يعرض 1 - 15 نتائج من 15 نتيجة بحث عن '"Heterouniones"', وقت الاستعلام: 0.62s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: Navarrete Gatell, Eric

    المساهمون: University/Department: Universitat Rovira i Virgili. Departament d'Enginyeria Electrònica, Elèctrica i Automàtica

    Thesis Advisors: Llobet Valero, Eduard

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  2. 2
  3. 3
    Academic Journal
  4. 4
  5. 5
    Dissertation/ Thesis

    المساهمون: Morales-Acevedo, Arturo, Bernal Correa, Roberto

    وصف الملف: xiii, 57 páginas; application/pdf

    Relation: M. Asif and T. Muneer, “Energy supply, its demand and security issues for developed and emerging economies,” Renew. Sustain. Energy Rev., vol. 11, no. 7, pp. 1388– 1413, Sep. 2007, doi:10.1016/J.RSER.2005.12.004.; C. Chen et al., “Recent Advances in Solar Energy Full Spectrum Conversion and Utilization,” ES Energy Environ., 2021, doi:10.30919/ESEE8C416.; A. Schinke-Nendza, F. von Loeper, P. Osinski, P. Schaumann, V. Schmidt, and C. Weber, “Probabilistic forecasting of photovoltaic power supply — A hybrid approach using D-vine copulas to model spatial dependencies,” Appl. Energy, vol. 304, p. 117599, Dec. 2021, doi:10.1016/J.APENERGY.2021.117599.; Z. Li, H. H. Tan, C. Jagadish, and L. Fu, “III–V Semiconductor Single Nanowire Solar Cells: A Review,” Adv. Mater. Technol., vol. 3, no. 9, pp. 1–12, 2018.; A. Ghazy, M. Safdar, M. Lastusaari, H. Savin, and M. Karppinen, “Advances in upconversion enhanced solar cell performance,” Sol. Energy Mater. Sol. Cells, vol. 230, p. 111234, Sep. 2021, doi:10.1016/J.SOLMAT.2021.111234.; E. C. Garnett, B. Ehrler, A. Polman, and E. Alarcon-Llado, “Photonics for Photovoltaics: Advances and Opportunities,” ACS Photonics, vol. 8, no. 1, pp. 61– 70, Jan. 2020, doi:10.1021/ACSPHOTONICS.0C01045.; G. Otnes and M. T. Borgström, “Towards high efficiency nanowire solar cells,” Nano Today, vol. 12, pp. 31–45, 2017.; J. Zhang, "Solar PV Market Research and Industry Competition Report," IOP Conf. Series: Earth and Environmental Science, vol 632 p. 032047, 2021 doi:10.1088/1755-1315/632/3/032047; K. T. VanSant, A. C. Tamboli, and E. L. Warren, “III-V-on-Si Tandem Solar Cells,” Joule, vol. 5, no. 3, pp. 514–518, Mar. 2021, doi:10.1016/J.JOULE.2021.01.010.; Z. Fang et al., “Perovskite-based tandem solar cells,” Sci. Bull., vol. 66, no. 6, pp. 621–636, Mar. 2021, doi:10.1016/J.SCIB.2020.11.006.; Q. Guo, C.-Y. Wang, T. Hayat, A. Alsaedi, J.-X. Yao, and Z.-A. Tan, “Recent advances in perovskite/organic integrated solar cells,” Rare Met. 2021 4010, vol. 40, no. 10, pp. 2763–2777, Feb. 2021, doi:10.1007/S12598-020-01703-Y.; B. Pal, K. J. Sarkar, and P. Banerji, “Fabrication and studies on Si/InP core-shell nanowire based solar cell using etched Si nanowire arrays,” Sol. Energy Mater. Sol. Cells, vol. 204, p. 110217, Jan. 2020, doi:10.1016/J.SOLMAT.2019.110217.; N. I. Goktas, P. Wilson, A. Ghukasyan, D. Wagner, S. McNamee, and R. R. LaPierre, “Nanowires for energy: A review,” Appl. Phys. Rev., vol. 5, no. 4, 2018.; M. K. Sahoo and P. Kale, “Integration of silicon nanowires in solar cell structure for efficiency enhancement: A review,” J. Mater., vol. 5, no. 1, pp. 34–48, Mar. 2019, doi:10.1016/J.JMAT.2018.11.007.; K. Korzun, G. W. Castellanos, D. K. G. de Boer, J. G. Rivas, and J. E. M. Haverkort, “Nanowire Solar Cell Above the Radiative Limit,” Adv. Opt. Mater., vol. 9, no. 2, p. 2001636, Jan. 2021, doi:10.1002/ADOM.202001636.; I. Aberg et al., “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovoltaics, vol. 6, no. 1, pp. 185–190, Jan. 2016, doi:10.1109/JPHOTOV.2015.2484967.; L. Hrachowina, Y. Zhang, A. Saxena, G. Siefer, E. Barrigon, and M. T. Borgstrom, “Development and Characterization of a bottom-up InP Nanowire Solar Cell with 16.7% Efficiency,” Conf. Rec. IEEE Photovolt. Spec. Conf., vol. 2020-June, pp. 1754–1756, Jun. 2020, doi:10.1109/PVSC45281.2020.9300394.; K. Lee et al., “17.6%-Efficient radial junction solar cells using silicon nano/micro hybrid structures,” Nanoscale, vol. 8, no. 30, pp. 14473–14479, Jul. 2016, doi:10.1039/C6NR04611H.; O. V. Pylypova et al., “Electrical and optical properties of nanowires based solar cell withradial p-n junction,” Opto-electronics Rev., vol. 27, no. 2, pp. 143–148, 2019.; S. Misra, L. Yu, W. Chen, M. Foldyna, and P. R. i Cabarrocas, “A review on plasma-assisted VLS synthesis of silicon nanowires and radial junction solar cells,” J. Phys. D. Appl. Phys., vol. 47, no. 39, p. 393001, Sep. 2014, doi:10.1088/0022- 3727/47/39/393001.; E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire Solar Cells,” http://dx.doi.org/10.1146/annurev-matsci-062910-100434, vol. 41, pp. 269– 295, Jul. 2011, doi:10.1146/ANNUREV-MATSCI-062910-100434.; B. Tian et al., “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature, vol. 449, no. 7164, pp. 885–889, 2007.; A. A. Luna, R. B. Correa, J. M. Monsalve, and A. M. Acevedo, “Design of thin film solar cells based on a unified simple analytical model,” J. Appl. Res. Technol., vol. 15, no. 6, pp. 599–608, Jul. 2019, doi:10.1016/J.JART.2017.08.002.; T. Ratz, J.