-
1Conference
المؤلفون: Jové, Beatriz, Gutiérrez, Alexis, Fernández Llamas, Camino, Sánchez, Lidia, Rodríguez Lera, Francisco Javier, Matellán Olivera, Vicente
مصطلحات موضوعية: Animal - Robot Interaction, Intelligent Robotics, Computer Vision, SELF-AIR project
Relation: http://hdl.handle.net/10045/146418; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-132356B-I00; Jové, Beatriz, et al. (2024). “Quadrupeds Robots in Herding: Metrics for Experimental Validation of Animal-Robot Interactions”. In: Cazorla, Miguel; Gomez-Donoso, Francisco; Escalona, Felix (Eds.). Proceedings of the XXIV Workshop of Physical Agents. Alicante: Universidad de Alicante. ISBN 978-84-09-63822-2, pp. 89-102; http://hdl.handle.net/10045/146444
الاتاحة: http://hdl.handle.net/10045/146444
-
2Conference
المؤلفون: Klinka, Thomas, Gutierrez, Alexis, Défarge, Christian, Auterives, Chrystelle, Jozja, Nevila
المساهمون: Bureau de Recherches Géologiques et Minières (BRGM), CEllule R&D d’Expertise et de TRAnsfert en TRAçages Appliqués à Hydrogéologie et à l’Environnement (CETRAHE), Université d'Orléans (UO), Institut des Sciences de la Terre d'Orléans - UMR7327 (ISTO), Bureau de Recherches Géologiques et Minières (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Géosciences pour l'énergie & l'environnement, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), University of Lorraine, Benicassim, Spain
المصدر: TRACER 9 – 9th International Conference on Tracers and Tracing Methods ; https://brgm.hal.science/hal-04517795 ; TRACER 9 – 9th International Conference on Tracers and Tracing Methods, University of Lorraine; Benicassim, Spain, May 2024, Benicassim, Spain
مصطلحات موضوعية: tracer test, trac software, pumping test, radial convergent flow, hydrodynamic, hydrodispersive properties, alluvial, breakthrough curve, Naphtionate, analytical modeling, real velocity, Loiret, [SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology, [SDU.STU.AG]Sciences of the Universe [physics]/Earth Sciences/Applied geology
جغرافية الموضوع: Benicassim, Spain
-
3Conference
المؤلفون: Noury, Gildas, Gutierrez, Alexis, Masson, Florian, Langlois, Daniel, Brugeron, Claire, Bessiere, Hélène, Vandromme, Rosalie, Mothe, Anne-Gaëlle
المساهمون: Bureau de Recherches Géologiques et Minières (BRGM), Groupe Spéléologique Orléanais (GSO), Direction Départementale des Territoires du Loiret, Département du Loiret, Métropole d’Orléans, Cofiroute, Communautés de Communes de la Beauce Loirétaine et de la Forêt
المصدر: Journées Nationales de Géotechnique et de Géologie de l’Ingénieur ; https://hal.science/hal-04511596 ; Journées Nationales de Géotechnique et de Géologie de l’Ingénieur, Jun 2024, Poitiers, France
مصطلحات موضوعية: calcaire, karst, doline, gouffre, mouvement, effondrement, vallée sèche, inondation, ruissellement, changement climatique, [SPI.GCIV.RISQ]Engineering Sciences [physics]/Civil Engineering/Risques, [SDU.STU.AG]Sciences of the Universe [physics]/Earth Sciences/Applied geology
Relation: hal-04511596; https://hal.science/hal-04511596; https://hal.science/hal-04511596/document; https://hal.science/hal-04511596/file/2024_Noury_Retreve_prJNGG_final.pdf
-
4Academic Journal
المصدر: Heliyon ; volume 10, issue 3, page e25358 ; ISSN 2405-8440
-
5Academic Journal
