elsevier.com/content/abstract/scopus_id/85104412286 https://doi.org/10.1007/s11214-021-00816-9
Space science reviews
Publisher's versionhttps://doi.org/10.1007/s11214-021-00816-9
Sí
info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016MINECO/ICTI2013‐2016/ESP2014-54256-C4-1-R
info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016MINECO/ICTI2013‐2016/ESP2014-54256-C4-2-R
info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016MINECO/ICTI2013‐2016/ESP2014-54256-C4-3-R
info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016MINECO/ICTI2013‐2016/ESP2014-54256-C4-4-R
info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016MINECO/ICTI2013‐2016/AYA2015-65041-P
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/ESP2016-79612-C3-1-R
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/ESP2016-79612-C3-2-R
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/ESP2016-79612-C3-3-R
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/ESP2016-80320-C2-1-R
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/RTI2018-098728-B-C31
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/RTI2018-098728-B-C32
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/RTI2018-098728-B-C33
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/RTI2018-099825-B-C31