-
1Dissertation/ Thesis
المؤلفون: Corral Pérez, Juan José
المساهمون: University/Department: Universitat Rovira i Virgili. Departament de Química Física i Inorgànica
Thesis Advisors: Urakawa, Atsushi
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Hidrogenació de CO2, Catàlisi heterogènia, Síntesi d'àcid fòrmic, Hidrogenación de CO2, Catálisis heterogénea, Síntesis de ácido fórmico, CO2 hydrogenation, Heterogeneous catalysis, Formic acid synthesis, Ciències
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/667680
-
2Dissertation/ Thesis
المؤلفون: Gaikwad, Rohit
المساهمون: University/Department: Universitat Rovira i Virgili. Departament de Química Analítica i Química Orgànica
Thesis Advisors: Urakawa, Atsushi
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Hidrogenacio de CO2, sintesi de metanol, pressio alta, Hidrogenacion de CO2, sintesis de metanol, alta presion, CO2 Hydrogenation, Methanol Synthesis, High Pressure, Ciències
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/586089
-
3Dissertation/ Thesis
المؤلفون: Jaunarena González, Daniela Alejandra
المساهمون: Concepción Heydorn, Patricia, Gómez Acosta, Daviel
مصطلحات موضوعية: Hidrogenación de CO2, Termocatálisis, Cobalto, Promotores, Metano, Dióxido de carbono, Thermocatalysis, Cobalt, Methane, Carbon dioxide, Máster Universitario en Química Sostenible-Màster Universitari en Química Sostenible
Relation: http://hdl.handle.net/10251/211217
الاتاحة: http://hdl.handle.net/10251/211217
-
4Dissertation/ Thesis
المؤلفون: Barranco Herrero, Jesús
المساهمون: Concepción Heydorn, Patricia, Gómez Acosta, Daviel
مصطلحات موضوعية: Filosilicatos nanotubulares, Cobre, Metanol, Hidrogenación de CO2, Espectroscopía, Máster Universitario en Química Sostenible-Màster Universitari en Química Sostenible
Relation: http://hdl.handle.net/10251/211008
الاتاحة: http://hdl.handle.net/10251/211008
-
5Academic Journal
المؤلفون: Muñoz Palacios, Sergio, Navarrete, Alexander, Martín Martínez, Ángel, Dittmeyer, Roland, Cocero Alonso, María José
مصطلحات موضوعية: Hidrogenación de CO2, Fotocatálisis, Combustibles solares, CO2 hydrogenation, Photocatalysis, Solar fuels
وصف الملف: application/pdf
Relation: https://www.mdpi.com/1996-1944/11/11/2134; https://doi.org/10.3390/ma11112134; Materials 2018, 11(11), 2134; http://uvadoc.uva.es/handle/10324/33203
-
6Academic Journal
مصطلحات موضوعية: CO2 hydrogenation, Methanol synthesis, Trimetallic catalysts, Pd-Cu-Zn, Silicon carbide, Atmospheric pressure, Hidrogenación de CO2, Síntesis de metanol, Catalizadores trimetálicos, Carburo de silicio, Presión atmosférica
وصف الملف: application/pdf
Relation: Journal of CO2 Utilization. 2017, 22, 71-80; http://hdl.handle.net/10578/29717
-
7Academic Journal
المؤلفون: Díez Ramírez, Javier, Sánchez Paredes, Paula, Kyriakou, Vasileiou, Zafeiratos, Spyridon, Manellos, George, Konsolakis, M., Dorado Fernández, Fernando
مصطلحات موضوعية: CO2 hydrogenation, Methanation, Co-based catalysts, Hidrogenación de CO2, Metanización
وصف الملف: application/pdf
Relation: Journal of CO2 Utilization. 2017, 21, 562-571; http://hdl.handle.net/10578/29713
-
8
المؤلفون: Ciordia Asenjo, Victor
المساهمون: Martín Martínez, Ángel, Universidad de Valladolid. Escuela de Ingenierías Industriales
مصطلحات موضوعية: Reacciones hidrotermales, Ácido fórmico, Hidrógeno verde, Hidrogenación de CO2, 3308 Ingeniería y Tecnología del Medio Ambiente, Captura de CO2
وصف الملف: application/pdf
-
9Academic Journal
المؤلفون: Díez Ramírez, Javier, Sánchez Paredes, Paula, Valverde, Jose Luis, Dorado Fernández, Fernando
مصطلحات موضوعية: Electrochemical promotion of catalysis (EPOC), CO2 hydrogenation, PdZn alloy, Methanol production, Promoción electroquímica de la catálisis (EPOC), Hidrogenación de CO2, Aleación de pdzn, Producción de metanol
وصف الملف: application/pdf
Relation: Journal of CO2 Utilization. 2016, 16, 375-383.; http://hdl.handle.net/10578/29883
-
10Dissertation/ Thesis
المؤلفون: Gómez Acosta, Daviel
المساهمون: Karelovic Burotto, Alejandro Iván, profesor guía
مصطلحات موضوعية: Compuestos químicos, Tecnología de hidrogenación, Hidrogenación de CO2
-
11
المؤلفون: Lu Peng
المصدر: RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instnameمصطلحات موضوعية: Materials science, Catalizadores a base de Cu-ZnO, Grafeno dopado con nitrógeno, CO2 hydrogenation, Hidrogenación de CO2, Cu-ZnO-based catalysts, Nitrogen doped, Promotional effects, Highly selective, Water-gas shift reaction, N-doped graphene, Catalysis, Nanopartículas de aleación de Co-Fe, QUIMICA ORGANICA, Nanopartículas metálicas (MNP), Reverse water gas shift, Chemical engineering, Conversión de CO2 a metanol, Co-Fe alloy nanoparticles, CO2 conversion to methanol, Metal nanoparticles (MNPs), Metal nanoparticles
وصف الملف: application/pdf
-
12Dissertation/ Thesis
المؤلفون: Peng, Lu
Thesis Advisors: García Gómez, Hermenegildo, Primo Arnau, Ana María, Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
مصطلحات موضوعية: Hidrogenación de CO2, Conversión de CO2 a metanol, Catalizadores a base de Cu-ZnO, Nanopartículas de aleación de Co-Fe, Nanopartículas metálicas (MNP), Grafeno dopado con nitrógeno, Metal nanoparticles (MNPs), N-doped graphene, Co-Fe alloy nanoparticles, Promotional effects, Cu-ZnO-based catalysts, Reverse water gas shift, CO2 hydrogenation, CO2 conversion to methanol, QUIMICA ORGANICA