المؤلفون: Somasundaram, Rajasekharan, Connelly, Thomas, Choi, Robin, Choi, Hyeree, Samarkina, Anastasia, Li, Ling, Gregorio, Elizabeth, Chen, Yeqing, Thakur, Rohit, Abdel-Mohsen, Mohamed, Beqiri, Marilda, Kiernan, Meaghan, Perego, Michela, Wang, Fang, Xiao, Min, Brafford, Patricia, Yang, Xue, Xu, Xiaowei, Secreto, Anthony, Danet-Desnoyers, Gwenn, Traum, Daniel, Kaestner, Klaus H, Huang, Alexander C, Hristova, Denitsa, Wang, Joshua, Fukunaga-Kalabis, Mizuho, Krepler, Clemens, Ping-Chen, Fang, Zhou, Xiangyang, Gutierrez, Alexis, Rebecca, Vito W, Vonteddu, Prashanthi, Dotiwala, Farokh, Bala, Shashi, Majumdar, Sonali, Dweep, Harsh, Wickramasinghe, Jayamanna, Kossenkov, Andrew V, Reyes-Arbujas, Jorge, Santiago, Kenisha, Nguyen, Tran, Griss, Johannes, Keeney, Frederick, Hayden, James, Gavin, Brian J, Weiner, David, Montaner, Luis J, Liu, Qin, Peiffer, Lukas, Becker, Jürgen, Burton, Elizabeth M, Davies, Michael A, Tetzlaff, Michael T, Muthumani, Kar, Wargo, Jennifer A, Gabrilovich, Dmitry, Herlyn, Meenhard
المصدر: Nature communications. 12(1)
مصطلحات موضوعية: B-Lymphocytes, T-Lymphocytes, Lymphocytes, Tumor-Infiltrating, Mast Cells, Animals, Mice, Transgenic, Humans, Melanoma, Drug Resistance, Neoplasm, Programmed Cell Death 1 Receptor, Sunitinib, Immune Checkpoint Inhibitors
وصف الملف: application/pdf
URL الوصول: https://escholarship.org/uc/item/55w7j6n9
-
6Conference
المساهمون: Departamento de Energía, Corporación Universidad de la Costa, Jaime Orejuela
مصطلحات موضوعية: BlueSens, Bluevis, Yieldmaster, Biogas
وصف الملف: 6 páginas; application/pdf
Relation: 2023/03/25; Corporación Universidad de la Costa; Potencialidades del Yieldmaster para el desarrollo de proyectos de biogás; https://hdl.handle.net/11323/10023; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co
-
7Academic Journal
المؤلفون: Zhang, Peixiang, Csaki, Lauren S, Ronquillo, Emilio, Baufeld, Lynn J, Lin, Jason Y, Gutierrez, Alexis, Dwyer, Jennifer R, Brindley, David N, Fong, Loren G, Tontonoz, Peter, Young, Stephen G, Reue, Karen
المصدر: Journal of Clinical Investigation. 129(1)
مصطلحات موضوعية: Digestive Diseases, Animals, Apolipoprotein B-48, Chylomicrons, Enterocytes, Female, Homeostasis, Lipid Droplets, Male, Mechanistic Target of Rapamycin Complex 1, Mice, Mice, Knockout, Phosphatidate Phosphatase, Phospholipids, Triglycerides, Lipoproteins, Metabolism, Mouse models, Medical and Health Sciences, Immunology
وصف الملف: application/pdf
URL الوصول: https://escholarship.org/uc/item/37p9f08p
-
8Academic Journal
المؤلفون: Ducardo León, Molina López, Vidal Medina, Juan Ricardo, Sagastume Gutiérrez, Alexis, Cabello Eras, Juan J., López Sotelo, Jesús Alfonso, Hincapie, Simón, Quispe Oqueña, Enrique Ciro
مصطلحات موضوعية: Water-tube boilers, Cogeneration, Energy efficiency, Exergy efficiency, Bagasse
وصف الملف: 17 páginas; application/pdf
Relation: 17; 14; 15; Sustainability; 1. Taheri, K.; Gadow, R.; Killinger, A. Exergy Analysis as a Developed Concept of Energy Efficiency Optimized Processes: The Case of Thermal Spray Processes. Procedia CIRP 2014, 17, 511–516. [CrossRef] 2. IEA Key World Energy Statistics 2021—Analysis—IEA. Available online: https://www.iea.org/reports/key-world-energystatistics- 2021 (accessed on 26 December 2022). 