يعرض 1 - 16 نتائج من 16 نتيجة بحث عن '"Haddadou, Hamid"', وقت الاستعلام: 0.45s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Conference

    المساهمون: MOdel for Data Analysis and Learning MODAL

    وصف الملف: application/octet-stream

    Relation: 13th International Conference on Agents and Artificial Intelligence; http://hdl.handle.net/20.500.12210/122462

  3. 3
    Academic Journal
  4. 4
    Academic Journal

    المصدر: EAI Endorsed Transactions on Industrial Networks & Intelligent Systems; 2024, Vol. 11 Issue 2, p1-13, 13p

  5. 5
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR4574651; zbl:Zbl 07675564; reference:[1] Allaire, G., Briane, M.: Multiscale convergence and reiterated homogenisation.Proc. R. Soc. Edinb., Sect. A 126 (1996), 297-342. Zbl 0866.35017, MR 1386865, 10.1017/S0308210500022757; reference:[2] Bensoussan, A., Lions, J. L., Papanicolaou, G.: Perturbations et ``augmentation'' des conditions initiales.Singular Perturbations and Boundary Layer Theory Lecture Notes in Mathematics 594. Springer, Berlin (1977), 10-29. Zbl 0362.35005, MR 0460848; reference:[3] Cioranescu, D., Donato, P.: An Introduction to Homogenization.Oxford Lecture Series in Mathematics and Its Applications 17. Oxford University Press, Oxford (1999). Zbl 0939.35001, MR 1765047; reference:[4] Clark, M. R.: Existence of weak solutions for abstract hyperbolic-parabolic equations.Int. J. Math. Math. Sci. 17 (1994), 759-769. Zbl 0813.35046, MR 1298800, 10.1155/S0161171294001067; reference:[5] Lima, O. A. de: Existence and uniqueness of solutions for an abstract nonlinear hyperbolic-parabolic equation.Appl. Anal. 24 (1987), 101-116. Zbl 0589.35063, MR 0904737, 10.1080/00036818708839657; reference:[6] Douanla, A., Tetsadjio, E.: Reiterated homogenization of hyperbolic-parabolic equations in domains with tiny holes.Electron. J. Differ. Equ. 2017 (2017), Article ID 59, 22 pages. Zbl 1370.35038, MR 3625939; reference:[7] Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J.: Homogenization of parabolic equations with an arbitrary number of scales in both space and time.J. Appl. Math. 2014 (2014), Article ID 101685, 16 pages. Zbl 1406.35140, MR 3176810, 10.1155/2014/101685; reference:[8] Flodén, L., Persson, J.: Homogenization of nonlinear dissipative hyperbolic problems exhibiting arbitrarily many spatial and temporal scales.Netw. Heterog.s Media 11 (2016), 627-653. Zbl 1356.35030, MR 3577222, 10.3934/nhm.2016012; reference:[9] Holmbom, A., Svanstedt, N., Wellander, N.: Multiscale convergence and reiterated homogenization of parabolic problems.Appl. Math., Praha 50 (2005), 131-151. Zbl 1099.35011, MR 2125155, 10.1007/s10492-005-0009-z; reference:[10] Migórski, S.: Homogenization of hyperbolic-parabolic equations in perforated domains.Univ. Iagell. Acta Math. 33 (1996), 59-72. Zbl 0880.35016, MR 1422438; reference:[11] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization.SIAM J. Math. Anal. 20 (1989), 608-623. Zbl 0688.35007, MR 0990867, 10.1137/0520043; reference:[12] Persson, J.: Homogenization of monotone parabolic problems with several temporal scales.Appl. Math., Praha 57 (2012), 191-214. Zbl 1265.35018, MR 2984600, 10.1007/s10492-012-0013-z; reference:[13] Yang, Z., Zhao, X.: A note on homogenization of the hyperbolic-parabolic equations in domains with holes.J. Math. Res. Appl. 36 (2016), 485-494. Zbl 1374.35045, MR 3559015, 10.3770/j.issn:2095-2651.2016.04.011; reference:[14] Yassine, H.: Well-posedness and asymptotic behavior of a nonautonomous, semilinear hyperbolic-parabolic equation with dynamical boundary condition of memory type.J. Integral Equations Appl. 25 (2013), 517-555. Zbl 1286.35042, MR 3161624, 10.1216/JIE-2013-25-4-517