الاتاحة: http://hdl.handle.net/10251/172329
-
13Book
المؤلفون: Romero Sáez, Manuel, Jaramillo Zapata, Leyla Yamile, Henao Sierra, Wilson Albeiro, De La Torre Larrañaga, Unai
مصطلحات موضوعية: Nanomaterials, Nanomateriales, Nanomatériau, Carbon monoxide, Monóxido de carbono, Oxyde de carbone, Methanol, Metanol, Methane, Metano, Carbon nanotubes, Nanotubos de Carbono, Nanotubes de carbone, Nanoparticles, Nanopartículas, Nanoparticules, CO2 hydrogenation, Hidrogenación de CO2, Carbon nanofibers, Nanofibras de carbono, Graphene oxide, Óxido de grafeno, Transition metal carbide, Carburo de metal de transición
وصف الملف: 42 páginas; application/pdf; image/jpeg
Relation: Environmental Chemistry for a Sustainable World;volumen 23; 214; 173; Emerging Nanostructured Materials for Energy and Environmental Science; Albo J, Irabien A (2016) Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol. J Catal 343:232–239. https://doi.org/10.1016/j.jcat.2015.11.014; Ali KA, Abdullah AZ, Mohamed AR (2015) Recent development in catalytic technologies for methanol synthesis from renewable sources: a critical review. Renew Sustain Energ Rev 44:508–518. https://doi.org/10.1016/j.rser.2015.01.010; Aziz MAA, Jalil AA, Triwahyono S, Mukti RR, Taufiq-Yap YH, Sazegar MR (2014) Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Appl Catal B Environ 147:359–368. https://doi.org/10.1016/j.apcatb.2013.09.015; Bahome MC, Jewell LL, Hildebrandt D, Glasser D, Covillle NJ (2005) Fischer–Tropsch synthesis over iron catalysts supported on carbon nanotubes. Appl Catal A Gen 287:60–67. https://doi.org/10.1016/j.apcata.2005.03.029; Balakumar V, Prakash P (2016) A facile in situ synthesis of highly active and reusable ternary Ag-PPy-GO nanocomposite for catalytic oxidation of hydroquinone in aqueous solution. J Catal 344:795–805. https://doi.org/10.1016/j.jcat.2016.08.010; Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059. https://doi.org/10.1002/adma.200904093; Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A Gen 212(1–2):17–60. https://doi.org/10.1016/S0926-860X(00)00843-7; Berber S, Kwon Y-K, Tománek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84(20):4613–4616. https://doi.org/10.1103/PhysRevLett.84.4613; Bhanja P, Modak A, Bhaumik A (2018) Supported porous nanomaterials as efficient heterogeneous catalysts for CO2 fixation reactions. Chem Eur J. https://doi.org/10.1002/chem.201800075; Brooks KP, Hu J, Zhu H, Kee RJ (2007) Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors. Chem Eng Sci 62:1161–1170. https://doi.org/10.1016/j.ces.2006.11.020; Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6(6):1711–1731. https://doi.org/10.1039/c3ee00056g; Chabot V, Higgins D, Yu A, Xiao X, Chen Z, Zhang J (2014) A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ Sci 7:1564–1596. https://doi.org/10.1039/c3ee43385d; Chen L, Li Y, Chen L, Li N, Dong C, Chen Q, Liu B, Ai Q, Si P, Feng J, Zhang L, Suhr J, Lou J, Ci L (2018) A large-area free-standing graphene oxide multilayer membrane with high stability for nanofiltration applications. Chem Eng J 345:536–544. https://doi.org/10.1016/j.cej.2018.03.136; Chesnokov VV, Podyacheva OY, Richards RM (2017) Influence of carbon nanomaterials on the properties of Pd/C catalysts in selective hydrogenation of acetylene. Mater Res Bull 88:78–84. https://doi.org/10.1016/j.materresbull.2016.12.013; Chiang CL, Lin KS, Hsu PJ, Lin YG (2017) Synthesis and characterization of magnetic zinc and manganese ferrite catalysts for decomposition of carbon dioxide into methane. Inter J Hydro Energy 42:22123–22137. https://doi.org/10.1016/j.ijhydene.2017.06.033; Collins SE, Baltanás MA, Bonivardi AL (2004) An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/β-Ga2O3. J Catal 226(2):410–421. https://doi.org/10.1016/j.jcat.2004.06.012; Collins SE, Delgado JJ, Mira C, Calvino JJ, Bernal S, Chiavassa DL, Baltanás MA, Bonivardi AL (2012) The role of Pd–Ga bimetallic particles in the bifunctional mechanism of selective methanol synthesis via CO2 hydrogenation on a Pd/Ga2O3 catalyst. J Catal 292:90–98. https://doi.org/10.1016/j.jcat.2012.05.005; Daza YA, Kuhn JN (2016) CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels. RSC Adv 6(55):49675–49691. https://doi.org/10.1039/C6RA05414E; Deerattrakul V, Dittanet P, Sawangphruk M, Kongkachuichay P (2016) CO2 hydrogenation to methanol using Cu-Zn catalyst supported on reduced graphene oxide nanosheets. J CO2 Util 16:104–113. https://doi.org/10.1016/j.jcou.2016.07.002; Díaz-Taboada C, Batista J, Pintar A, Levec J (2009) Preparation, characterization and catalytic properties of carbon nanofiber-supported Pt, Pd, Ru monometallic particles in aqueous-phase reactions. Appl Catal B Environ 89:375–382. https://doi.org/10.1016/j.apcatb.2008.12.016; Díez-Ramírez J, Sánchez P, Rodríguez-Gómez A, Valverde JL, Dorado F (2016) Carbon nanofiber-based palladium/zinc catalysts for the hydrogenation of carbon dioxide to methanol at atmospheric pressure. Ind Eng Chem Res 55(12):3556–3567. https://doi.org/10.1021/acs.iecr.6b00170; Dou J, Sheng Y, Choong C, Chen L, Zeng HC (2017) Silica nanowires encapsulated Ru nanoparticles as stable nanocatalysts for selective hydrogenation of CO2 to CO. Appl Catal B Environ 219:580–591. https://doi.org/10.1016/j.apcatb.2017.07.083; Dresselhaus MS, Eklund PC (2000) Phonons in carbon