3. Gupta, S.; Fügenschuh, A.; Ali, I. A Multi-Criteria Goal Programming Model to Analyze the Sustainable Goals of India. Sustainability 2018, 10, 778. [CrossRef] 4. Khan, M.F.; Pervez, A.; Modibbo, U.M.; Chauhan, J.; Ali, I. Flexible Fuzzy Goal Programming Approach in Optimal Mix of Power Generation for Socio-Economic Sustainability: A Case Study. Sustainability 2021, 13, 8256. [CrossRef] 5. Barroso, J.; Barreras, F.; Amaveda, H.; Lozano, A. On the Optimization of Boiler Efficiency Using Bagasse as Fuel. Fuel 2003, 82, 1451–1463. [CrossRef] 6. Zabat, L.H.; Akli Sadaoui, N.; Abid, M.; Sekrafi, H. Threshold Effects of Renewable Energy Consumption by Source in U.S. Economy. Electr. Power Syst. Res. 2022, 213, 108669. [CrossRef] 7. Arshad, M.; Ahmed, S. Cogeneration through Bagasse: A Renewable Strategy to Meet the Future Energy Needs. Renew. Sustain. Energy Rev. 2016, 54, 732–737. [CrossRef] 8. Khan, Y.; Oubaih, H.; Elgourrami, F.Z. The Effect of Renewable Energy Sources on Carbon Dioxide Emissions: Evaluating the Role of Governance, and ICT in Morocco. Renew Energy 2022, 190, 752–763. [CrossRef] 9. Saha, S.; Saleem, M.I.; Roy, T.K. Impact of High Penetration of Renewable Energy Sources on Grid Frequency Behaviour. Int. J. Electr. Power Energy Syst. 2023, 145, 108701. [CrossRef] 10. Castro, L.M. Simulation Framework for Automatic Load Frequency Control Studies of VSC-Based AC/DC Power Grids. Int. J. Electr. Power Energy Syst. 2022, 141, 108187. [CrossRef] 11. Østergaard, P.A. Comparing Electricity, Heat and Biogas Storages’ Impacts on Renewable Energy Integration. Energy 2012, 37, 255–262. [CrossRef] 12. Monshizadeh, P.; de Persis, C.; Stegink, T.; Monshizadeh, N.; van der Schaft, A. Stability and Frequency Regulation of Inverters with Capacitive Inertia. In Proceedings of the 2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017, Melbourne, VIC, Australia, 12–15 December 2017; pp. 5696–5701. [CrossRef] 13. Chen, T.; Zhang, Y.-J.; Liao, M.-R.; Wang, W.-Z. Coupled Modeling of Combustion and Hydrodynamics for a Coal-Fired Supercritical Boiler. Fuel 2019, 240, 49–56. [CrossRef] 14. Taler, D.; Trojan, M.; Dzierwa, P.; Kaczmarski, K.; Taler, J. Numerical Simulation of Convective Superheaters in Steam Boilers. Int. J. Therm. Sci. 2018, 129, 320–333. [CrossRef] 15. Zima, W. Simulation of Steam Superheater Operation under Conditions of Pressure Decrease. Energy 2019, 172, 932–944. [CrossRef] 16. Mali, C.R.; Vinod, V.; Patwardhan, A.W. New Methodology for Modeling Pressure Drop and Thermal Hydraulic Characteristics in Long Vertical Boiler Tubes at High Pressure. Prog. Nucl. Energy 2019, 113, 215–229. [CrossRef] 17. Sunil, P.U.; Barve, J.; Nataraj, P.S.V. Mathematical Modeling, Simulation and Validation of a Boiler Drum: Some Investigations. Energy 2017, 126, 312–325. [CrossRef] 18. Chodankar, B.M. Energy and Exergy Analysis of a Captive Steam Power Plant. In Proceedings of the International Conference on Energy and Environment, Chandigarh, India, 19–21 March 2009; pp. 263–266. 19. Hajebzadeh, H.; Ansari, A.N.M.; Niazi, S. Mathematical Modeling and Validation of a 320 MW Tangentially Fired Boiler: A Case Study. Appl. Therm. Eng. 2019, 146, 232–242. [CrossRef] 20. Centeno-González, F.O.; Lora, E.E.S.; Nova, H.F.V.; Reyes, A.M.M.; Jaén, R.L. Programming the Inverse Thermal Balance for a Bagasse-Fired Boiler, Including the Application of a Optimization Method in MATLAB. Sugar Tech. 2018, 20, 585–590. [CrossRef] 21. Sosa-Arnao, J.H.; Nebra, S.A. First and Second Law to Analyze the Performance of Bagasse Boilers. Int. J. Thermodyn. 