-
1Academic Journal
المصدر: Smart Agricultural Technology, Vol 3, Iss , Pp 100075- (2023)
مصطلحات موضوعية: Cucumber crop, Hargreaves and Samani, Leaf temperature, Mediterranean climate, Reference evapotranspiration, Speaking plant, Agriculture (General), S1-972, Agricultural industries, HD9000-9495
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: Jiménez-Jiménez,Sergio Iván, Ojeda-Bustamante,Waldo, Inzunza-Ibarra,Marco Antonio, Marcial-Pablo,Mariana de Jesús
المصدر: Ingeniería agrícola y biosistemas v.13 n.2 2021
مصطلحات موضوعية: reanalysis data, assimilated data, FAO-56, Penman-Monteith, Hargreaves and Samani
وصف الملف: text/html
-
3Academic Journal
المصدر: Applied Sciences; Volume 11; Issue 23; Pages: 11491
مصطلحات موضوعية: temperature-based models, data imputation, tropical environment, logistic regression, Hargreaves and Samani, Bristow and Campbell
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: Energy Science and Technology; https://dx.doi.org/10.3390/app112311491
الاتاحة: https://doi.org/10.3390/app112311491
-
4Academic Journal
المؤلفون: Amir Haghverdi, Maggie Reiter, Anish Sapkota, Amninder Singh
المصدر: Agronomy; Volume 11; Issue 8; Pages: 1666
مصطلحات موضوعية: autonomous landscape irrigation, Hargreaves and Samani evapotranspiration model, water conservation
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: Water Use and Irrigation; https://dx.doi.org/10.3390/agronomy11081666
-
5Academic Journal
المصدر: Tecnología y ciencias del agua, Vol 8, Iss 3, Pp 93-110 (2017)
مصطلحات موضوعية: etp, pérdida de agua, evaporación, transpiración, hargreaves y samani, penman, penmanmonteith, Hydraulic engineering, TC1-978, Water supply for domestic and industrial purposes, TD201-500
وصف الملف: electronic resource
-
6Academic Journal
المصدر: Revista Ciência Agronômica, Vol 44, Iss 3, Pp 445-454 (2013)
مصطلحات موضوعية: Modelo digital elevação, Hargreaves e Samani, Temperatura do ar, SIG, Digital elevation model, Hargreaves and Samani, Air temperature, GIS, Agriculture (General), S1-972
وصف الملف: electronic resource
-
7Academic Journal
المصدر: Revista Ciência Agronômica. September 2013 44(3)
مصطلحات موضوعية: Digital elevation model, Hargreaves and Samani, Air temperature, GIS
وصف الملف: text/html
-
8Academic Journal
المؤلفون: Sonia Hossain, Koki Homma, Tatsuhiko Shiraiwa
المصدر: Plant Production Science, Vol 17, Iss 4, Pp 333-341 (2014)
مصطلحات موضوعية: Daily range of temperature, Decadal change, Empirical coefficient, Hargreaves and Samani model, Seasonal pattern, Solar radiation, Plant culture, SB1-1110
وصف الملف: electronic resource
-
9Academic Journal
المؤلفون: Macêdo, Kleber Gomes de, Arraes, Francisco Dirceu Duarte, Oliveira, Willame Candido de, Lima Junior, Juarez Cassiano de, Araujo, Yara Rodrigues
المصدر: Engineering in Agriculture; Vol. 25 No. 6 (2017); 540-548 ; Engenharia na Agricultura; v. 25 n. 6 (2017); 540-548 ; 2175-6813 ; 1414-3984 ; 10.13083/reveng.v25i6
مصطلحات موضوعية: Hargreaves e Samani, manejo de irrigação, penman-monteith
وصف الملف: application/pdf
-
10Academic Journal
المصدر: Tecnología y ciencias del agua v.8 n.3 2017
مصطلحات موضوعية: ETP, pérdida de agua, evaporación, transpiración, Hargreaves y Samani, Penman, Penman-Monteith
وصف الملف: text/html
-
11
المؤلفون: Hoyos Gómez, Laura Sofía
المساهمون: Ruiz Mendoza, Belizza Janet, Patricio Mendoza Araya, José Francisco Ruiz Muñoz, GIPEM - Grupo de Investigación en Potencia, Energía y Mercados
المصدر: Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombiaمصطلحات موضوعية: Human Development Index, Sustainable Development Goal Index, Spatial interpolation techniques, Energía solar, Técnicas de interpolación espacial, Temperature based models, Data imputation, Solar energy, Proyectos energéticos, Solar radiation, Proceso Analítico Jerárquico, Hargreaves y Samani, Electrificación rural, Multicriteria Approach, solar radiation mapping, 620 - Ingeniería y operaciones afines, Hargreaves and Samani, Índice de Metas de Desarrollo Sostenible, Community participation, Energy projects, Participación comunitaria, Analytic Hierarchy Process, Imputación de datos, Índice de Desarrollo Humano, Modelos basados en temperatura, Rural electrification, Mapeo de radiación solar, Radiación solar, 005 - Programación, programas, datos de computación [000 - Ciencias de la computación, información y obras generales]
وصف الملف: 131 páginas; application/pdf
-
12Dissertation/ Thesis
المؤلفون: Hoyos Gómez, Laura Sofía
المساهمون: Ruiz Mendoza, Belizza Janet, Patricio Mendoza Araya, José Francisco Ruiz Muñoz, GIPEM - Grupo de Investigación en Potencia, Energía y Mercados
مصطلحات موضوعية: 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación, 620 - Ingeniería y operaciones afines, Electrificación rural, Energía solar, Radiación solar, Rural electrification, Solar energy, Solar radiation, Community participation, Analytic Hierarchy Process, Multicriteria Approach, Energy projects, Human Development Index, Sustainable Development Goal Index, Temperature based models, Data imputation, Hargreaves and Samani, Spatial interpolation techniques, solar radiation mapping, Proyectos energéticos, Participación comunitaria, Proceso Analítico Jerárquico, Índice de Desarrollo Humano, Índice de Metas de Desarrollo Sostenible, Modelos basados en temperatura, Imputación de datos, Hargreaves y Samani
وصف الملف: 131 páginas; application/pdf