nanotubes. Adv Phys 49(6):705–814. https://doi.org/10.1080/000187300413184; Du G, Lim S, Yang Y, Wang C, Pfefferle L, Haller G (2007) Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts: the influence of catalyst pretreatment and study of steady-state reaction. J Catal 249:370–379. https://doi.org/10.1016/j.jcat.2007.03.029; Fan YJ, Wu SF (2016) A graphene-supported copper-based catalyst for the hydrogenation of carbon dioxide to form methanol. J CO2 Util 16:150–156. https://doi.org/10.1016/j.jcou.2016.07.001; Feng L, Xie N, Zhong J (2014) Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7(5):3919–3945. https://doi.org/10.3390/ma7053919; Fiordaliso EM, Sharafutdinov I, Carvalho HW, Grunwaldt JD, Hansen TW, Chorkendorff I, Wagner JB, Damsgaard CD (2015) Intermetallic GaPd2 nanoparticles on SiO2 for low-pressure CO2 hydrogenation to methanol: catalytic performance and in situ characterization. ACS Catal 5(10):5827–5836. https://doi.org/10.1021/acscatal.5b01271; Fishman ZS, He Y, Yang KR, Lounsbury A, Zhu J, Tran TM, Zimmerman JB, Batista VS, Pfefferle LD (2017) Hard templating ultrathin polycrystalline hematite nanosheets: effect of nano-dimension on CO2 to CO conversion via the reverse water shift reaction. Nanoscale 9:12984–12995. https://doi.org/10.1039/C7NR03522E; Frey M, Édouard D, Roger AC (2015) Optimization of structured cellular foam-based catalysts for low-temperature carbon dioxide methanation in a platelet milli-reactor. C R Chim 18:283–292. https://doi.org/10.1016/j.crci.2015.01.002; Gac W, Zawadzki W, Słowik G, Sienkiewicz A, Kierys A (2018) Nickel catalysts supported on silica microspheres for CO2 methanation. Microporous Mesoporous Mater 272:79–91. https://doi.org/10.1016/j.micromeso.2018.06.022; Gao J, Wang Y, Ping Y, Hu D, Xu G, Gu F, Su F (2012) A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Adv 2:2358–2368. https://doi.org/10.1039/c2ra00632d; Gao J, Wu Y, Jia C, Zhong Z, Gao F, Yang Y, Liu B (2016) Controllable synthesis of α-MoC1-x and β-Mo2C nanowires for highly selective CO2 reduction to CO. Catal Commun 84(5):147–150. https://doi.org/10.1016/j.catcom.2016.06.026; Ghaib K, Ben-Fares FZ (2018) Power-to-methane: a state-of-the-art review. Renew Sustain Energ Rev 81:433–446. https://doi.org/10.1016/j.rser.2017.08.004; Ghaib K, Nitz K, Ben-Fares FZ (2016) Chemical methanation of CO2: a review. Chem Bio Eng Rev 3(6):266–275. https://doi.org/10.1002/cben.201600022; Goeppert A, Czaun M, Jones JP, Prakash GS, Olah GA (2014) Recycling of carbon dioxide to methanol and derived products – closing the loop. Chem Soc Rev 43(23):7995–8048. https://doi.org/10.1039/c4cs00122b; Götz M, Ortloff F, Reimert R, Basha O, Morsi BI, Kolb T (2013) Evaluation of organic and ionic liquids for three-phase methanation and biogas purification processes. Energy Fuel 27(8):4705–4716. https://doi.org/10.1021/ef400334p; Götz M, Lefebvre J, Mörs F, McDaniel Koch A, Graf F, Bajohr S, Reimert R, Kolb T (2015) Renewable power-to-gas: a technological and economic review. Renew Energy 85:1371–1390. https://doi.org/10.1016/j.renene.2015.07.066; Habazaki H, Yamasaki M, Zhang B, Kawashima A, Kohno S, Takai T, Hashimoto K (1998) Co-methanation of carbon monoxide and carbon dioxide on supported nickel and cobalt catalysts prepared from amorphous alloys. Appl Catal A Gen 172(1):131–140. https://doi.org/10.1016/S0926-860X(98)00121-5; Hartadi Y, Widmann D, Behm RJ (2015) CO2 hydrogenation to methanol on supported au catalysts under moderate reaction conditions: support and particle size effects. ChemSusChem 8(3):456–465. https://doi.org/10.1002/cssc.201402645; Hashimoto K, Yamasaki M, Fujimura K, Matsui T, Izumiya K, Komori M, El-Moneim AA, Akiyama E, Habazaki H, Kumagai N, Kawashima A, Asami A (1999) Global CO2 recycling – novel materials and prospect for prevention of global warming and abundant energy supply. Mater Sci Eng A 267(2):200–206. https://doi.org/10.1016/S0921-5093(99)00092-1; He S, Li C, Chen H, Su D, Zhang B, Cao X, Wang B, Wei M, Evans DG, Duan X (2013) A surface defect-promoted Ni nanocatalyst with simultaneously enhanced activity and stability. Chem Mater 25:1040–1046. https://doi.org/10.1021/cm303517z; Hiller H, Reimert R (2006) Types of gases. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 10; Hou Z, Gao J, Guo J, Liang D, Lou H, Zheng X (2007) Deactivation of Ni catalysts during methane autothermal reforming with CO2 and O2 in a fluidized-bed reactor. J Catal 250(2):331–341. https://doi.org/10.1016/j.jcat.2007.06.023; Hu J, Brooks KP, Holladay JD, Howe DT, Simon TM (2007) Catalyst development for microchannel reactors for martian in situ propellant production. Catal Today 125(1–2):103–110. https://doi.org/10.1016/j.cattod.2007.01.067; Hu B, Yin Y, Liu G, Chen S, Hong X, Tsang SCE (2018) Hydrogen spillover enabled active Cu sites for methanol synthesis from CO2 hydrogenation over Pd doped CuZn catalysts. J Catal 359:17–26. https://doi.org/10.1016/j.jcat.2017.12.029; Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0; Jacob-Lopes E, Scoparo CHG, Queiroz MI, Franco TT (2010) Biotransformations of carbon dioxide in photobioreactors. Energy Convers Manag 51(5):894–900. https://doi.org/10.1016/j.enconman.2009.11.027; Jiménez V, Sánchez P, Panagiotopoulou P, Valverde JL, Romero A (2010) Methanation of CO, CO2 and selective