2011, 14, 51–58. [CrossRef] 22. Parvez, Y.; Hasan, M.M. Exergy Analysis and Performance Optimization of Bagasse Fired Boiler. IOP Conf Ser Mater Sci Eng 2019, 691, 012089. [CrossRef] 23. Pellegrini, L.F.; de Oliveira Junior, S. Combined Production of Sugar, Ethanol and Electricity: Thermoeconomic and Environmental Analysis and Optimization. Energy 2011, 36, 3704–3715. [CrossRef] 24. Colombo, G.; Ocampo-Duque, W.; Rinaldi, F. Challenges in Bioenergy Production from Sugarcane Mills in Developing Countries: A Case Study. Energies 2014, 7, 5874–5898. [CrossRef] 25. Poli, M.; Bustamante, G.; Rivero, S.; Lagunes, M.; Pineda, N.; Escobedo, A.; Sustainability, C.; Manzini Poli, F.L.; Islas-Samperio, J.M.; García Bustamante, C.A.; et al. Sustainability Assessment of Solid Biofuels from Agro-Industrial Residues Case of Sugarcane Bagasse in a Mexican Sugar Mill. Sustainability 2022, 14, 1711. [CrossRef] 26. Hao, Y.S.; Chen, Z.; Sun, L.; Liang, J.; Zhu, H. Multi-Objective Intelligent Optimization of Superheated Steam Temperature Control Based on Cascaded Disturbance Observer. Sustainability 2020, 12, 8235. [CrossRef] 27. Varshney, D.; Mandade, P.; Shastri, Y. Multi-Objective Optimization of Sugarcane Bagasse Utilization in an Indian Sugar Mill. Sustain. Prod. Consum. 2019, 18, 96–114. [CrossRef] 28. Birru, E.; Erlich, C.; Herrera, I.; Martin, A.; Feychting, S.; Vitez, M.; Abdulhadi, E.B.; Larsson, A.; Onoszko, E.; Hallersbo, M.; et al. A Comparison of Various Technological Options for Improving Energy and Water Use Efficiency in a Traditional Sugar Mill. Sustainability 2016, 8, 1227. [CrossRef] 29. Coello, C.A.C.; Lamont, G.B.; van Veldhuizen, D.A. Evolutionary Algorithms for Solving Multi-Objective Problems; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 9780387310299. 30. Carrillo Caballero, G.E.; Mendoza, L.S.; Martinez, A.M.; Silva, E.E.; Melian, V.R.; Venturini, O.J.; del Olmo, O.A. Optimization of a Dish Stirling SystemWorking with DIR-Type Receiver Using Multi-Objective Techniques. Appl. Energy 2017, 204, 271–286. [CrossRef] 31. Vidal, J. Motor Stirling: Uma Alternativa Para a Geração de Eletricidade a Partir Da Biomassa Autónoma de Occidente; Universidad Autónoma de Occidente: Cali, Colombia, 2017. 32. Ohijeagbon, I.O.; Waheed, M.A.; Jekayinfa, S.O. Methodology for the Physical and Chemical Exergetic Analysis of Steam Boilers. Energy 2013, 53, 153–164. [CrossRef] 33. Herrera Palomino, M.; Castro Pacheco, E.; Duarte Forero, J.; Fontalvo Lascano, A.; Vásquez Padilla, R. Análisis Exergético de Un Ciclo Brayton Supercrítico Con Dióxido de Carbono Como Fluido de Trabajo. INGE CUC 2018, 14, 159–170. [CrossRef] 34. Feng,W.; Gong, D.; Yu, Z. Multi-Objective Evolutionary Optimization Based on Online Perceiving Pareto Front Characteristics. Inf. Sci. (N Y) 2021, 581, 912–931. [CrossRef] 35. Limleamthong, P.; Guillén-Gosálbez, G. Combined Use of Bilevel Programming and Multi-Objective Optimization for Rigorous Analysis of Pareto Fronts in Sustainability Studies: Application to the Redesign of the UK Electricity Mix. Comput. Aided Chem. Eng. 2018, 43, 1099–1104. [CrossRef] 36. Jiang, S.; Yang, S. An Improved Multiobjective Optimization Evolutionary Algorithm Based on Decomposition for Complex Pareto Fronts. IEEE Trans. Cybern. 2016, 46, 421–437. [CrossRef] 37. Ahmadi, P.; Khanmohammadi, S.; Musharavati, F.; Afrand, M. Development, Evaluation, and Multi-Objective Optimization of a Multi-Effect Desalination Unit Integrated with a Gas Turbine Plant. Appl. Therm. Eng. 2020, 176, 115414. [CrossRef] 38. Dincer, I.; Rosen, M.A.; Ahmadi, P. Optimization of Energy Systems; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2015; p. 472. 