Relation: Abdullah, L., & Najib, L. (2016). Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: choosing energy technology in Malaysia. International Journal of Sustainable Energy, 35(4), 360–377. Retrieved from https://doi.org/10.1080/14786451.2014.907292 doi:10.1080/14786451.2014.907292; Abreu, E. F., Canhoto, P., Prior, V., & Melicio, R. (2018). Solar resource assessment through long-term statistical analysis and typical data generation with different time resolutions using GHI measurements. Renewable Energy, 127, 398–411. Retrieved from https://doi.org/10.1016/j.renene .2018.04.068 doi:10.1016/j.renene.2018.04.068; AENOR. (2004). Redes de estaciones meteorológicas automáticas: directrices para la validación de registros meteorológicos procedentes de redes de estaciones automáticas. Validación en tiempo real.; Agami Reddy, T. (2011). Applied Data Analysis and Modelling for Energy Engineers and Scientists. Springer London. doi:10.1007/978-1-4419-9613-8; Akinoglu, B. (2008a). Recent Advances in the Relations between Bright Sunshine Hours and Solar Irradiation. In Modeling solar radiation at the earth’s surface (pp. 115–143). Springer. doi: doi.org/ 10.1007/978-3-540-77455-6{\_}5; Akinoglu, B. (2008b). Recent Advances in the Relations between Bright Sunshine Hours and Solar Irradiation. In Modeling solar radiation at the earth’s surface (pp. 115–143). Springer. doi: doi.org/ 10.1007/978-3-540-77455-6{\_}5; Allen, R. G. (1997). Self-Calibrating Method for Estimating Solar Radiation From Air Temperature. Journal of Hydrologic Engineering, 2(250), 56–67.; Almorox, J., Hontoria, C., & Benito, M. (2011). Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain). Applied Energy. doi:10.1016/j.apenergy.2010.11 .003; Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de Pison, F. J., & Antonanzas-Torres, F. (2016). Review of photovoltaic power forecasting. Solar Energy, 136, 78–111. Retrieved from http://dx.doi.org/10.1016/j.solener.2016.06.069 doi:10.1016/j.solener.2016.06 .069References 103; Arbeláez-Arias, F.-A. (2006). Desarrollo sostenible y sus indicadores (Tech. Rep.). Cali: Centro de Investigaciones y Documentación Socioeconómica. Retrieved from http://bibliotecavirtual.clacso .org.ar/Colombia/cidse-univalle/20121116025351/Doc93.; Arbeláez Pérez, O. A. (2019). Informe mensual de localidades sin telemetría de las ZNI (Tech. Rep.). Centro Nacional de Monitoreo.; Aslani, A. (2014). Private sector investment in renewable energy utilisation: Strategic analysis of stakeholder perspectives in developing countries. International Journal of Sustainable Energy, 33(1), 112–124. doi:10.1080/14786451.2012.751916; Ávila, A. F., Escobar, E., & Torres Tobar, C. (2014). DEPARTAMENTO DE NARIÑO (Tech. Rep.). Fundación Paz y Reconciliación; Redprodepaz.; Aznar, J., & Guijarro, F. (2012). Nuevos métodos de valoración: modelos multicriterio. Retrieved from http://medcontent.metapress.com/index/A65RM03P4874243N.pdf; Badosa, J., Gobert, E., Grangereau, M., & Kim, D. (2017). Day-Ahead Probabilistic Forecast of Solar Irradiance: A Stochastic Differential Equation Approach. In P. Drobinski, M. Mougeot, D. Picard; R. Plougonven, & P. Tankov (Eds.), Mathematics & statistics (p. 22). Paris: Springer. Retrieved from http://www.springer.com/series/10533; Bakirci, K. (2009). Models of solar radiation with hours of bright sunshine: A review. doi:10.1016/j.rser.2009 .07.011; Balbás Egea, J. ff., & Eguren Egiguren, J. A. (2019). Bases for a sustainable energy model. Case study: Basque autonomous community. International Journal of Sustainable Energy, 38(9), 884–903. doi: 10 .1080/14786451.2019.1609474; Benali, L., Notton, G., Fouilloy, A., Voyant, C., & Dizene, R. (2019). Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components. Renewable Energy, 132, 871–884. doi:10.1016/j.renene.2018.08.044; Benson, R. B., Paris, M. V., Sherry, J. E., & Justus, C. G. (1984). Estimation of daily and montly direct, diffuse and global solar radiation from sunshine duration measurements. Solar Energy, 32(4), 523– 535. doi: doi.org/10.1016/0038-092X(84)90267-6; Berrar, D. (2018). Cross-validation. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 1-3, 542–545. doi:10.1016/B978-0-12-809633-8.20349-X; Bertelsmann Stiftung, & Sustainable Development Solutions Network (SDSN). (2016). Índice y paneles de los ODS. Informe global (Tech. Rep.). Retrieved from http://sdgindex.org/assets/files/ SDG-Index-ES-02.pdf; Besharat, F., Dehghan, A. A., & Faghih, A. R. (2013). Empirical models for estimating global solar radiation: A review and case study. doi:10.1016/j.rser.2012.12.043104 References; Bhattacharjee, S., Ghosh, S. K., & Chen, J. (2019). Semantic Kriging for Spatio-temporal Prediction (Vol. 839). Springer. doi: doi.org/10.1007/978-981-13-8664-0; Blaga, R., Sabadus, A., Stefu, N., Dughir, C., Paulescu, M., & Badescu, V. (2019). A current perspective on the accuracy of incoming solar energy forecasting. Progress in Energy and Combustion Science, 70, 119–144. Retrieved from https://doi.org/10.1016/j.pecs.2018.10.003 doi:10.1016/ j.pecs.2018.10.003; Blumthaler, M. (2012). Solar Radiation of the High Alps. In C. Lütz (Ed.), Plants in alpine regions cell physiology of adaptation and survival strategies (pp. 11–20). Springer Wien New York. doi:10.1007/ 978-3-7091-0136-0; Boland, J. (2008). Time Series Modelling of Solar Radiation. In V. Badescu (Ed.), Modeling solar radiation at the earth