methanation of CO, in mixtures of CO and CO2, over ruthenium carbon nanofibers catalysts. Appl Catal A Gen 390(1–2):35–44. https://doi.org/10.1016/j.apcata.2010.09.026; Jiménez V, Jiménez-Borja C, Sánchez P, Romero A, Papaioannou EI, Theleritis D, Souentie S, Brosdac S, Valverde JL (2011) Electrochemical promotion of the CO2 hydrogenation reaction on composite Ni or Ru impregnated carbon nanofiber catalyst-electrodes deposited on YSZ. Appl Catal B Environ 107(1–2):210–220. https://doi.org/10.1016/j.apcatb.2011.07.016; Jin J, Yu J, Cui C, Ho W (2015) A hierarchical Z-scheme CdS–WO3 photocatalyst with enhanced CO2 reduction activity. Small 11(39):5262–5271. https://doi.org/10.1002/smll.201500926; Jurković DL, Pohar A, Dasireddy DBC, Likozar B (2017) Effect of copper-based catalyst support on reverse water-gas shift reaction (RWGS) activity for CO2 reduction. Chem Eng Technol 40(5):973–980. https://doi.org/10.1002/ceat.201600594; Jwa E, Lee SB, Lee HW, Mok YS (2013) Plasma-assisted catalytic methanation of CO and CO2 over Ni–zeolite catalysts. Fuel Process Technol 108:89–93. https://doi.org/10.1016/j.fuproc.2012.03.008; Kang SH, Ryu JH, Kim JH, Seo SJ, Yoo YD, Prasad PSS, Lim H-J, Byun C-D (2011) Co-methanation of CO and CO2 on the Nix-Fe1-x/Al2O3 catalysts; effect of Fe contents. Korean J Chem Eng 28(12):2282–2286. https://doi.org/10.1007/s11814-011-0125-2; Kao YL, Lee PH, Tseng YT, Chien IL, Ward JD (2014) Design, control and comparison of fixed-bed methanation reactor systems for the production of substitute natural gas. J Taiwan Inst Chem E 45(5):2346–2357. https://doi.org/10.1016/j.jtice.2014.06.024; Kattel S, Liu P, Chen JG (2017) Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J Am Chem Soc 139(29):9739–9754. https://doi.org/10.1021/jacs.7b05362; Kesavan JK, Luisetto I, Tuti S, Meneghini C, Battocchio C, Iucci G (2017) Ni supported on YSZ: XAS and XPS characterization and catalytic activity for CO2 methanation. J Mater Sci 57(17):10331–10340. https://doi.org/10.1007/s10853-017-1179-2; Kesavan JK, Luisetto I, Tuti S, Meneghini C, Iucci G, Battocchio C, Mobilio S, Casciardi S, Sisto R (2018) Nickel supported on YSZ: the effect of Ni particle size on the catalytic activity for CO2 methanation. J CO2 Util 23:200–211. https://doi.org/10.1016/j.jcou.2017.11.015; Khorasani-Motlagh M, Noroozifar M, Ahanin-Jan A (2012) Ultrasonic and microwave-assisted co-precipitation synthesis of pure phase LaFeO3 perovskite nanocrystals. J Iran Chem Soc 9(5):833–839. https://doi.org/10.1007/s13738-012-0100-9; Kierzkowska-Pawlak H, Tracz P, Redzynia W, Tyczkowski J (2017) Plasma deposited novel nanocatalysts for CO2 hydrogenation to methane. J CO2 Util 17:312–319. https://doi.org/10.1016/j.jcou.2016.12.013; Kim DH, Han SW, Yoon HS, Kim YD (2015) Reverse water gas shift reaction catalyzed by Fe nanoparticles with high catalytic activity and stability. J Ind Eng Chem 23:67–71. https://doi.org/10.1016/j.jiec.2014.07.043; Kim SM, Abdala PM, Broda M, Hosseini D, Copéret C, Müller CR (2018) Integrated CO2 capture and conversion as an efficient process for fuels from greenhouse gases. ACS Catal 8:2815–2823. https://doi.org/10.1021/acscatal.7b03063; Kiss AA, Pragt JJ, Vos HJ, Bargeman G, de Groot MT (2016) Novel efficient process for methanol synthesis by CO2 hydrogenation. Chem Eng J 284:260–269. https://doi.org/10.1016/j.cej.2015.08.101; Kovacevic M, Mojet BL, Van Ommen JG, Lefferts L (2016) Effects of morphology of cerium oxide catalysts for reverse water gas shift reaction. Catal Lett 146(4):770–777. https://doi.org/10.1007/s10562-016-1697-6; Kunkel C, Viñes F, Illas F (2016) Transition metal carbides as novel materials for CO2 capture, storage, and activation. Energy Environ Sci 9(1):141–144. https://doi.org/10.1039/C5EE03649F; Kurtz M, Wilmer H, Genger T, Hinrichsen O, Muhler M (2003) Deactivation of supported copper catalysts for methanol synthesis. Catal Lett 86(1–3):77–80. https://doi.org/10.1023/A:1022663125977; Kwak JH, Kovarik L, Szanyi J (2013) CO2 reduction on supported Ru/Al2O3 catalysts: cluster size dependence of product selectivity. ACS Catal 3(11):2449–2455. https://doi.org/10.1021/cs400381f; Kwak JH, Kovarik L, Szanyi J (2013a) Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts. ACS Catal 3:2094–2100. https://doi.org/10.1021/cs4001392; La Tempa TJ, Rani S, Bao N, Grimes CA (2012) Generation of fuel from CO2 saturated liquids using a p-Si nanowire k n-TiO2 nanotube array photoelectrochemical cell. Nanoscale 4(7):2245–2250. https://doi.org/10.1039/c2nr00052k; Ledoux MC, Pham-Huu C (2005) Carbon nanostructures with macroscopic shaping for catalytic applications. Catal Today 102–103:2–14. https://doi.org/10.1016/j.cattod.2005.02.036; Lefebvre J, Götz M, Bajohr S, Reimert R, Kolb T (2015) Improvement of three-phase methanation reactor performance for steady-state and transient operation. Fuel Process Technol 132:83–90. https://doi.org/10.1016/j.fuproc.2014.10.040; Li Q, Zong L, Li C, Yang J (2014) Photocatalytic reduction of CO2 on MgO/TiO2 nanotube films. Appl Surf Sci 314:458–463. https://doi.org/10.1016/j.apsusc.2014.07.019; Li M, Zhou S, Xu M (2017) Graphene oxide supported magnesium oxide as an efficient cathode catalyst for power generation and wastewater treatment in single chamber microbial fuel cells. Chem Eng J 