39. Hua, Y.; Liu, Q.; Hao, K.; Jin, Y. A Survey of Evolutionary Algorithms for Multi-Objective Optimization Problems with Irregular Pareto Fronts. IEEE/CAA J. Autom. Sin. 2021, 8, 303–318. [CrossRef] 40. Audet, C.; Bigeon, J.; Cartier, D.; le Digabel, S.; Salomon, L. Performance Indicators in Multiobjective Optimization. Eur. J. Oper. Res. 2021, 292, 397–422. [CrossRef] 41. Khanmohammadi, S.; Kizilkan, O.; Musharavati, F. Multiobjective Optimization of a Geothermal Power Plant. Thermodyn. Anal. Optim. Geotherm. Power Plants 2021, 279–291. [CrossRef] 42. Fette, B.A. Cognitive Radio Technology; Newnes: Burlington, NJ, USA, 2006. 43. Khanmohammadi, S.; Khanmohammadi, S.; Khorasanizadeh, H.; Afrand, M. Exergy and Exergoeconimic Analysis and Multi- Criteria Optimisation of 1 MW Installed CCHP System (a Case Study in Kashan University). Int. J. Exergy 2020, 32, 45–61. [CrossRef] 44. Khanmohammadi, S.; Rahimi, Z.; Khanmohammadi, S.; Afrand, M. Triple-Objective Optimization of a Double-Tube Heat Exchanger with Elliptic Cross Section in the Presence TiO2 Nanofluid. J. Therm. Anal. Calorim. 2020, 140, 477–488. [CrossRef] 45. Emmerich, M.T.M.; Deutz, A.H. A Tutorial on Multiobjective Optimization: Fundamentals and Evolutionary Methods. Nat. Comput. 2018, 17, 585–609. [CrossRef] [PubMed] 46. Verma, S.; Pant, M.; Snasel, V. A Comprehensive Review on NSGA-II for Multi-Objective Combinatorial Optimization Problems. IEEE Access 2021, 9, 57757–57791. [CrossRef] 47. Hojjati, A.; Monadi, M.; Faridhosseini, A.; Mohammadi, M. Application and Comparison of NSGA-II and MOPSO in Multi- Objective Optimization ofWater Resources Systems. J. Hydrol. Hydromech. 2018, 66, 323–329. [CrossRef] 48. Ferreira, J.C.; Fonseca, C.M.; Gaspar-Cunha, A. Methodology to Select Solutions from the Pareto-Optimal Set: A Comparative Study. In Proceedings of the GECCO 2007: Genetic and Evolutionary Computation Conference, London, UK, 7–11 July 2007; pp. 789–796. 49. Costa, N.; Lourenço, J. Responses’ Prediction Standard Error Analysis in Pareto Solutions. In Proceedings of the MATEC Web of Conferences, EDP Sciences, Malacca, Malaysia, 31 May 2017; p. 10007. 50. Rao, R.V.; Lakshmi, R.J. Ranking of Pareto-Optimal Solutions and Selecting the Best Solution in Multi- and Many-Objective Optimization Problems Using R-Method. Soft Comput. Lett. 2021, 3, 100015. [CrossRef] 51. Martí, R.; Sandoya, F. GRASP and Path Relinking for the Equitable Dispersion Problem. Comput. Oper. Res. 2013, 40, 3091–3099. [CrossRef] 52. Thunuguntla, V.K.; Injeti, S.K. Butterfly Optimizer Assisted Max–Min Based Multi-Objective Approach for Optimal Connection of DGs and Optimal Network Reconfiguration of Distribution Networks. J. Electr. Syst. Inf. Technol. 2022, 9, 1–25. [CrossRef] 53. Dinçer, I.; Rosen, M. Exergy, Energy, Environment and Sustainable Development, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 9780128243930. 54. Kotas, T.J. The Exergy Method of Thermal Plant Analysis; Butterworths: Great Britain, UK, 1985; ISBN 0408013508. 55. Hugot, E. Manual Para Ingenieros Azucareros; Continental: Mexico City, Mexico, 1982. 56. Mendoza Baeza, J.; Rojas Lago, F. Restauración de Servicio Multiobjetivo En Redes de Distribución Utilizando NSGA-II. Ingeniare. Rev. Chil. Ing. 2009, 17, 337–346. [CrossRef] 57. Vrajitoru, D. Large Population or Many Generations for Genetic Algorithms? Implications in Information Retrieval; Springer: Berlin/Heidelberg, Germany, 2000; pp. 199–222. [CrossRef]; Molina, D. L., et. al. (2023). Multiobjective Optimization of the Energy Efficiency and the Steam Flow in a Bagasse Boiler. Sustainability. 15(14). 17 p. https://doi.org/10.3390/su151411290; https://hdl.handle.net/10614/15878; https://doi.org/10.3390/su151411290; Universidad Autónoma de Occidente; Respositorio Educativo Digital UAO; https://red.uao.edu.co/
