يعرض 1 - 20 نتائج من 291 نتيجة بحث عن '"Haber, Tom"', وقت الاستعلام: 0.55s تنقيح النتائج
  1. 1
    Report
  2. 2
    Report
  3. 3
    Report
  4. 4
    Academic Journal
  5. 5
    Report

    المصدر: Computational Statistics, 2017. The final publication is available at Springer via http://dx.doi.org/10.1007/s00180-017-0765-8

    مصطلحات موضوعية: Statistics - Methodology

  6. 6
    Report
  7. 7
    Report
  8. 8
    Conference

    المساهمون: Lamotte, Wim/0000-0003-1888-6383

    وصف الملف: application/pdf

    Relation: Lecture Notes in Computer Science; 11536; Rodrigues, João M. F.; Cardoso, Pedro J. S.; Monteiro, Jânio; Lam, Roberto; Lees, Michael H.; Dongarra, Jack J.; Sloot, Peter M.A. (Ed.). Computational Science – ICCS 2019 19th International Conference, Faro, Portugal, June 12–14, 2019, Proceedings, Part I, SPRINGER INTERNATIONAL PUBLISHING AG, p. 628 -641; http://hdl.handle.net/1942/33064; 641; 628; WOS:000589288200046

  9. 9
    Report
  10. 10
    Book

    المصدر: Lecture Notes in Computer Science ; Computational Science – ICCS 2020 ; page 161-174 ; ISSN 0302-9743 1611-3349 ; ISBN 9783030503703 9783030503710

  11. 11
    Conference

    المساهمون: NEMETH, Balazs, HABER, Tom, LIESENBORGS, Jori, LAMOTTE, Wim

    وصف الملف: application/pdf

    Relation: Lecture Notes in Computer Science; 10861; Shi, Yong; Fu, Haohuan; Tian, Yingjie; Krzhizhanovskaya, Valeria V.; Lees, Michael Harold; Dongarra, Jack; Sloot, Peter M. A. (Ed.). Computational Science – ICCS 2018, Springer,p. 799-805; http://hdl.handle.net/1942/26182; 805; 799

  12. 12
    Conference

    المصدر: 0302-9743 ; Lecture notes in computer science

    مصطلحات موضوعية: Mathematics, Biology, Computer. Automation

    Relation: info:eu-repo/semantics/altIdentifier/isi/000589293800035

  13. 13
    Academic Journal
  14. 14
    Conference

    مصطلحات موضوعية: SGD, sliding window, machine learning, SVM, logistic regression

    وصف الملف: application/pdf

    Relation: Procedia Computer Science; 108; info:eu-repo/grantAgreement/EC/H2020/671555; Koumoutsakos, Pedro; Lees, Michael; Krzhizhanovskaya, Valeria; Dongarra, Jack; Sloot, Peter M. A. (Ed.). International conference on computational science (ICCS 2017), Elsevier Science BV,p. 2318-2322; http://hdl.handle.net/1942/26396; 2322; 2318; 000404959000243