328:106–116. https://doi.org/10.1016/j.cej.2017.07.031; Liang XL, Dong X, Lin G-D, Zhang H-B (2009) Carbon nanotube-supported Pd–ZnO catalyst for hydrogenation of CO2 to methanol. Appl Catal B Environ 88(3–4):315–322. https://doi.org/10.1016/j.apcatb.2008.11.018; Liang XL, Xie J-R, Liu Z-M (2015) A novel Pd-decorated carbon nanotubes-promoted Pd-ZnO catalyst for CO2 hydrogenation to methanol. Catal Lett 145(5):1138–1147. https://doi.org/10.1007/s10562-015-1505-8; Lin L, Yao S, Liu Z, Zhang F, Na L, Vovchok D, Martínez-Arias A, Castañeda R, Lin J, Senanayake SD, Su D, Ma D, Rodriguez JA (2018) In-situ characterization of Cu/CeO2 nanocatalysts during CO2 hydrogenation: morphological effects of nanostructured ceria on the catalytic activity. J Phys Chem C 122(24):12934–12943. https://doi.org/10.1021/acs.jpcc.8b03596; Liu G, Hoivik N, Wang K, Jakobsen H (2012a) Engineering TiO2 nanomaterials for CO2 conversion/solar fuels. Sol Energy Mater Sol Cells 105:53–68. https://doi.org/10.1016/j.solmat.2012.05.037; Liu Z, Chu B, Zhai X, Jin Y, Cheng Y (2012b) Total methanation of syngas to synthetic natural gas over Ni catalyst in a micro-channel reactor. Fuel 95:599–605. https://doi.org/10.1016/j.fuel.2011.12.045; Liu Y, Li Z, Xu H, Han Y (2016) Reverse water-gas shift reaction over ceria nanocube synthesized by hydrothermal method. Catal Commun 76(3):1–6. https://doi.org/10.1016/j.catcom.2015.12.011; Liu Z, Wang Z, Qing S, Xue N, Jia S, Zhang L, Li L, Li N, Shi L, Chen J (2018) Improving methane selectivity of photo-induced CO2 reduction on carbon dots through modification of nitrogen-containing groups and graphitization. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2018.03.045; Low J, Yu J, Ho W (2015) Graphene-based photocatalysts for CO2 reduction to solar fuel. J Phys Chem Lett 6(21):4244–4251. https://doi.org/10.1021/acs.jpclett.5b01610; Luisetto I, Tuti S, Battocchio C, Lo Mastro S, Sodo A (2015) Ni/CeO2–Al2O3 catalysts for the dry reforming of methane: the effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance. Appl Catal A Gen 500:12–22. https://doi.org/10.1016/j.apcata.2015.05.004; Lunde PJ, Kester FL (1974) Carbon dioxide methanation on a ruthenium catalyst. Ind Eng Chem Proc Des Dev 13(1):27–33. https://doi.org/10.1021/i260049a005; Ma J, Sun NN, Zhang XL, Zhao N, Mao FK, Wei W, Sun YH (2009) A short review of catalysis for CO2 conversion. Catal Today 148(3–4):221–231. https://doi.org/10.1016/j.cattod.2009.08.015; Mao J, Peng TY, Zhang XH, Li K, Ye LQ, Zan L (2012) Selective methanol production from photocatalytic reduction of CO2 on BiVO4 under visible light irradiation. Catal Commun 28:38–41. https://doi.org/10.1016/j.catcom.2012.08.008; Mao J, Peng TY, Zhang XH, Li K, Ye LQ, Zan L (2013) Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light. Cat Sci Technol 3(5):1253–1260. https://doi.org/10.1039/c3cy20822b; Martin O, Mondelli C, Cervellino A, Ferri D, Curulla-Ferre D, Perez-Ramirez J (2016) Operando synchrotron X-ray powder diffraction and modulated-excitation infrared spectroscopy elucidate the CO2 promotion on a commercial methanol synthesis catalyst. Angew Chem Int Ed 55(37):11031–11036. https://doi.org/10.1002/anie.201603204; Mateo D, Albero J, García H (2018) Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Appl Catal B Environ 224:563–571. https://doi.org/10.1016/j.apcatb.2017.10.071; Miguel CV, Soria MA, Mendes A, Madeira LM (2015) Direct CO2 hydrogenation to methane or methanol from post-combustion exhaust streams – a thermodynamic study. J Nat Gas Sci Eng 22:1–8. https://doi.org/10.1016/j.jngse.2014.11.010; Mills GA, Steffgen FW (1974) Catalytic methanation. Catal Rev 8:159–210. https://doi.org/10.1080/01614947408071860; Mutz B, Sprenger P, Wang W, Wang D, Kleist W, Grunwaldt JD (2018) Operando Raman spectroscopy on CO2 methanation over alumina-supported Ni, Ni3Fe and NiRh0.1 catalysts: role of carbon formation as possible deactivation pathway. Appl Catal A Gen 556:160–171. https://doi.org/10.1016/j.apcata.2018.01.026; Nishimura N, Kitaura S, Mimura A, Takahara Y (1992) Cultivation of thermophilic methanogen KN-15 on H2-CO2 under pressurized conditions. J Ferment Bioeng 73(6):477–480. https://doi.org/10.1016/0922-338X(92)90141-G; NOAA – National Oceanic and Atmospheric Administration (2018) Recent monthly average Mauna Loa CO2. Available online at https://www.esrl.noaa.gov/gmd/webdata/ccgg/ trends/co2_trend_mlo.pdf. Accessed Mar 2018; Ocampo F, Louis B, Kiwi-Minsker L, Roger A-C (2011) Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1−xO2 catalysts for carbon dioxide methanation. Appl Catal A Gen 392(1–2):36–44. https://doi.org/10.1016/j.apcata.2010.10.025; Olah GA, Goeppert A, Prakash GS (2008) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Organomet Chem 74(2):487–498. https://doi.org/10.1021/jo801260f; Ota A, Kunkes EL, Kasatkin I, Groppo E, Ferri D, Poceiro B, Navarro Yerga RM, Behrens M (2012) Comparative study of hydrotalcite-derived supported Pd2Ga and PdZn intermetallic nanoparticles as methanol synthesis and methanol steam reforming catalysts. J Catal 293:27–38. https://doi.org/10.1016/j.jcat.2012.05.020; Oyola-Rivera O, Baltanás MA, Cardona-Martínez N (2015) CO2 hydrogenation to 1methanol and dimethyl ether by Pd–Pd2Ga catalysts supported over Ga2O3 polymorphs. J CO2 Util 9:8–15. https://doi.org/10.1016/j.jcou.2014.11.003; Park