surface (pp. 283–311). Retrieved from http://link.springer.com/10.1007/978-1 -4471-4649-0_5 doi:10.1007/978-1-4471-4649-0{\_}5; Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Time series analysis : forecasting and control.; Bristow, K. L., & Campbell, G. S. (1984). On the relationship between incoming solar radiation and daily maximum and minimim temperature. Agricultural and Forest Meteorology, 31(2), 159–166.; Camblong, H., Sarr, J., Niang, A. T., Curea, O., Alzola, J. A., Sylla, E. H., & Santos, M. (2009). Microgrids project, Part 1: Analysis of rural electrification with high content of renewable energy sources in Senegal. Renewable Energy, 34(10), 2141–2150. Retrieved from http://dx.doi.org/10.1016/ j.renene.2009.01.015 doi:10.1016/j.renene.2009.01.015; Casella, G., & Berger, R. L. (2002). Statistical Inference (Second ed.). Thomson.; Chandola, D., Gupta, H., Tikkiwal, V. A., & Bohra, M. K. (2020). Multi-step ahead forecasting of global solar radiation for arid zones using deep learning. Procedia Computer Science, 167(Iccids 2019), 626– 635. Retrieved from https://doi.org/10.1016/j.procs.2020.03.329 doi:10.1016/j.procs .2020.03.329; Chen, J.-l., Liu, H.-b., Wu, W., & Xie, D.-t. (2011). Estimation of monthly solar radiation from measured temperatures using support vector machines - A case study. Renewable Energy, 36(1), 413– 420. Retrieved from http://dx.doi.org/10.1016/j.renene.2010.06.024 doi:10.1016/ j.renene.2010.06.024; Coimbra, C. F., Kleissl, J., & Marquez, R. (2013). Overview of Solar-Forecasting Methods and a Metric for Accuracy Evaluation. In J. Kleissl (Ed.), Solar energy forecasting and resource assessment (First ed., chap. Chapter 8). Elsevier. Retrieved from https://books.google.com.co/ books?hl=en&lr=&id=94KI0_SPwW8C&oi=fnd&pg=PP1&dq=Solar+energy+forecasting+ and+resource+assessment&ots=HcVnQHR7Mt&sig=XuSTldnWP5MKAP8J3YUHlBbfFCMReferences 105; CORPONARIÑO. (2001). Plan De Gestion Ambiental Regional 2002 - 2012 (Tech. Rep.). San Juan de Pasto: Corponariño. Retrieved from http://corponarino.gov.co/expedientes/pgar20022012/ pgar2002-2012.pdf; Dai, K. Y., Liu, G. R., Lim, K. M., & Gu, Y. T. (2003). Comparison between the radial point interpolation and the Kriging interpolation used in meshfree methods. , 32, 60–70. doi:10.1007/s00466-003-0462-z; DANE, & Banco de la República de Colombia. (2016). Coyuntura económica regional.; Dannecker, L. (2015). Energy Time Series Forecasting. Springer Vieweg. doi:10.1007/978-3-658-11039-0; Dawoud, F., Jbour, A., Al-salaymeh, A., Qoaider, L., & Fink, T. (2019). Innovative solutions for Renewable Energy and Energy Efficiency in Jordan. , 20(4), 201–216.; Demirhan, H., & Renwick, Z. (2018). Missing value imputation for short to mid-term horizontal solar irradiance data. Applied Energy, 225(March), 998–1012. Retrieved from https://doi.org/ 10.1016/j.apenergy.2018.05.054 doi:10.1016/j.apenergy.2018.05.054; Departamento Administrativo Nacional de Estadísitica - DANE. (2005). Déficit de vivienda. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza -y-condiciones-de-vida/deficit-de-vivienda; Departamento Administrativo Nacional de Estadísitica - DANE. (2009). Metodología Déficit de Vivienda (Tech. Rep.). Bogotá: Departamento Adminstrativo Nacional de Estadística.; Departamento Administrativo Nacional de Estadísitica - DANE. (2016). Valor Agregado según ramas de actividad económica y PIB (Clasificación Cuentas Nacionales) Serie 2000 - 2014p, Base 2005*. Retrieved from http://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas -nacionales/cuentas-nacionales-trimestrales#pib-por-rama-de-actividad; Departamento Administrativo Nacional de Estadísitica - DANE. (2017). Indicador de importancia económica municipal. Retrieved from https://www.dane.gov.co/index.php/estadisticas -por-tema/cuentas-nacionales/cuentas-nacionales-departamentales/indicador -de-importancia-economica-municipal; Departamento Administrativo Nacional de Estadísitica - DANE. (2018a). Encuesta de la calidad de vida (ECV). Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/ pobreza-y-condiciones-de-vida/calidad-de-vida-ecv; Departamento Administrativo Nacional de Estadísitica - DANE. (2018b). Estadísticas vitales nacimientos y defunciones. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por -tema/salud/nacimientos-y-defunciones; Departamento Administrativo Nacional de Estadísitica - DANE. (2018c). Fuerza laboral y educación. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/ educacion/fuerza-laboral-y-educacion106 References; Departamento Administrativo Nacional de Estadísitica-DANE. (2018d). Necesidades Básicas Insatisfechas. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza -y-condiciones-de-vida/necesidades-basicas-insatisfechas-nbi; Departamento Administrativo Nacional de Estadísitica - DANE. (2018e). Pobreza y desigualdad. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza -y-condiciones-de-vida/pobreza-y-desigualdad; Departamento Administrativo Nacional de Estadísitica - DANE. (2019). Necesidades básicas insatisfechas (NBI). Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/ pobreza-y-condiciones-de-vida/necesidades-basicas-insatisfechas-nbi; Diagne, M., Mathieu, D., Lauret, P., Boland, J., & Schmutz, N. (2013). Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renewable and Sustainable Energy Reviews, 27, 65–76. Retrieved from http://dx.doi.org/10.1016/j.rser.2013.06.042 doi:10.1016/j.rser.2013.06.042; Dirección de Inversiones y Finanzas Públicas. (2006). Manual de valoración y cuantificación de beneficios (Tech. Rep.). Departamento Nacional de Planeación.; Dos Santos, C. M., De Souza, J. L., Ferreira Junior, R. A., Tiba, C., de Melo, R. O., Lyra, G. B., … Lemes, M. A. M. (2014). On modeling global solar irradiation using air temperature for Alagoas State, Northeastern Brazil. Energy. doi:10.1016/j.energy.2014.04.116; Dos Santos, P. H., Neves, S. M., Sant’Anna, D. O., Oliveira, C. H. d., & Carvalho, H. D. (2019). The analytic hierarchy process supporting decision making for sustainable development: An overview of applications. Journal of Cleaner Production, 212, 119–138. Retrieved from https://doi.org/ 10.1016/j.jclepro.2018.11.270 doi:10.1016/j.jclepro.2018.11.270; El Congreso de Colombia. (2014). POR MEDIO DE LA CUAL SE REGULA LA INTEGRACIÓN DE LAS ENERGÍAS RENOVABLES NO CONVENCIONALES AL SISTEMA ENERGÉTICO (No. May). Retrieved from http:// www.upme.gov.co/Normatividad/Nacional/2014/LEY_1715_2014.pdf; Estévez, J., Gavilán, P., & Giráldez, J. V. (2011). Guidelines on validation procedures for meteorological data from automaticweather stations. Journal of Hydrology, 402(1-2), 144–154. doi:10.1016/j.jhydrol .2011.02.031; Fan, J., Chen, B., Wu, L., Zhang, F., Lu, X., & Xiang, Y. (2018). Evaluation and development of temperaturebased empirical models for estimating daily global solar radiation in humid regions. Energy, 144, 903–914. Retrieved from https://doi.org/10.1016/j.energy.2017.12.091 doi:10.1016/ j.energy.2017.12.091; Feleki, E., Vlachokostas, C., & Moussiopoulos, N. (2018). Characterisation of sustainability in urban areas: An analysis of assessment tools with emphasis on European cities. Sustainable Cities and Society, 43(July), 563–577. Retrieved from https://doi.org/10.1016/j.scs.2018.08.025 doi: 10 .1016/j.scs.2018.08.025References 107; Figueirêdo Neto, G. S., & Rossi, L. A. (2019). Photovoltaic energy in the enhancement of indigenous education in the Brazilian Amazon. Energy Policy, 132(May), 216–222. Retrieved from https:// doi.org/10.1016/j.enpol.2019.05.037 doi:10.1016/j.enpol.2019.05.037; Gaspars-Wieloch, H. (2019). Project Net Present Value estimation under uncertainty. Central European Journal of Operations Research, 27(1), 179–197. doi:10.1007/s10100-017-0500-0; Ghimire, S., Deo, R. C., Downs, N. J., & Raj, N. (2019). Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland Australia. Journal of Cleaner Production, 216, 288–310. Retrieved from https://doi.org/10.1016/ j.jclepro.2019.01.158 doi:10.1016/j.jclepro.2019.01.158; Ghimire, S., Deo, R. C., Raj, N., & Mi, J. (2019). Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms. Applied Energy, 253(April), 113541. Retrieved from https://doi.org/10.1016/j.apenergy.2019.113541 doi:10.1016/j.apenergy .2019.113541; Gobernación de Nariño. (2016a). Plan participativo de Desarrollo Departamental. Plan de Desarrollo Departamental de Nariño, 255. doi:10.1017/CBO9781107415324.004; Gobernación de Nariño. (2016b). Plan participativo de Desarrollo Departamental (Tech. Rep.). Gobernación de Nariño.; Goodin, D. G., Hutchinson, J.M. S., Vanderlip, R. L., Knapp, M. C., & Goodin, D. G. (1999). Estimating Solar Irradiance for Crop Modeling Using Daily Air Temperature Data. AGROCLIMATOLOGY, 91, 845–851.; Gueymard, C. A. (2014). A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects. Renewable and Sustainable Energy Reviews, 39, 1024–1034. Retrieved from http://dx.doi.org/10.1016/j.rser.2014.07 .117 doi:10.1016/j.rser.2014.07.117; Hargreaves, G.H., & Samani, Z. A. (1982). Estimating Potential Evapotranspiration. Journal of the Irrigation and Drainage Division, 108(IR3), 225–230.; Harrenll, F. E. (2015). Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis (Vol. 13) (No. 5). Springer. doi:10.1007/978-3-319-1925-7; Herrera-Grimaldi, P., García-Marín, A. P., & Estévez, J. (2019). Multifractal analysis of diurnal temperature range over Southern Spain using validated datasets. Chaos, 29(6). doi:10.1063/1.5089810; Husein, M., & Chung, I. Y. (2019). Day-ahead solar irradiance forecasting for microgrids using a long short-term memory recurrent neural network: A deep learning approach. Energies, 12(10). doi: 10 .3390/en12101856; Inman, R. H., Pedro, H. T., & Coimbra, C. F. (2013). Solar forecasting methods for renewable energy integration. Progress in Energy and Combustion Science, 39(6), 535–576. Retrieved from http://dx .doi.org/10.1016/j.pecs.2013.06.002 doi:10.1016/j.pecs.2013.06.002108 References; Instituto Departamental de Salud de Nariño. (2018). Informe de gestión programa de vigilancia de calidad del agua año 2017 (Tech. Rep.). Pasto.; Instituto Geográfico Agustín Codazzi - IGAC. (2014). Nariño características geográficas. Bogotà: Imprenta Nacional de Colombia.; International Energy Agency. (2017). International Energy Agency - Energy Access Outlook 2017: From poverty to prosperity. Energy Procedia, 94(March), 144. Retrieved from http:// www.iea.org/publications/freepublications/publication/WEO2017SpecialReport _EnergyAccessOutlook.pdf%0Ahttp://dx.doi.org/10.1016/j.enpol.2016. doi:10.1787/9789264285569-en; Introduction to Spatial Analysis. (2009). Introduction to Spatial Analysis.; J. Pacheco, & Contreras, E. (2008). Manual metodológico de evaluación multicriterio para programas y proyectos. Santiago