-
9Academic Journal
المؤلفون: Silva-Gutiérrez, Alexis, Artigas-Arias, Macarena, Alegría-Molina, Andrea, Guerra-Vega, Pablo, Navarrete, Pablo, Venegas, Ángela, Montecinos, Carlos, Vásquez, Lorena, Moraga, Karen, Rubilar, César, Villagrán, Germán, Parada, Rodrigo, Vitzel, Kaio Fernando, Marzuca-Nassr, Gabriel Nasri
المساهمون: Agencia Nacional de Investigación y Desarrollo, Universidad de La Frontera
المصدر: Frontiers in Physiology ; volume 14 ; ISSN 1664-042X
-
10Academic Journal
المؤلفون: Otero Meza, Daniel D., Sagastume Gutiérrez, Alexis, Cabello Eras, Juan J., Salcedo Mendoza, Jairo, Hernández Ruydíaz, Jorge
المصدر: Energy Conversion and Management ; volume 293, page 117522 ; ISSN 0196-8904
-
11Conference
المؤلفون: Brugeron, Alexandre, Heckmann, M, Lewis, M, Dochartaigh, Ó, Gutierrez, Alexis, Callec, Yannick, y, Broda, S, Macdonald, A, Podgorski, B., Upton, K, Zaepke, M
المساهمون: Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), British Geological Survey (BGS), Swiss Federal Insitute of Aquatic Science and Technology Dübendorf (EAWAG)
المصدر: Groundwater, key to the sustainable development goals ; https://brgm.hal.science/hal-03655473 ; Groundwater, key to the sustainable development goals, May 2022, Paris, France ; http://www.gw-sdg2022.fr/
مصطلحات موضوعية: [SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology, [SDU.STU.AG]Sciences of the Universe [physics]/Earth Sciences/Applied geology
Relation: hal-03655473; https://brgm.hal.science/hal-03655473; https://brgm.hal.science/hal-03655473/document; https://brgm.hal.science/hal-03655473/file/GW-SDG2022-Abstract-ECOWAS_Map_vfinal.pdf
-
12Conference
المساهمون: Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)
المصدر: UIS2022 ; https://hal.science/hal-03701705 ; UIS2022, Jul 2022, Le Bourget-du-Lac, France
مصطلحات موضوعية: [SDU.STU.AG]Sciences of the Universe [physics]/Earth Sciences/Applied geology, [SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology
جغرافية الموضوع: Le Bourget-du-Lac, France
Relation: hal-03701705; https://hal.science/hal-03701705; https://hal.science/hal-03701705/document; https://hal.science/hal-03701705/file/article_UIS_HUSSONetal.pdf
-
13Academic Journal
المؤلفون: Murphy, Debra A, Harrell, Lauren, Fintzy, Rachel, Belin, Thomas R, Gutierrez, Alexis, Vitero, Steven J, Shetty, Vivek
المصدر: The Journal of Behavioral Health Services & Research. 43(4)
مصطلحات موضوعية: Clinical and Health Psychology, Health Services and Systems, Health Sciences, Psychology, HIV/AIDS, Prevention, Clinical Research, Drug Abuse (NIDA only), Methamphetamine, Substance Misuse, Health Services, Infectious Diseases, Sexually Transmitted Infections, Dental/Oral and Craniofacial Disease, Behavioral and Social Science, Infection, Oral and gastrointestinal, Good Health and Well Being, Adult, Amphetamine-Related Disorders, Female, Health Services Needs and Demand, Humans, Male, Mouth Diseases, Nutrition Surveys, Oral Health, Propensity Score, Quality of Life, Young Adult, Public Health and Health Services, Social Work, Psychiatry, Health services and systems, Clinical and health psychology
وصف الملف: application/pdf
-
14Academic Journal
المؤلفون: Sagastume Gutiérrez, Alexis, Mendoza Fandiño, Jorge Mario, Cabello Eras, Juan José, Sofan German, Stiven Javier
مصطلحات موضوعية: ddc:330, Anaerobic digestion, Biomass wastes, Firewood, Renewable energy