JN, McFarland EW (2009) A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2. J Catal 266(1):92–97. https://doi.org/10.1016/j.jcat.2009.05.018; Pastor-Pérez L, Baibars F, Le Sache E, Arellano-García H, Gu S, Reina TR (2017) CO2 valorisation via reverse water-gas shift reaction using advanced Cs doped Fe-Cu/Al2O3 catalysts. J CO2 Util 21:423–428. https://doi.org/10.1016/j.jcou.2017.08.009; Pavlostathis SG, Giraldo-Gomez E (1991) Kinetics of anaerobic treatment: a critical review. Crit Rev Environ Control 21(5–6):411–490. https://doi.org/10.1080/10643389109388424; Peillex JP, Fardeau ML, Boussand R, Navarro JM, Belaich JP (1988) Growth of Methanococcus thermolithotrophicus in batch and continuous culture on H2 and CO2: influence of agitation. Appl Microbiol Biotechnol 29(6):560–564. https://doi.org/10.1007/BF00260985; Pendashteh A, Rahmanifar MS, Mousavi MF (2014) Morphologically controlled preparation of CuO nanostructures under ultrasound irradiation and their evaluation as pseudocapacitor materials. Ultrason Sonochem 21(2):643–652. https://doi.org/10.1016/j.ultsonch.2013.08.009; Pöhlmann F, Jess A (2016) Influence of syngas composition on the kinetics of Fischer-Tropsch synthesis of using cobalt as catalyst. Energy Technol 4(1):55–64. https://doi.org/10.1002/ente.201500216; Porosoff MD, Yang X, Boscoboinik JA, Chen JG (2014) Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. Angew Chem Int Ed 53(26):6705–6709. https://doi.org/10.1002/anie.201404109; Porosoff MD, Yan B, Chen JG (2016) Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ Sci 9(1):62–73. https://doi.org/10.1039/C5EE02657A; Porosoff MD, Baldwin JW, Peng X, Mpourmpakis G, Willauer HD (2017) Potassium-promoted molybdenum carbide as a highly active and selective catalyst for CO2 conversion to CO. ChemSusChem 10(11):2408–2415. https://doi.org/10.1002/cssc.201700412; Posada-Pérez S, Viñes F, Ramirez PJ, Vidal AB, Rodriguez JA, Illas F (2014) The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C(001) surfaces. Phys Chem Chem Phys 16(28):14912–14921. https://doi.org/10.1039/C4CP01943A; Posada-Pérez S, Viñes F, Rodriguez JA, Illas F (2015) Fundamentals of methanol synthesis on metal carbide based catalysts: activation of CO2 and H2. Top Catal 58(2–3):159–173. https://doi.org/10.1007/s11244-014-0355-8; Prasad K, Pinjari DV, Pandit AB, Mhaske ST (2010) Synthesis of titanium dioxide by ultrasound assisted sol-gel technique: effect of amplitude (power density) variation. Ultrason Sonochem 17:697–703. https://doi.org/10.1016/j.ultsonch.2010.01.005; Qu J, Zhang X, Wang Y, Xie C (2005) Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode. Electrochim Acta 50(16–17):3576–3580. https://doi.org/10.1016/j.electacta.2004.11.061; Qu J, Zhou X, Xu F, Gong XQ, Tsang SCE (2014) Shape effect of Pd-promoted Ga2O3 nanocatalysts for methanol synthesis by CO2 hydrogenation. J Phys Chem C 118(42):24452–24466. https://doi.org/10.1021/jp5063379; Quesne MG, Roldan A, de Leeuw NH, Catlow CRA (2018) Bulk and surface properties of metal carbides: implications for catalysis. Phys Chem Chem Phys 20:6905–6916. https://doi.org/10.1039/C7CP06336A; Ramachandriya KD, Kundiyana DK, Wilkins MR, Terrill JB, Atiyeh HK, Huhnke RL (2013) Carbon dioxide conversion to fuels and chemicals using a hybrid green process. Appl Energy 112:289–299. https://doi.org/10.1016/j.apenergy.2013.06.017; Rodriguez JA, Evans J, Feria L, Vidal AB, Liu P, Nakamura K, Illas F (2013) CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: production of CO, methanol, and methane. J Catal 307:162–169. https://doi.org/10.1016/j.jcat.2013.07.023; Rodriguez JA, Liu P, Stacchiola DJ, Senanayake SD, White MG, Chen JG (2015) Hydrogenation of CO2 to methanol: importance of metal–oxide and metal–carbide interfaces in the activation of CO2. ACS Catal 5(11):6696–6706; Romero-Sáez M, Dongil AB, Benito N, Espinoza-González R, Escalona N, Gracia F (2018) CO2 methanation over nickel-ZrO2 catalyst supported on carbon nanotubes: a comparison between two impregnation strategies. Appl Catal B Environ 237:817–825. https://doi.org/10.1016/j.apcatb.2018.06.045; Rönsch S, Schneider J, Matthischke S, Schlüter M, Götz M, Lefebvre J, Prabhakaran P, Bajohr S (2016) Review on methanation – from fundamentals to current projects. Fuel 166:276–296. https://doi.org/10.1016/j.fuel.2015.10.111; Sabatier P, Senderens JB (1902) New synthesis of methane. Compt Rend 134:514–516; Saeidi S, Amin NAS, Rahimpour MR (2014) Hydrogenation of CO2 to value-added products – a review and potential future developments. J CO2 Util 5:66–81. https://doi.org/10.1016/j.jcou.2013.12.005; Sahebdelfar S, Ravanchi MT (2015) Carbon dioxide utilization for methane production: a thermodynamic analysis. J Pet Sci Eng 134:14–22. https://doi.org/10.1016/j.petrol.2015.07.015; Sakakura T, Choi J-C, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107(6):2365–2387. https://doi.org/10.1021/cr068357u; Samei E, Taghizadeh M, Bahmani M (2012) Enhancement of stability and activity of Cu/ZnO/Al2O3 catalysts by colloidal silica and metal oxides additives for methanol synthesis from a CO2-rich feed. Fuel Process Technol 96:128–133. https://doi.org/10.1016/j.fuproc.2011.12.028; Schubert K, Brandner J, Fichtner M, Linder G, Schygulla U, Wenka A (2001) Microstructure devices for