de Chile: Instituto Latioamericano y del Caribe de Planificación Económica y Social - ILPES. Retrieved from http://www.fundacionpobreza.cl/biblioteca-temas.php ?id_tema=14; Jamaly, M., & Kleissl, J. (2017). Spatiotemporal interpolation and forecast of irradiance data using Kriging. Solar Energy, 158(February), 407–423. Retrieved from http://dx.doi.org/10.1016/ j.solener.2017.09.057 doi:10.1016/j.solener.2017.09.057; Jamil, B., & Akhtar, N. (2017). Comparison of empirical models to estimate monthly mean di ff use solar radiation from measured data : Case study for humid-subtropical climatic region of India. Renewable and Sustainable Energy Reviews, 77(February), 1326–1342. Retrieved from http://dx.doi.org/ 10.1016/j.rser.2017.02.057 doi:10.1016/j.rser.2017.02.057; Janjai, S., Laksanaboonsong, J., Nunez, M., & Thongsathitya, A. (2005). Development of a method for generating operational solar radiation maps from satellite data for a tropical environment. Solar Energy, 78, 739–751. doi:10.1016/j.solener.2004.09.009; Jeffrey, S. J., Carter, J. O., Moodie, K. B., & Beswick, A. R. (2001). Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environmental Modelling and Software, 16(4), 309– 330. doi:10.1016/S1364-8152(01)00008-1; Kipp & Zonen. (2000). Instruction Manual Pyranometer/ Albedometer CM11 e CM14.; Kiš, I. M. (2016). Comparison of Ordinary and Universal Kriging interpolation techniques on a depth variable (a case of linear spatial trend), case study of the Šandrovac Field. The Mining-Geology-Petroleum Engineering Bulletin, 31(2), 41–58. doi:10.17794/rgn.2016.2.4; Kleinbaum, D. G., & Klein, M. (2010). Logistic Regression: a self-learning text (No. 3). Springer. doi:10.1007/978-1-4419-1742-3; Konstantin, P., & Konstantin, M. (2018). Power and Energy Systems Engineering Economics. Gewerbestrasse: Springer. doi: https://doi.org/10.1007/978-3-319-72383-9References 109; Kwon, B. S., Park, R. J., & Song, K. B. (2020). Short-Term Load Forecasting Based on Deep Neural Networks Using LSTM Layer. Journal of Electrical Engineering and Technology, 15(4), 1501–1509. Retrieved from https://doi.org/10.1007/s42835-020-00424-7 doi:10.1007/s42835-020-00424-7; Layanun, V., Suksamosorn, S., & Songsiri, J. (2017). Missing-data Imputation for Solar Irradiance Forecasting in Thailand. In Sice annual conference (pp. 1234–1239). Kanazawa.; Li, H., Cao, F., Wang, X., & Ma, W. (2014). A Temperature-Based Model for Estimating Monthly Average Daily Global Solar Radiation in China. The Scientific World Journal, 2014. doi: doi.org/10.1155/2014/ 128754; Li, J., & Heap, A. D. (2008). A Review of Spatial Interpolation Methods for Environmental Scientists. Australian Geological Survey Organisation, 68(2008/23), 154. doi: http://www.ga.gov.au/image{\_}cache/ GA12526.pdf; Li, J., & Heap, A. D. (2011). A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecological Informatics, 6(3-4), 228–241. Retrieved from http://dx.doi.org/10.1016/j.ecoinf.2010.12.003 doi:10.1016/j.ecoinf.2010.12 .003; Li, J., & Heap, A. D. (2014). Environmental Modelling & Software Spatial interpolation methods applied in the environmental sciences : A review. Environmental Modelling and Software, 53, 173–189. Retrieved from http://dx.doi.org/10.1016/j.envsoft.2013.12.008 doi:10.1016/j.envsoft.2013 .12.008; Løken, E. (2007). Use ofmulticriteria decision analysismethods for energy planning problems. Renewable and Sustainable Energy Reviews, 11(7), 1584–1595. doi:10.1016/j.rser.2005.11.005; Manning, R. L. (1996). Logit regressions with continuous dependent variables measured with error. Applied Economics Letters, 3(3), 183–184. doi:10.1080/135048596356636; Mardani, A., Jusoh, A., Halicka, K., Ejdys, J., Magruk, A., & Ungku, U. N. (2018). Determining the utility in management by using multi-criteria decision support tools: a review. Economic ResearchEkonomska Istrazivanja, 31(1), 1666–1716. Retrieved from https://doi.org/10.1080/1331677X .2018.1488600 doi:10.1080/1331677X.2018.1488600; Marinakis, V., Papadopoulou, A. G., & Psarras, J. (2017). Local communities towards a sustainable energy future: needs and priorities. International Journal of Sustainable Energy, 36(3), 296–312. Retrieved from https://doi.org/10.1080/14786451.2015.1018264 doi:10.1080/14786451.2015 .1018264; Martín, A. M., & Dominguez, J. (2019). Solar Radiation Interpolation. In J. Polo, L. Martín-Pomares, & A. Sanfilipo (Eds.), Solar resources mapping (pp. 301–311). Springer. doi:10.1007/978-3-319-97484 -2{\_}12110 References; Martínez, A. G. (2018). Nariño: Departamento de Nariño Colombia - Informacion detallada Nariño Colombia. Retrieved from https://www.todacolombia.com/departamentos-de-colombia/ narino.html; Mary, S. A. S. A., & Suganya, G. (2016). Multi-Criteria Decision Making Using ELECTRE. Circuits and Systems, 07(06), 1008–1020. doi:10.4236/cs.2016.76085; Mayer, D. G., & Butler, D. G. (1993). Statistical validation. Ecological Modelling, 68(1-2), 21–32. doi:10.1016/0304-3800(93)90105-2; Mazorra-Aguiar, L., & Díaz, F. (2018). Solar Radiation Forecasting with Statistical Models. In R. Perez (Ed.), Wind field and solar radiation characterization and forecasting. (pp. 171–198). Springer. doi: 10 .1007/978-3-319-76876-2{\_}6; Meza F., & Varas E. (2000). Estimation of mean monthly solar global radiation as a function of temperature. Agricultural and Forest Meteorology 100 (2000) 231–241. , 100, 231–241.; Ministerio de Cultura. (2020). Sistema Nacional de Información Cultural. Retrieved from http://www.sinic.gov.co/SINIC/ColombiaCultural/ColCulturalBusca.aspx ?AREID=3&COLTEM=216&IdDep=52&SECID=8; Ministerio de Minas y Energía. (2018). Hidrocarburos - Ministerio de Minas y Energía. Retrieved from https://www.minminas.gov.co/cobertura-nacional1; Montedonico, M., Herrera-Neira, F., Marconi, A., Urquiza, A., & Palma-Behnke, R. (2018). Coconstruction of energy solutions: Lessons learned from experiences in Chile. Energy Research and Social Science, 45(July), 173–183. Retrieved from https://doi.org/10.1016/j.erss.2018.08.004 doi:10.1016/j.erss.2018.08.004; Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2008). Introduction to Time Series Analysis and Forecasting. New Jersey: John Wiley.; Moon, S. H., & Kim, Y. H. (2020). An improved forecast of precipitation type using correlation-based feature selection and multinomial logistic regression. Atmospheric Research, 240(February), 104928. Retrieved from https://doi.org/10.1016/j.atmosres.2020.104928 doi:10.1016/j.atmosres .2020.104928; Moreno, A., Gilabert, M. A., & Martínez, B. (2011). Mapping daily global solar irradiation over Spain: A comparative study of selected approaches. Solar Energy, 85(9), 2072–2084. doi:10.1016/j.solener .2011.05.017; Moritz, S., & Bartz-Beielstein, T. (2017). imputeTS: Time Series Missing Value Imputation in R. The R Journal, 9(1), 207–218. Retrieved from https://cran.r-project.org/web/packages/ imputeTS/vignettes/imputeTS-Time-Series-Missing-Value-Imputation-in-R.pdf; Mossos, ff. A. (2019). Informe mensual de telemetría (Tech. Rep.). Centro Nacional de Monitoreo.References 111; Munawar, U., & Wang, Z. (2020). A Framework of Using Machine Learning Approaches for Short-Term Solar Power Forecasting. Journal of Electrical Engineering and Technology, 15(2), 561–569. Retrieved from https://doi.org/10.1007/s42835-020-00346-4 doi:10.1007/s42835-020-00346-4; National Oceanic and Atmospheric Administration. (2020). Climate Prediction Center. Retrieved from https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ ONI_v5.php; Nwokolo, S. C., & Ogbulezie, J. C. (2017, 5). A quantitative review and classification of empirical models for predicting global solar radiation in West Africa. Beni-Suef University Journal of Basic and Applied Sciences. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/ S2314853517300458 doi:10.1016/j.bjbas.2017.05.001; Oficina de planeación educativa. (2018). Secretaría Departamental De Nariño. , 169. Retrieved from http://www.sednarino.gov.co/SEDNARINO12/phocadownload/2018/Descargas/2 .BOLETINESTADISTICO2017.pdf; Ogunsola, O. T., & Song, L. (2014). Restoration of long-term missing gaps in solar radiation. Energy and Buildings, 82, 580–591. Retrieved from http://dx.doi.org/10.1016/j.enbuild.2014.07 .088 doi:10.1016/j.enbuild.2014.07.088; Okundamiya, M. S., & Nzeako, A. N. (2011, 5). Empirical Model for Estimating Global Solar Radiation on Horizontal Surfaces for Selected Cities in the Six Geopolitical Zones in Nigeria. Journal of Control Science and Engineering, 2011, 1–7. Retrieved from http://www.hindawi.com/journals/jcse/ 2011/356405/ doi:10.1155/2011/356405; Olea, R. A. (1999). Simple Kriging. In Geostatistics for engineers and earth scientists (pp. 7–30). Boston, MA: Springer US. Retrieved from http://link.springer.com/10.1007/978-1-4615-5001-3_2 doi:10.1007/978-1-4615-5001-3{\_}2; Oliver, A. M., & Webster, R. (2015). Basic Steps in Geostatistics:The Variogram and Kriging. Springer. doi:10.1007/978-3-319-15865-5ISSN; Oliver, M. A., & Webster, R. (1990). Kriging : a method of interpolation for geographical information systems. International journal of geographical information systems, 4(3), 313–332.; Opoku, R., Adjei, E. A., Ahadzie, D. K., & Agyarko, K. A. (2020). Energy efficiency, solar energy and cost saving opportunities in public tertiary institutions in developing countries: The case of KNUST, Ghana. Alexandria Engineering Journal, 59(1), 417–428. Retrieved from https://doi.org/10.1016/ j.aej.2020.01.011 doi:10.1016/j.aej.2020.01.011; Palma-Behnke, R., Jiménez-Estévez, G., Sáez, D., Montedonico, M., Mendoza-Araya, P., Hernández, R., & Muñoz, C. (2019). Lowering electricity access barriers by means of participative processes applied to microgrid solutions : The Chilean case. Proceedings of the IEEE, 1–15. doi:10.1109/JPROC.2019 .2922342112 References; Paulescu, M. (2008). Solar Irradiation via Air Temperature Data. In V. Badescu (Ed.), Modeling solar radiation at the earth surface (pp. 175–193). Springer.; Paulescu, M., Paulescu, E., Gravila, P., & Badescu, V. (2013). Weather Modeling and Forecasting of PV Systems Operation. London: Springer London. Retrieved from http://link.springer.com/10.1007/ 978-1-4471-4649-0 doi:10.1007/978-1-4471-4649-0; Pebesma, E. (2016). Fitting variogram models in gstat. Retrieved from https://www.r-spatial.org/ r/2016/02/14/gstat-variogram-fitting.html; Pebesma, E., & Graeler, B. (2020). Package ’gstat’ Title Spatial and Spatio-Temporal Geostatistical Modelling, Prediction and Simulation (Tech. Rep.). Retrieved from https://github.com/r-spatial/gstat/ issues/; Premalatha, N., & Valan Arasu, A. (2016). Prediction of solar radiation for solar systems by using ANN models with different back propagation algorithms. Journal of Applied Research and Technology, 14(3), 206–214. Retrieved from http://dx.doi.org/10.1016/j.jart.2016.05.001 doi:10.1016/j.jart.2016.05.001; Quansah, E., Amekudzi, L. K., Preko, K., Aryee, J., Boakye, O. R., Boli, D., & Salifu, M. R. (2014, 1). Empirical Models for Estimating Global Solar Radiation over the Ashanti Region of Ghana. Journal of Solar Energy, 2014, 1–6. Retrieved from http://www.hindawi.com/journals/jse/2014/897970/ doi:10.1155/2014/897970; R Core Team. (2020). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/ Ramírez J., J. C., de Aguas P., J. M., & De Aguas, M. (2017). Escalafón de la competitividad de los departamentos de Colombia 2017 (Tech. Rep.). Bogotá. Retrieved from https://repositorio.cepal.org/ bitstream/handle/11362/43156/1/S1800010_es.pdf; Reikard, G. (2009). Predicting solar radiation at high resolutions: A comparison of time series forecasts. Solar Energy, 83(3), 342–349. Retrieved from http://dx.doi.org/10.1016/j.solener.2008 .08.007 doi:10.1016/j.solener.2008.08.007; Rivero, M., Orozco, S., Sellschopp, F. S., & Loera-Palomo, R. (2017). A new methodology to extend the validity of the Hargreaves-Samani model to estimate global solar radiation in different climates: Case study Mexico. Renewable Energy. doi:10.1016/j.renene.2017.08.003; Rodriguez, H. (2011). Observatorio de energías renovables en América Latina y el Caribe: Colombia. OLADE; ONUDI.; Rodríguez-Rivero, C., Pucheta, J., Laboret, S., Sauchelli, V., & Patiño, D. (2017). Short-Term Series Forecasting By Complete and Incomplete Datasets. Journal of Artificial Intelligence and Soft Computing Research, 7(1), 5–16.References 113; Saaty, T. L. (1990). How tomake a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26. doi:10.1016/0377-2217(90)90057-I; Saaty, T. L. (2008). Decision making with the analytic hierarchy process. Int. J. Servces Sciences, 1(1), 83. Retrieved from http://www.rafikulislam.com/uploads/resourses/ 197245512559a37aadea6d.pdf doi:10.1504/IJSSCI.2008.017590; Samani, Z. (2000). Estimating Solar Radiation and Evapotranspiration Using Minimum Climatological Data. Journal of Irrigation and Drainage Engineering, 126, 265–267. doi:10.1061/(ASCE)0733 -9437(2000)126:4(265); Sandia National Laboratories. (2021). Irradiance & Insolation. Retrieved from https://pvpmc.sandia .gov/modeling-steps/1-weather-design-inputs/irradiance-and-insolation-2/; Sankar, G., Kumar, P., & Maiti, R. (2018). Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon ( SOC ). Journal of the Saudi Society of Agricultural Sciences, 17(2), 114–126. Retrieved from https://doi.org/10.1016/j.jssas.2016.02.001 doi:10.1016/ j.jssas.2016.02.001; Şen, Z. (2008). Solar Energy Fundamentals and Modeling Techniques. Springer. doi:10.1007/978-1-84800 -134-3; Serrano, A., Sanchez, G., & Cancillo, M. L. (2015). Correcting daytime thermal offset in unventilated pyranometers. Journal of Atmospheric and Oceanic Technology, 32(11), 2088–2099. doi:10.1175/JTECH -D-15-0058.1; Shumway, R. H., & Stoffer, D. S. (2011). Time Series Analysis and Its Applications With R Examples (Vol. 102; G. Casella, S. Fienberg, & I. Olkin, Eds.). Springer. Retrieved from http://books.google.com/ books?id=9tv0taI8l6YC doi:10.1007*978-1-4419-7865-3; Sobri, S., Koohi-Kamali, S., & Rahim, N. A. (2018, 1). Solar photovoltaic generation forecasting methods: A review. Energy Conversion and Management, 156, 459–497. Retrieved from https://www.sciencedirect.com/science/article/pii/S0196890417310622 doi: 10 .1016/J.ENCONMAN.2017.11.019; Suehrcke, H. (2000). On the relationship between duration of sunshine and solar radiation on the Earth’s surface: Angström’s equation revisited. Solar Energy, 68(5), 417–425.; Superintendencia de Servicios Públicos Domiciliarios SSPD. (2019). Zonas No Interconectadas – ZNI: Diagnóstico de la Prestación del Servicio de Energía Eléctrica 2019. Retrieved from https://www.superservicios.gov.co/sites/default/archivos/Publicaciones/ Publicaciones/2019/Nov/diagnostico_de_la_prestacion_del_servicio_zni_-_07 -11-2019-lo_1.pdf; Ubilla, K., Jiménez-Estévez, G. A., Hernádez, R., Reyes-Chamorro, L., Irigoyen, C. H., Severino, B., & PalmaBehnke, R. (2014). Smart microgrids as a solution for rural electrification: Ensuring long-term114 References sustainability through cadastre and business models. IEEE Transactions on Sustainable Energy, 5(4), 1310–1318. doi:10.1109/TSTE.2014.2315651; Unidad de Planeación Minero Energética. (2019). Índice de Cobertura de Energía Eléctrica - ICEE 2018 (Tech. Rep.). Bogotá: Unidad de Planeación Minero Energético. Retrieved from http://www.siel.gov.co/Inicio/CoberturadelSistemaIntercontecadoNacional/ ConsultasEstadisticas/tabid/81/Default.aspx; United Nations. (2018). Calculating the human development indices-graphical presentation Inequality-adjusted Human Development Index (IHDI) Knowledge Human Development Index (HDI) Long and healthy life A decent standard of living Human Development Index (HDI) Knowledge Long and (Tech. Rep.). Retrieved from http://hdr.undp.org/sites/default/files/hdr2018_technical_notes.pdf; Universidad de Nariño, Unidad de Planeación Minero Energética-UPME, Usaid, U. S. A. f. I. D., & Ipse, I. D. P. Y. P. D. S. E. P. L. Z. N. I. (2014). Diagnóstico energético y social del departamento de Nariño. , 127.; Universidad de Nariño; Unidad de Planeación Minero Energética; USAID; IPSE. (2014a). Bombeo De Agua Para Riego Utilizando Energía Solar (Tech. Rep.). San Juan de Pasto. Retrieved from http:// www1.upme.gov.co/sgic/sites/default/files/BombeoSolarTaminango.pdf; Universidad de Nariño; Unidad de Planeación Minero Energética; USAID; IPSE. (2014b). Diseño De Red Inalámbrica Rural Para Acceso a Internet En Las Instituciones Educativas Pertenecientes a Las Comunidades Negras De Las Subregiones De Sanquianga , (Tech. Rep.).; Universidad de Nariño; Unidad de Planeación Minero Energética; USAID; IPSE. (2014c). Energía Solar Fotovoltaico Como Estrategia Alternativa y Sostenible de Energización en el Municipio de Santacruz (Tech. Rep.). San Juan de Pasto.; Universidad de Nariño; Unidad de Planeación Minero Energética; USAID; IPSE. (2014d). Estudio Para La Implementación De Un Sistema De Alumbrado Fotovoltaico En El Municipio (Tech. Rep.). San Juan de Pasto.; Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1–29. doi:10.1016/j.ejor.2004.04.028; Viera Díaz, M. A. (2002). Geoestadìsitica Aplicada. Instituto de Geofìsica UNAM; Instituto de Geofìsica y Astronomía CITMA.; Wang, J. J., Jing, Y. Y., Zhang, C. F., & Zhao, J. H. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13(9), 2263–2278. doi:10.1016/j.rser.2009.06.021; Webster, R., & Oliver, A. M. (2007). Geoestatistics for Environmental Scientists (Second ed., Vol. 14; S. Senn, M. Scott, & V. Barnett, Eds.). John Wiley. doi:10.1097/00005344-198900149-00008References 115; Yang, S., Zhu, X., & Guo, W. (2018). Cost-Benefit Analysis for the Concentrated Solar Power in China. Journal of Electrical and Computer Engineering, 2018. doi:10.1155/2018/4063691; Žižlavský, O. (2014). Net Present Value Approach: Method for Economic Assessment of Innovation Projects. Procedia - Social and Behavioral Sciences, 156(November 2014), 506–512. doi:10.1016/ j.sbspro.2014.11.230; Zore, ff., Čuček, L., Širovnik, D., Novak Pintarič, Z., & Kravanja, Z. (2018). Maximizing the sustainability net present value of renewable energy supply networks. Chemical Engineering Research and Design, 131, 245–265. doi:10.1016/j.cherd.2018.01.035; https://repositorio.unal.edu.co/handle/unal/79679; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
13Academic Journal
مصطلحات موضوعية: Ingeniería, Modelado, Temperatura del aire, Irradiación solar global, Bristow y Campbell, Hargreaves y Samani
وصف الملف: application/pdf; 11-19
-
14Academic Journal
المؤلفون: Oliveira, Joaquim, Arraes, Francisco, Viana, Paula
المصدر: Revista Ciência Agronômica; v. 44 n. 3 (2013) ; 1806-6690 ; 0045-6888
مصطلحات موضوعية: Modelo digital elevação, Hargreaves e Samani, Temperatura do ar, SIG
وصف الملف: application/pdf
-
15
المؤلفون: Bourletsikas, A., Proutsos, N., Argyrokastritis, I.
المساهمون: Ευρωπαϊκή Επιτροπή, Υπουργείο Αγροτικής Ανάπτυξης και τροφίμων, Υπουργείο Περιβάλλοντος και Ενέργειας
المصدر: ΥΔΡΟΤΕΧΝΙΚΑ; Τόμ. 30 (2020); 41-55
HYDROTECHNIKA; Τόμ. 30 (2020); 41-55مصطلحات موضوعية: Μηνιαία ETo, δάσος, FAO56PM, Hargreaves, Hargreaves-Samani
وصف الملف: application/pdf
-
16Academic Journal
المؤلفون: Maza, Minotshing, Bandyopadhyay, Arnab, Bhadra, Aditi
المصدر: Agricultural Engineering International: CIGR Journal; Vol 22, No 3 (2020): CIGR Journal; 27-42 ; 1682-1130
مصطلحات موضوعية: Agricultural Engineering, Land and Water Management, Information Systems, Geoinformatics, Evapotranspiration, Net irrigation requirement, ArcObjects, Raster, FAO-56 PM, Hargreaves and Samani, geo, envir
جغرافية الموضوع: India
Time: 1971-2000
-
17
المصدر: Tecnología y ciencias del agua, Vol 8, Iss 3, Pp 93-110 (2017)
مصطلحات موضوعية: 0403 veterinary science, lcsh:TD201-500, ETP, pérdida de agua, evaporación, transpiración, Hargreaves y Samani, Penman, PenmanMonteith, lcsh:Hydraulic engineering, lcsh:Water supply for domestic and industrial purposes, 040301 veterinary sciences, lcsh:TC1-978, 0402 animal and dairy science, 04 agricultural and veterinary sciences, 040201 dairy & animal science
-
18
المصدر: Revista Ciência Agronômica, Volume: 44, Issue: 3, Pages: 445-454, Published: SEP 2013
Revista Ciência Agronômica v.44 n.3 2013
Revista ciência agronômica
Universidade Federal do Ceará (UFC)
instacron:UFCمصطلحات موضوعية: Hargreaves and Samani, Meteorology, Modelo digital elevação, Digital data, Soil Science, Shuttle Radar Topography Mission, Horticulture, GIS, Temperatura do ar, SIG, Air temperature, Latitude, Altitude, Evapotranspiration, Environmental science, Digital elevation model, Longitude, Agronomy and Crop Science, Hargreaves e Samani
وصف الملف: text/html
-
19
المؤلفون: Miquéias Gomes dos Santos, Geffson de Figueredo Dantas, A. B. Dalri, Luiz Fabiano Palaretti, João Alberto Fischer Filho, Vinicius Mendes Rodrigues de Oliveira
المساهمون: Universidade Federal de Viçosa (UFV), Universidade Estadual Paulista (UNESP)
المصدر: Scopus
Repositório Institucional da UNESP
Universidade Estadual Paulista (UNESP)
instacron:UNESPمصطلحات موضوعية: Jansen-Haise, Hargreaves and Samani, Penman-Monteith, Empirical equations
-
20
المؤلفون: Tatsuhiko Shiraiwa, Koki Homma, Sonia Hossain
المصدر: Plant Production Science, Vol 17, Iss 4, Pp 333-341 (2014)
مصطلحات موضوعية: Estimation, Decadal change, Radiation, lcsh:Plant culture, Atmospheric sciences, Empirical coefficient, Hargreaves and Samani model, Crop productivity, Data availability, Daily range of temperature, Climatic data, Seasonal pattern, Weather data, Range (statistics), Calibration, Solar radiation, Environmental science, lcsh:SB1-1110, Agronomy and Crop Science