  6. 6
    Book

    المصدر: Information Management and Big Data ; Communications in Computer and Information Science ; page 333-347 ; ISSN 1865-0929 1865-0937 ; ISBN 9783030762278 9783030762285

  7. 7
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR4299881; zbl:07396174; reference:[1] Briane, M.: Homogenization in general periodically perforated domains by a spectral approach.Calc. Var. Partial Differ. Equ. 15 (2002), 1-24. Zbl 1028.35018, MR 1920712, 10.1007/s005260100115; reference:[2] Briane, M., Damlamian, A., Donato, P.: $H$-convergence in perforated domains.Nonlinear Partial Differential Equations and Their Applications Pitman Research Notes in Mathematics Series 391. Longman, Harlow (1998), 62-100. Zbl 0943.35005, MR 1773075; reference:[3] Cancedda, A.: Spectral homogenization for a Robin-Neumann problem.Boll. Unione Mat. Ital. 10 (2017), 199-222. Zbl 1377.35092, MR 3655025, 10.1007/s40574-016-0075-z; reference:[4] Cioranescu, D., Paulin, J. Saint Jean: Homogenization of Reticuled Structures.Applied Mathematical Sciences 136. Springer, New York (1999). Zbl 0929.35002, MR 1676922, 10.1007/978-1-4612-2158-6; reference:[5] Damlamian, A., Donato, P.: Which sequences of holes are admissible for periodic homogenization with Neumann boundary condition?.ESAIM, Control Optim. Calc. Var. 8 (2002), 555-585. Zbl 1073.35020, MR 1932963, 10.1051/cocv:2002046; reference:[6] Douanla, H.: Homogenization of Steklov spectral problems with indefinite density function in perforated domains.Acta Appl. Math. 123 (2013), 261-284. Zbl 1263.35022, MR 3010234, 10.1007/s10440-012-9765-4; reference:[7] Hajji, M. El: Homogenization of linearized elasticity systems with traction condition in perforated domains.Electron. J. Differ. Equ. 1999 (1999), Article ID 41, 11 pages. Zbl 0952.74060, MR 1713600; reference:[8] Hajji, M. El, Donato, P.: $H^0$-convergence for the linearized elasticity system.Asymptotic Anal. 21 (1999), 161-186. Zbl 0942.74057, MR 1723547; reference:[9] Francfort, G. A., Murat, F.: Homogenization and optimal bounds in linear elasticity.Arch. Ration. Mech. Anal. 94 (1986), 307-334. Zbl 0604.73013, MR 0846892, 10.1007/BF00280908; reference:[10] Georgelin, C.: Contribution à l'étude de quelques problèmes en élasticité tridimensionnelle: Thèse de Doctorat.Université de Paris IV, Paris (1989), French.; reference:[11] Haddadou, H.: Iterated homogenization for the linearized elasticity by $H^{0}_{e}$-convergence.Ric. Mat. 54 (2005), 137-163. Zbl 1387.35034, MR 2290210; reference:[12] Haddadou, H.: A property of the $H$-convergence for elasticity in perforated domains.Electron. J. Differ. Equ. 137 (2006), Article ID 137, 11 pages. Zbl 1128.35017, MR 2276562; reference:[13] Jikov, V. V., Kozlov, S. M., Oleinik, O. A.: Homogenization of Differential Operators and Integral Functionals.Springer, Berlin (1994). Zbl 0838.35001, MR 1329546, 10.1007/978-3-642-84659-5; reference:[14] Kesavan, S.: Homogenization of elliptic eigenvalue problems I.Appl. Math. Optim. 5 (1979), 153-167. Zbl 0415.35061, MR 0533617, 10.1007/BF01442551; reference:[15] Léné, F.: Comportement macroscopique de matériaux élastiques comportant des inclusions rigides ou des trous répartis périodiquement.C. R. Acad. Sci., Paris, Sér. A 286 (1978), 75-78 French. Zbl 0372.73001, MR 0486458; reference:[16] Murat, F., Tartar, L.: $H$-convergence.Topics in the Mathematical Modelling of Composite Materials Progress in Nonlinear Differential Equations and Their Applications 31. Birkhäuser, Boston (1997), 21-43. Zbl 0920.35019, MR 1493039, 10.1007/978-1-4612-2032-9_3; reference:[17] Nandakumar, A. K.: Homogenization of eigenvalue problems of elasticity in perforated domains.Asymptotic Anal. 9 (1994), 337-358. Zbl 0814.35135, MR 1301169, 10.3233/ASY-1994-9403; reference:[18] Oleinik, O. A., Shamaev, A. S., Yosifian, G. A.: Mathematical Problems in Elasticity and Homogenization.Studies in Mathematics and Its Applications 26. North-Holland, Amsterdam (1992). Zbl 0768.73003, MR 1195131, 10.1016/s0168-2024(08)x7009-2; reference:[19] Spagnolo, S.: Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 22 (1968), 571-597 Italian. Zbl 0174.42101, MR 0240443; reference:[20] Suslina, T. A.: Spectral approach to homogenization of elliptic operators in a perforated space.Rev. Math. Phys. 30 (2018), Article ID 1840016, 57 pages. Zbl 1411.35029, MR 3846431, 10.1142/S0129055X18400160; reference:[21] Tartar, L.: Problèmes d'homogénéisation dans les équations aux dérivées partielles.Cours Peccot, Collège de France, Paris (1977), French.; reference:[22] Tartar, L.: The General Theory of Homogenization: A Personalized Introduction.Lecture Notes of the Unione Matematica Italiana 7. Springer, Berlin (2009). Zbl 1188.35004, MR 2582099, 10.1007/978-3-642-05195-1; reference:[23] Vanninathan, M.: Homogenization of eigenvalue problems in perforated domains.Proc. Indian Acad. Sci., Math. Sci. 90 (1981), 239-271. Zbl 0486.35063, MR 0635561, 10.1007/BF02838079