  15. 15
    Conference

    وصف الملف: application/pdf

    Relation: Procedia Computer Science; @inproceedings{Amdahl:1967, author = {Amdahl, Gene M.}, title = {Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities}, booktitle = {Proc. of the April 18-20, 1967, Spring Joint Computer Conf.}, series = {AFIPS '67 (Spring)}, year = {1967}, location = {Atlantic City, New Jersey}, pages = {483--485}, numpages = {3}, url = {http://doi.acm.org/10.1145/1465482.1465560}, acmid = {1465560}, publisher = {ACM}, address = {New York, NY, USA}, } @article{Andrieu2003, title = {{An introduction to MCMC for machine learning}}, year = {2003}, journal = {Machine Learning}, author = {Andrieu, Christophe and De Freitas, Nando and Doucet, Arnaud and Jordan, Michael I.}, number = {1-2}, pages = {5--43}, volume = {50}, isbn = {08856125 (ISSN)}, issn = {08856125}, pmid = {178037200001}, arxivId = {1109.4435v1}, keywords = {MCMC, Markov chain Monte Carlo, Sampling, Stochastic algorithms} } @article{Calderhead2014, title = {{A general construction for parallelizing Metropolis-Hastings algorithms.}}, year = {2014}, journal = {Proc. of the National Academy of Sciences of the United States of America}, author = {Calderhead, Ben}, number = {49}, pages = {17408--13}, volume = {111}, url = {http://www.pnas.org/content/111/49/17408.abstract}, issn = {1091-6490}, pmid = {25422442}, keywords = {Bayesian inference, Hamiltonian dynamics, Markov chain Monte Carlo, parallel computation} } @article{Banterle2014, title = {{Accelerating Metropolis-Hastings algorithms: Delayed acceptance with prefetching}}, year = {2014}, journal = {arXiv}, author = {Banterle, Marco and Grazian, Clara and Robert, Christian P}, pages = {20}, url = {http://arxiv.org/abs/1406.2660}, arxivId = {1406.2660}, keywords = {acceptance probability, big data, higgs boson, jeffreys prior, large scale learning and, likelihood function, mcmc, mixtures of distributions} } @article{Korattikara2013, title = {{Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget}}, year = {2013}, journal = {Proc. of the 30th Int. Conf. on Machine Learning}, author = {Korattikara, Anoop and Chen, Yutian and Welling, Max}, pages = {1--23}, volume = {32}, url = {http://arxiv.org/abs/1304.5299}, isbn = {9781634393973}, arxivId = {1304.5299} } @article{Scott2016, title = {{Bayes and big data: the consensus Monte Carlo algorithm}}, year = {2016}, journal = {Int. Journal of Management Science and Engineering Management}, author = {Scott, Steven L. and Blocker, Alexander W. and Bonassi, Fernando V and Chipman, Hugh A and George, Edward I and McCulloch, Robert E.}, number = {2}, pages = {78--88}, volume = {11}, url = {http://www.rob-mcculloch.org/some_papers_and_talks/papers/working/consensus-mc.pdf}, issn = {1750-9653} } @book{Eijkhout2011, title = {{Introduction to High Performance Scientific Computing}}, year = {2011}, author = {Eijkhout, Victor}, pages = {446}, publisher = {lulu.com}, url = {http://www.tacc.utexas.edu/~eijkhout/istc/istc.html}, isbn = {978-1-257-99254-6}, keywords = {parallel computing} } @article{Robert2015, title = {{The Metropolis-Hastings algorithm}}, year = {2015}, author = {Robert, Christian P.}, number = {Mcmc}, pages = {1--15}, url = {http://arxiv.org/abs/1504.01896}, isbn = {9781118445112}, arxivId = {1504.01896}, keywords = {and phrases, bayesian inference, gibbs sampler, hamiltonian monte carlo, hastings algorithm, intractable density, langevin diffusion, markov chains, mcmc meth-, metropolis, ods} } @article{Zhao2015, title = {{Towards cost-effective and high-performance caching middleware for distributed systems}}, year = {2016}, journal = {Int. Journal of Big Data Intell.}, author = {Zhao, Dongfang and Qiao, Kan and Raicu, Ioan}, number = {2}, pages = {92}, volume = {3}, url = {http://www.inderscience.com/link.php?id=77358}, issn = {2053-1389}, keywords = {Heterogeneous Storage, Hy-brid File Systems, Index Terms—Distributed File Systems, SSD, User Level File Systems} } @article{He2014, author="Qiu, Junfei and Wu, Qihui and Ding, Guoru and Xu, Yuhua and Feng, Shuo", title="A survey of machine learning for big data processing", journal="EURASIP Journal on Advances in Signal Processing", year="2016", volume="2016", number="1", pages="67", abstract="There is no doubt that big data are now rapidly expanding in all science and engineering domains. While the potential of these massive data is undoubtedly significant, fully making sense of them requires new ways of thinking and novel learning techniques to address the various challenges. In this paper, we present a literature survey of the latest advances in researches on machine learning for big data processing. First, we review the machine learning techniques and highlight some promising learning methods in recent studies, such as representation learning, deep learning, distributed and parallel learning, transfer learning, active learning, and kernel-based learning. Next, we focus on the analysis and discussions about the challenges and possible solutions of machine learning for big data. Following that, we investigate the close connections of machine learning with signal processing techniques for big data processing. Finally, we outline several open issues and research trends.", issn="1687-6180", doi="10.1186/s13634-016-0355-x", url="http://dx.doi.org/10.1186/s13634-016-0355-x" } @article{McVoy1996, title = {{lmbench: Portable Tools for Performance Analysis}}, year = {1996}, journal = {Proc. of the USENIX Annual Technical Conf.}, author = {McVoy, Larry and Staelin, Carl}, number = {January} } @article{Williams2009, title = {{Roofline: an insightful visual performance model for multicore architectures}}, year = {2009}, journal = {Communications of the ACM}, author = {Williams, Samuel and Waterman, Andrew and Patterson, David}, number = {4}, pages = {65–76}, volume = {52}, url = {www.eecs.berkeley.edu/~waterman/papers/roofline.pdf}, isbn = {0001-0782}, issn = {0001-0782} } @article{Wulf1995, title = {{Hitting the memory wall: Implications of the Obvious}}, year = {1995}, journal = {ACM SIGARCH Computer Architecture News}, author = {Wulf, Wm. a. and McKee, Sally a.}, pages = {20--24}, volume = {23}, isbn = {0163-5964}, issn = {01635964} } @book{P.Murphy2012a, title = {{Machine Learning: A Probabilistic Perspective}}, year = {2012}, booktitle = {Machine Learning: A Probabilistic Perspective}, author = {P. Murphy, Kevin}, url = {https://mitpress.mit.edu/books/machine-learning-0}, isbn = {9780262306164} }; 108; info:eu-repo/grantAgreement/EC/H2020/671555; Procedia Computer Science, 108(C), p. 2348-2352 (Art N° 205); http://hdl.handle.net/1942/23913; 2352; C; 2348; 000404959000249; http://www.sciencedirect.com/science/article/pii/S1877050917305252

  16. 16
  17. 17
    Academic Journal
  18. 18
    Conference

    المساهمون: Ancuti, Cosmin, Ancuti, Codruta Orniana, Haber, Tom, Bekaert, Philippe

    وصف الملف: application/pdf

    Relation: SIGGRAPH '11 ACM SIGGRAPH 2011 Posters, ACM, (Art N° 12884754); http://hdl.handle.net/1942/13913

  19. 19
    Academic Journal

    المصدر: 0943-4062 ; Computational statistics

    مصطلحات موضوعية: Mathematics

    وصف الملف: pdf

    Relation: info:eu-repo/semantics/altIdentifier/isi/000413025300019

  20. 20
    Academic Journal