-Y. Raty, G. Brammertz, B. Vermang, and N. D. Nguyen, “Opto-electronic properties and solar cell efficiency modelling of Cu2ZnXS4 (X = Sn, Ge, Si) kesterites,” J. Phys. Energy, vol. 3, no. 3, p. 035005, Jun. 2021, doi:10.1088/2515- 7655/ABEFBE.; F. A. Abed and L. M. Ali, “Investigation the absorption efficiency of GaAs/InAs nanowire solar cells,” J. Lumin., vol. 237, p. 118171, Sep. 2021, doi:10.1016/J.JLUMIN.2021.118171.; A. C. E. Chia and R. R. LaPierre, “Electrostatic model of radial pn junction nanowires,” J. Appl. Phys., vol. 114, no. 7, p. 074317, Aug. 2013, doi:10.1063/1.4818958.; S. K. Agnihotri, D. P. Samajdar, D. V. Prashant, and Z. Arefinia, “Numerical analysis of InP based high efficiency radial junction nanowire solar cell,” Opt. Mater. (Amst)., vol. 119, p. 111365, Sep. 2021, doi:10.1016/J.OPTMAT.2021.111365.; Ali NM, Allam NK, Haleem AMA, Rafat NH. Analytical modeling of the radial pn junction nanowire solar cells. J Appl Phys 2014.; Kayes BM, Atwatera HA, Lewis NS. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J Appl Phys 2005.; Petrosyan S, Yesayan A, Nersesyan S. Theory of nanowire radial p-n-junction, World Academy of Science, Engineering and Technology; 2012. p. 1038–43.; Wang S, Yan X, Zhang X, Li J, Ren X. Axially connected nanowire core-shell p-n junctions: a composite structure for high-efficiency solar cells. Nanoscale Res Lett 2015.; Yao M, Cong S, Arab S, Huang N, Povinelli ML, Cronin SB, et al. Tandem solar cells using GaAs nanowires on Si: design, fabrication, and observation of voltage addition. NanoLetters 2015.; Li M, Hu X, Ye Z, Ho K-M, Cao J, Miyawaki M. Higher-order incidence transfer matrix method used in three-dimensional photonic crystal coupled-resonator array simulation. Opt Lett 2006:31.; Li Y, Li M, Fu P, Li R, Song D, Shen C, et al. A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells. Sci Rep 2015;5:1–5.; Lundgren C, Lopez R, Redwing J, Melde K. FDTD modeling of solar energy absorption in silicon branched nanowires. Opt Express 2013:21.; Sturmberg BrCP, Dossou KB, Botten LC, Asatryan AA, Poulton CG, McPhedran RC, et al. Optimizing photovoltaic charge generation of nanowire arrays: a simple semianalytic approach. ACS Photon 2014.; C. de T.-M. Ibergraphi and undefined 2002, Energía solar fotovoltaica.; V. López Rodríguez, “Electromagnetismo I.,” p. 522, 2000.; N. Ida, “Engineering electromagnetics,” p. 1235, 2004, Accessed: May 22, 2022.; B. B. Laud, “Electromagnetics,” p. 335, 1987; J. M. Díaz Moreno and F. Benítez Trujillo, “Introducción a los métodos numéricos para la resolución de ecuaciones,” p. 124, 1998.; J. Costa Vigil and U. Ricardo Palma, “APPLICATION OF NUMERICAL METHODS TO SOLVE NONLINEAR EQUATIONS FOR SEA WAVE MODELING Escuela Profesional de Ingeniería Electrónica.”; S. M. (Solomon M. Ryvkin and I. V. (I ︠U︡ riĭ V. Shmart ︠s ︡ev, “Physics of p-n junctions and semiconductor devices.,” p. 366, 1971, Accessed: May 22, 2022.; Habib, M.H. Semiconductor P-n Junction Space Charge Region Capacitance. Portland State University 1992.; N. Huang and M. L. Povinelli, “Design of Passivation Layers on Axial Junction GaAs Nanowire Solar Cells,” 2014, doi:10.1109/JPHOTOV.2014.2351624.; Mark Lundstrom, "Heterostructure Fundamentals", School of Electrical and Computer Engineering-Purdue University 1995.; S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices,” Phys. Semicond. Devices, Oct. 2006, doi:10.1002/0470068329.; M. Yamaguchi, C. Uemura, and A. Yamamoto, “Radiation damage in InP single crystals and solar cells,” J. Appl. Phys., vol. 55, no. 6, p. 1429, Jun. 1998, doi:10.1063/1.333396.; V. Raj et al., “Indium phosphide based solar cell using ultra-thin ZnO as an electron selective layer,” J. Phys. D. Appl. Phys., vol. 51, no. 39, p. 395301, Aug. 2018, doi:10.1088/1361-6463/AAD7E3; https://repositorio.unal.edu.co/handle/unal/83394; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  6. 6