application in thermal and chemical process engineering. Microscale Thermophys Eng 5(1):17–39. https://doi.org/10.1080/108939501300005358; Schulte KL, DeSario PA, Gray KA (2010) Effect of crystal phase composition on the reductive and oxidative abilities of TiO2 nanotubes under UV and visible light. Appl Catal B Environ 97(3–4):354–360. https://doi.org/10.1016/j.apcatb.2010.04.017; Seemann L (2006) Methanation of biosyngas in a fluidized bed reactor – development of a one-step synthesis process, featuring simultaneous methanation, watergas shift and low temperature tar reforming. PhD thesis. ETH Zurich; Seifert AH, Rittmann S, Herwig C (2014) Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis. Appl Energy 132:155–162. https://doi.org/10.1016/j.apenergy.2014.07.002; Sepehri S, Rezaei M (2015) Preparation of highly active nickel catalysts supported on mesoporous nanocrystalline gamma-Al2O3 for methane autothermal reforming. Chem Eng Technol 38(9):1637–1645. https://doi.org/10.1002/ceat.201400566; Sharafutdinov I, Elkjær CF, de Carvalho HWP, Gardini D, Chiarello GL, Damsgaard CD, Wagner JB, Grunwaldt JD, Dahl S, Chorkendorff I (2014) Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol. J Catal 320:77–88. https://doi.org/10.1016/j.jcat.2014.09.025; Shui J, Wang M, Du F, Dai L (2015) N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci Adv 1(1):e1400129. https://doi.org/10.1126/sciadv.1400129; Sinnott SB, Andrews R (2001) Carbon nanotubes: synthesis, properties, and applications. Crit Rev Solid State 26(3):145–249. https://doi.org/10.1080/20014091104189; Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115(1–4):2–32. https://doi.org/10.1016/j.cattod.2006.02.029; Song F, Zhong Q, Yu Y, Shi M, Wu Y, Hu J, Song Y (2017) Obtaining well-dispersed Ni/Al2O3 catalyst for CO2 methanation with a microwave-assisted method. Int J Hydrog Energy 42(7):4174–4183. https://doi.org/10.1016/j.ijhydene.2016.10.141; Sterner M (2009) Bioenergy and renewable power methane in integrated 100% renewable energy systems – limiting global warming by transforming energy systems. PhD thesis. University of Kassel; Studt F, Sharafutdinov I, Abild-Pedersen F, Elkjær CF, Hummelshøj JS, Dahl S, Chorkendorff I, Nørskov JK (2014) Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat Chem 6(4):320–324. https://doi.org/10.1038/nchem.1873; Su X, Yang X, Zhao B, Huang Y (2017) Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions. J Energy Chem 26(5):854–867. https://doi.org/10.1016/j.jechem.2017.07.006; Tan JZY, Fernandez Y, Liu D, Maroto-Valer M, Bian J, Zhang X (2012) Photo-reduction of CO2 using copper-decorated TiO2 nanorod films with localized surface plasmon behavior. Chem Phys Lett 531:149–154. https://doi.org/10.1016/j.cplett.2012.02.016; Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591. https://doi.org/10.1038/nrmicro1931; Tóth M, Kiss J, Oszkó A, Pótári G, László B, Erdőhelyi A (2012) Hydrogenation of carbon dioxide on Rh, Au and Au–Rh bimetallic clusters supported on titanate nanotubes, nanowires and TiO2. Top Catal 55(11–13):747–756. https://doi.org/10.1007/s11244-012-9862-7; Tursunov O, Tilyabaev Z (2017) Hydrogenation of CO2 over Co supported on carbon nanotube, carbón nanotube-Nb2O5, carbon nanofiber, low-layered graphite fragments and Nb2O5. J Energy Inst. https://doi.org/10.1016/j.joei.2017.12.004; Ud Din I, Shaharun MS, Subbarao D, Naeem A (2015) Synthesis, characterization and activity pattern of carbon nanofibers based copper/zirconia catalysts for carbon dioxide hydrogenation to methanol: influence of calcination temperature. J Power Sources 274:619–628. https://doi.org/10.1016/j.jpowsour.2014.10.087; Ud Din I, Shaharun MS, Subbarao D, Naeem A, Hussain F (2016) Influence of niobium on carbon nanofibres based Cu/ZrO2 catalysts for liquid phase hydrogenation of CO2 to methanol. Catal Today 259(2):303–311. https://doi.org/10.1016/j.cattod.2015.06.019; Ud Din I, Shaharun MS, Naeem A, Tasleem S, Johan MR (2017) Carbon nanofiber-based copper/zirconia catalyst for hydrogenation of CO2 to methanol. J CO2 Util 21:145–155. https://doi.org/10.1016/j.jcou.2017.07.010; Vargas E, Romero-Saéz M, Denardin JC, Gracia F (2016) The ultrasound-assisted synthesis of effective monodisperse nickel nanoparticles: magnetic characterization and its catalytic activity in CO2 methanation. New J Chem 40:7307–7310. https://doi.org/10.1039/C6NJ01574C; Vijayan B, Dimitrijevic NM, Rajh T, Gray K (2010) Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes. J Phys Chem C 114(30):12994–13002. https://doi.org/10.1021/jp104345h; Wang J, Lu S, Li J, Li C (2015) Remarkable difference in CO2 hydrogenation to methanol on Pd nanoparticles supported inside and outside of carbon nanotubes. Chem Commun 51(99):17615–17618. https://doi.org/10.1039/C5CC07079A; Wang W, Chu W, Wang N, Yang W, Jiang C (2016) Mesoporous nickel catalyst supported on multi-walled carbon nanotubes for carbon dioxide methanation. Int J Hydrog Energy 41:967–975. https://doi.org/10.1016/j.ijhydene.2015.11.133; Weatherbee GD, Bartholomew CH (1981) Hydrogenation of CO2 on group VIII metals: I. specific activity of Ni/SiO2. J Catal 68(1):67–76. https://doi.org/10.1016/0021-9517(81)90040-3; Wilhelm E, Battino R, Wilcock RJ (1977) Low-pressure solubility of gases in liquid water. Chem Rev 