  8. 8
    Academic Journal

    المساهمون: MOdel for Data Analysis and Learning (MODAL), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Paul Painlevé - UMR 8524 (LPP), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Evaluation des technologies de santé et des pratiques médicales - ULR 2694 (METRICS), Université de Lille-Centre Hospitalier Régional Universitaire Lille (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire Lille (CHRU Lille)-École polytechnique universitaire de Lille (Polytech Lille)-Université de Lille, Sciences et Technologies

    المصدر: ISSN: 0926-8782.

    Relation: hal-03527445; https://hal.inria.fr/hal-03527445

  9. 9

    المؤلفون: Haddadou, Hamid

    المصدر: Electronic Journal of Differential Equations, 2006, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.

    وصف الملف: Text; 11 pages; 1 file (.pdf); application/pdf

    Relation: Haddadou, H. (2006). A property of the H-convergence for elasticity in perforated domains. Electronic Journal of Differential Equations, 2006(137), pp. 1-11.; https://digital.library.txstate.edu/handle/10877/14010

  10. 10
    Academic Journal

    المؤلفون: Haddadou, Hamid

    المصدر: Electronic Journal of Differential Equations, 2006, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.

    وصف الملف: Text; 11 pages; 1 file (.pdf); application/pdf

  11. 11
    Academic Journal

    المساهمون: Laboratoire de la Communication dans les Systèmes Informatiques ESI LCSI, MOdel for Data Analysis and Learning MODAL

    Relation: Distributed and Parallel Databases; http://hdl.handle.net/20.500.12210/122629

  12. 12
    Academic Journal
  13. 13
    Conference
  14. 14
    Book

    المؤلفون: Guerrache, Fares, Haddadou, Hamid

    المصدر: Modelling and Implementation of Complex Systems ; Lecture Notes in Networks and Systems ; page 19-29 ; ISSN 2367-3370 2367-3389 ; ISBN 9783319334097 9783319334103

  15. 15
    Academic Journal
  16. 16
    Academic Journal

    المؤلفون: Donato, Patrizia, Haddadou, Hamid

    المساهمون: Laboratoire de Mathématiques Raphaël Salem (LMRS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)

    المصدر: ISSN: 1343-4373 ; Advances in Mathematical Sciences and Applications ; https://hal.science/hal-00439099 ; Advances in Mathematical Sciences and Applications, 2006, 16 (2), pp.537-567.

    Relation: hal-00439099; https://hal.science/hal-00439099