    المؤلفون: DAVID SALAZAR MARIN

    المساهمون: Durvel De la Cruz Romero

    المصدر: Universidad Juaréz Autónoma de Tabasco
    UJAT
    Repositorio Institucional de la Universidad Juárez Autónoma de Tabasco

    وصف الملف: application/pdf

  7. 7

    المؤلفون: Cipriano Marcos, Luis Antonio

    المساهمون: Olvera-Neria, Oscar, Ángel Montes, Gloria Alicia del, Haro Pérez, Catalina Ester, Valenzuela Zapata, Miguel Ángel

    المصدر: Universidad Autónoma Metropolitana
    UAM
    Repositorio Institucional Zaloamati

    وصف الملف: application/pdf

  8. 8
  9. 9

    المؤلفون: Chouhan, Ariana

    المساهمون: Stavrinadis, Alexandros, Konstantatos, Gerasimos, Universitat Politècnica de Catalunya. Departament d'Òptica i Optometria

    المصدر: UPCommons. Portal del coneixement obert de la UPC
    Universitat Politècnica de Catalunya (UPC)
    Recercat. Dipósit de la Recerca de Catalunya
    instname

    وصف الملف: application/pdf

  10. 10

    المؤلفون: Solís de la Fuente, Mauricio

    المساهمون: Rincón González, Marina Elizabeth

    المصدر: Universidad Nacional Autónoma de México
    UNAM
    Repositorio de Tesis DGBSDI, Dirección General de Bibliotecas y Servicios Digitales de Información, UNAM

    وصف الملف: application/pdf

  11. 11
    Dissertation/ Thesis
  12. 12

    المؤلفون: Salinas Avilés, Oscar Hilario

    المساهمون: Hu, Hailin

    المصدر: Universidad Nacional Autónoma de México
    UNAM
    Repositorio de Tesis DGBSDI, Dirección General de Bibliotecas y Servicios Digitales de Información, UNAM

    وصف الملف: application/pdf

  13. 13

    المساهمون: Hu, Hailin

    المصدر: Universidad Nacional Autónoma de México
    UNAM
    Repositorio de Tesis DGBSDI, Dirección General de Bibliotecas y Servicios Digitales de Información, UNAM

    وصف الملف: application/pdf

  14. 14
  15. 15
    Electronic Resource