77(2):219–262. https://doi.org/10.1021/cr60306a003; Witoon T, Numpilai T, Phongamwong T, Donphai W, Boonyuen C, Warakulwit C, Chareonpanich M, Limtrakul J (2018) Enhanced activity, selectivity and stability of a CuO-ZnO-ZrO2 catalyst by adding graphene oxide for CO2 hydrogenation to methanol. Chem Eng J 334:1781–1791. https://doi.org/10.1016/j.cej.2017.11.117; Wu HC, Chang YC, Wu JH, Lin JH, Lin IK, Chen CS (2015) Methanation of CO2 and reverse water gas shift reactions on Ni/SiO2 catalysts: the influence of particle size on selectivity and reaction pathway. Cat Sci Technol 5(8):4154–4163. https://doi.org/10.1039/C5CY00667H; Xia X, Jia Z, Yu Y, Liang Y, Wang Z, Ma L (2007) Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon 45(4):717–721. https://doi.org/10.1016/j.carbon.2006.11.028; Xiaoding X, Moulijn JA (1996) Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products. Energ Fuels 10(2):305–325. https://doi.org/10.1021/ef9501511; Xu W, Ramírez PJ, Stacchiola D, Brito JL, Rodriguez JA (2015) The carburization of transition metal molybdates (MxMoO4, M = Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO2 hydrogenation. Catal Lett 145(7):1365–1373. https://doi.org/10.1007/s10562-015-1540-5; Yin G, Yuan X, Du X, Zhao W, Bi Q, Huang F (2018) Efficient reduction of CO2 to CO using cobalt–cobalt oxide core–shell catalysts. Chem Eur J 24(9):2157–2163. https://doi.org/10.1002/chem.201704596; Yu KP, Yu WY, Kuo MC, Liou YC, Chien SH (2008) Pt/titania-nanotube: a potential catalyst for CO2 adsorption and hydrogenation. Appl Catal B Environ 84(1–2):112–118. https://doi.org/10.1016/j.apcatb.2008.03.009; Zhang QH, Han WD, Hong YJ, Yu JG (2009) Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal Today 148(3–4):335–340. https://doi.org/10.1016/j.cattod.2009.07.081; Zhang Q, Zuo Y-Z, Han M-H, Wang J-F, Jin Y, Wei F (2010) Long carbon nanotubes intercrossed Cu/Zn/Al/Zr catalyst for CO/CO2 hydrogenation to methanol/dimethyl ether. Catal Today 50(1–2):55–60. https://doi.org/10.1016/j.cattod.2009.05.018; Zhang L, Aboagye A, Kelkar A, Lai C, Fong H (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49:463–480. https://doi.org/10.1007/s10853-013-7705-y; Zhang J, An B, Hong Y, Meng Y, Hu X, Wang C, Lin J, Lin W, Wang Y (2017a) Pyrolysis of metal–organic frameworks to hierarchical porous Cu/Zn-nanoparticle@carbon materials for efficient CO2 hydrogenation. Mater Chem Front 1:2405–2409. https://doi.org/10.1039/C7QM00328E; Zhang X, Zhu X, Lin L, Yao S, Zhang M, Liu X, Wang X, Li Y, Shi C, Ma D (2017b) Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction. ACS Catal 7(1):912–918. https://doi.org/10.1021/acscatal.6b02991; Zhu X, Qu X, Li X, Liu J, Liu J, Zhu B, Shi C (2016) Selective reduction of carbon dioxide to carbon monoxide over Au/CeO2 catalyst and identification of reaction intermediate. Chin J Catal 37(12):2053–2058. https://doi.org/10.1016/S1872-2067(16)62538-X; https://dspace.tdea.edu.co/handle/tdea/3975
-
14
المؤلفون: V. Kyriakou, George E. Marnellos, Fernando Dorado, J. Díez-Ramírez, Paula Sánchez, S. Zafeiratos, Michalis Konsolakis
المصدر: RUIdeRA. Repositorio Institucional de la UCLM
instnameمصطلحات موضوعية: Materials science, Metanización, Inorganic chemistry, CO2 hydrogenation, Hidrogenación de CO2, chemistry.chemical_element, 02 engineering and technology, Co-based catalysts, 010402 general chemistry, 01 natural sciences, Catalysis, Metal, X-ray photoelectron spectroscopy, Methanation, Chemical Engineering (miscellaneous), Waste Management and Disposal, Process Chemistry and Technology, 021001 nanoscience & nanotechnology, 0104 chemical sciences, Chemical state, chemistry, visual_art, Yield (chemistry), visual_art.visual_art_medium, 0210 nano-technology, Selectivity, Cobalt
وصف الملف: application/pdf
-
15Dissertation/ Thesis
المؤلفون: Ugalde Azpiazu, Ainhoa
المساهمون: Escuela Técnica Superior de Ingeniería Agronómica y Biociencias, Nekazaritzako Ingeniaritzako eta Biozientzietako Goi Mailako Eskola Teknikoa, Gandía Pascual, Luis, Reyero Zaragoza, Inés
مصطلحات موضوعية: Catalizador, Hidrogenación de CO2, Hidrógeno verde, HEO, Catalyst, CO2 hydrogenation, Green hydrogen
وصف الملف: application/pdf
Relation: https://hdl.handle.net/2454/46584
الاتاحة: https://hdl.handle.net/2454/46584
-
16Electronic Resource
المؤلفون: García Gómez, Hermenegildo, Primo Arnau, Ana María, Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química, Peng, Lu
مصطلحات الفهرس: Hidrogenación de CO2, Conversión de CO2 a metanol, Catalizadores a base de Cu-ZnO, Nanopartículas de aleación de Co-Fe, Nanopartículas metálicas (MNP), Grafeno dopado con nitrógeno, Metal nanoparticles (MNPs), N-doped graphene, Co-Fe alloy nanoparticles, Promotional effects, Cu-ZnO-based catalysts, Reverse water gas shift, CO2 hydrogenation, CO2 conversion to methanol, QUIMICA ORGANICA, info:eu-repo/semantics/doctoralThesis
-
17Electronic Resource
المؤلفون: Departament de Química Física i Inorgànica, Universitat Rovira i Virgili., Corral Pérez, Juan José
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات الفهرس: 62, 544, 542, 54, Ciències, Formic acid synthesis, Heterogeneous catalysis, CO2 hydrogenation, Síntesis de ácido fórmico, Catálisis heterogénea, Hidrogenación de CO2, Síntesi d'àcid fòrmic, Catàlisi heterogènia, Hidrogenació de CO2, info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis