يعرض 1 - 8 نتائج من 8 نتيجة بحث عن '"Hall, Ariana O."', وقت الاستعلام: 0.39s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المؤلفون: Wu, Nancy (ORCID 0000-0001-8901-6030), Kubo, Tomohiro (ORCID 0000-0003-3913-5845), Hall, Ariana O., Zurcher, Danielle M., Phadke, Sameer, Wallace, Rachel L. (ORCID 0000-0002-0637-3970), McNeil, Anne J. (ORCID 0000-0003-4591-3308)

    المصدر: Journal of Chemical Education. Jan 2020 97(1):80-86.

    Peer Reviewed: Y

    Page Count: 7

    مصطلحات جغرافية: Michigan

  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المساهمون: Howard Hughes Medical Institute

    المصدر: Journal of Chemical Education ; volume 96, issue 11, page 2524-2527 ; ISSN 0021-9584 1938-1328

  6. 6
    Academic Journal

    وصف الملف: application/pdf

    Relation: Hall, Ariana O.; Lee, Se Ryeon; Bootsma, Andrea N.; Bloom, Jacob W. G.; Wheeler, Steven E.; McNeil, Anne J. (2017). "Reactive ligand influence on initiation in phenylene catalyst‐transfer polymerization." Journal of Polymer Science Part A: Polymer Chemistry 55(9): 1530-1535.; http://hdl.handle.net/2027.42/136450; Journal of Polymer Science Part A: Polymer Chemistry; Note that the length of the alkyl chains has also changed, from methyl in the model system to hexyl in the polymerization.; S. R. Lee, J. W. G. Bloom, S. E. Wheeler, A. J. McNeil. Dalton Trans. 2013, 42, 4218 – 4222.; N. E. Huddleston, A. Roy, J. A. Bilbrey, Y. Zhao, J. Locklin, Macromol. Symp. 2015, 351, 27 – 36.; (a) A. Smeets, P. Willot, J. De Winter, P. Gerbaux, T. Verbiest, G. Koeckelberghs, Macromolecules 2011, 44, 6017 – 6025; (b) E. Kaul, V. Senkovskyy, R. Tkachov, V. Bocharova, H. Komber, M. Stamm, A. Kiriy, Macromolecules 2010, 43, 77 – 81.; (a) R. Miyakoshi, K. Shimono, A. Yokoyama, T. Yokozawa, J. Am. Chem. Soc. 2006, 128, 16012 – 16013; (b) E. L. Lanni, A. J. McNeil, J. Am. Chem. Soc. 2009, 131, 16573 – 16579.; Excess iPrMgCl can terminate polymer chains via reacting with the catalyst during CTP. As a consequence, less than 1 equiv iPrMgCl is typically used.; B. E. Love, E. G. Jones. J. Org. Chem. 1999, 64, 3755 – 3756.; (a) A. D. Becke, Phys. Rev. A 1988, 38, 3098 – 3100; (b) J. P. Perdew, Phys. Rev. B 1986, 33, 8822 – 8824.; (a) R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650 – 654; (b) A. D. McLean, G. S. Chandler, J. Chem. Phys. 1980, 72, 5639 – 5648; (c) T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. v. R. Schleyer, J. Comp. Chem. 1983, 4, 294 – 301.; (a) M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 1987, 86, 866 – 872; (b) J. M. L. Martin, A. Sundermann, J. Chem. Phys. 2001, 114, 3408 – 3420.; J. F. Hartwig, In Organotransition Metal Chemistry: From Bonding to Catalysis. University Science Books: Sausalito, CA, 2010; pp. 321 – 345.; V. P. Ananikov, D. G. Musaev, K. Morokuma, Organometallics. 2005, 24, 715 – 723.; When the alkene was 2‐butene, the crude reaction mixture contained the homodimerization product, consistent with disproportionation (SI).; Note that in the theoretical studies, X = Cl for all precatalysts ( 2a – 2f ). In the rate measurements, X = Cl for 2c, 2e, 2f and X = Br for 2b and 2d.; Note that the initiation rate constant ( k i ) cannot be obtained using equation 1 when it exceeds the propagation rate constant ( k p ).; Note that the initiation rate constants ( k i ) were obtained using the model system.; In contrast, the propagation rate constant ( k p ) was approx. 25% slower with Ph 3 P present.; (a) A. M. Levine, R. A. Stockland, Jr, R. Clark, I. Guzei, Organometallics 2002, 21, 3278 – 3284; (b) R. Bertani, A. Berton, G. Carturan, R. Campostrini, J. Organomet. Chem. 1988, 349, 263 – 268; (c) R. J. McKinney, D. C. Roe, J. Am. Chem. Soc. 1986, 108, 5167 – 5173; (d) K. Tatsumi, A. Nakamura, S. Komiya, A. Yamamoto, T. Yamamoto, J. Am. Chem. Soc. 1984, 106, 8181 – 8188; (e) S. Komiya, Y. Abe, A. Yamamoto, T. Yamamoto, Organometallics 1983, 2, 1466 – 1468.; (a) T. Yamamoto, M. Abla, Y. Murakami, Bull. Chem. Soc. Jpn. 2002, 75, 1997 – 2009; (b) R. Giovannini, T. Studemann, A. Devasagayaraj, G. Dussin, P. Knochel, J. Org. Chem. 1999, 64, 3544 – 3553; (c) T. Yamamoto, M. Abla, J. Organomet. Chem. 1997, 535, 209 – 211.; (a) C.‐Y. Huang, A. G. Doyle, J. Am. Chem. Soc. 2015, 137, 5638 – 5641; (b) C.‐Y. Huang, A. G. Doyle, J. Am. Chem. Soc. 2012, 134, 9541 – 9544; (c) L. Estévez, L. W. Tuxworth, J.‐M. Sotiropoulos, P. W. Dyer, K. Miqueu, Dalton Trans. 2014, 43, 11165 – 11179; (d) J. B. Johnson, T. Rovis, Angew. Chem. Int. Ed. 2008, 47, 840 – 871; (e) H. Kurosawa, H. Ohnishi, M. Emoto, N. Chatani, Y. Kawasaki, S. Murai, I. Ikeda, Organometallics 1990, 9, 3038 – 3042; (f) H. Kurosawa, H. Ohnishi, M. Emoto, Y. Kawasaki, S. Murai, J. Am. Chem. Soc. 1988, 110, 6272 – 6273; (g) T. Yamamoto, A. Yamamoto, S. Ikeda, J. Am. Chem. Soc. 1971, 93, 3350 – 3359.; (a) H. A. Bronstein, C. K. Luscombe, J. Am. Chem. Soc. 2009, 131, 12894 – 12895; (b) S. D. Boyd, A. K.‐Y. Jen, C. K. Luscombe, Macromolecules 2009, 42, 9387 – 9389.; Evans’ p K a Table. http://evans.rc.fas.harvard.edu/pdf/evans_pKa_table.pdf (accessed December 6, 2016 ).; The phrase refers to a quote by philosopher Ludwig Wittgenstein, who posited that “if a lion could talk, we would not understand him.” For reference, see: L. Wittgenstein, Philosophical Investigations, 4th ed.; G. E. M. Anscombe, P. M. S. Hacker, J. Schulte, trans.; Blackwell Publishing Ltd: United Kingdom, 2009; p. 327.; A common interpretation is that although we would be able to understand a talking lion, s/he would not be able to tell us about normal (non‐talking) lions. S. Budiansky, If a Lion Could Talk: Animal Intelligence and the Evolution of Consciousness. Free Press; 1998.; The percentages refer to the relative area ratios for each DP.; Similar ratios of end‐groups were observed with precatalysts 2b – d (SI).; (a) E. E. Sheina, J. Liu, M. C. Iovu, D. W. Laird, R. D. McCullough, Macromolecules 2004, 37, 3526 – 3528; (b) A. Yokoyama, R. Miyakoshi, T. Yokozawa, Macromolecules 2004, 37, 1169 – 1171; (c) R. Miyakoshi, A. Yokoyama, T. Yokozawa, Macromol. Rapid Commun. 2004, 25, 1663 − 1666.; (a) A. K. Leone, A. J. McNeil, Acc. Chem. Res. 2016, 49, 2822 – 2831; (b) T. Yokozawa, Y. Ohta, Chem. Rev. 2016, 116, 1950 – 1968; (c) R. Grisorio, G. P. Suranna, Polym. Chem. 2015, 6, 7781 – 7795; (d) Z. J. Bryan, A. J. McNeil, Macromolecules 2013, 46, 8395 − 8405.; (a) T. Hardeman, G. Koeckelberghs, Macromolecules 2015, 48, 6987 – 6993; (b) J. A. Amonoo, A. Li, G. E. Purdum, M. E. Sykes, B. Huang, E. F. Palermo, A. J. McNeil, M. Shtein, Y.‐L. Loo, P. F. Green, J. Mater. Chem. A 2015, 3, 20174 – 20184; (c) E. F. Palermo, S. B. Darling, A. J. McNeil, J. Mater. Chem. C 2014, 2, 3401 − 3406; (d) E. F. Palermo, H. L. van der Laan, A. J. McNeil, Polym. Chem. 2013, 4, 4606 − 4611.; G. R. McKeown, Y. Fang, N. K. Obhi, J. G. Manion, D. F. Perepichka, D. S. Seferos. ACS Macro Lett. 2016, 5, 1075 – 1079.

  7. 7
    Academic Journal
  8. 8
    Periodical