Relation: gbv-ppn:1789514665; Journal: Development Engineering; Volume: 7; Year: 2022; Pages: 1-15; https://hdl.handle.net/10419/299107
-
15Academic Journal
مصطلحات موضوعية: CFD model, Absorption chiller, Ammonia, Lithium nitrate, Bubble absorber
وصف الملف: 9 páginas; application/pdf
Relation: Frontiers in Heat and Mass Transfer; Aggarwal, M. K., and Agarwal, R. S. (1986). Thermodynamic properties of lithium nitrate‐ammonia mixtures. Int. J. Energy Res. 10, 59 –68. https://doi.org/10.1002/er.4440100107; Amaris, C. (2013). Intensification of NH3 bubble absorption process using advanced surfaces and carbon nanotubes for NH3/LiNO3 absorption chillers. Available at: https://www.tdx.cat/handle/10803/128504; Amaris, C., Alvarez, M. E., Vallès, M., and Bourouis, M. (2020a). Performance assessment of an NH3/LiNO3 bubble plate absorber applying a semi -empirical model and artificial neural networks. Energies 13. https://doi.org/10.3390/en13174313; Amaris, C., and Bourouis, M. (2021). Boiling process assessment for absorption heat pumps: A review. Int. J. Heat Mass Transf. 179, 121723. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121723; Amaris, C., Bourouis, M., Vallès, M., Salavera, D., and Coronas, A. (2015). Thermophysical properties and heat and mass transfer of new working fluids in plate heat exchangers for absorption refrigeration systems. Heat Transf. Eng. 36. https://doi.org/10.1080/01457632.2014.923983; Amaris, C., Miranda, B. C., and Balbis -Morejón, M. (2020b). Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system. Therm. Sci. Eng. Prog. 20. https://doi.org/10.1016/j.tsep.2020.100684; Amaris, C., Rodriguez, A., Sagastume, A., and Bourouis, M. (2023). Performance Assessment of a Solar/Gas Driven NH3/LiNO3 Absorption Cooling System for Malls. Lect. Notes Mech. Eng., 311 –328. https://doi.org/10.1007/978-981-19-3467-4_19; Amaris, C., Vallès, M., and Bourouis, M. (2018). Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review. Appl. Energy 231, 826–853. https://doi.org/10.1016/j.apenergy.2018.09.071; Anand, S., Suresh, S., Dhanuskodi, R., and Santhosh Kumar, D. (2020). Comparison of cfd and empirical models for predicting wall temperature at supercritical conditions of water. Front. Heat Mass Transf. 14. https://doi.org/10.5098/hmt.14.8; ANSYS (2013). ANSYS Fluent Theory Guide. , ed. Ansys New York, USA https://doi.org/10.1016/0140-3664(87)90311- 2; Asfand, F., Stiriba, Y., and Bourouis, M. (2015). CFD simulation to investigate heat and mass transfer processes in a membrane -based absorber for water -LiBr absorption cooling systems. Energy. https://doi.org/10.1016/j.energy.2015.08.018; Asfand, F., Stiriba, Y., and Bourouis, M. (2016). Performance evaluation of membrane -based absorbers employing H2O/(LiBr + LiI+ LiNO3+ LiCl) andH2O/(LiNO3+ KNO3+ NaNO3) as working pairs in absorption coolingsystems. Energy. https://doi.org/10.1016/j.energy.2016.08.103; Ayou, D. S., Bruno, J. C., Saravanan, R., and Coronas, A. (2013). An overview of combined absorption power and cooling cycles. Renew. Sustain. Energy Rev. 21, 728 –748. https://doi.org/10.1016/j.rser.2012.12.068; Bhagat, R. D., and Deshmukh, S. J. (2022). Numerical analysis to predict the behavior of liquid vapor slug flow in vertically placed u -shaped closed capillary tube. Front. Heat Mass Transf. 19. https://doi.org/10.5098/hmt.19.14; Cerezo, J. (2006). Estudio del proceso de absorción con amoníaco -agua en intercambiadores de placas para equipos de refrigeración por absorción.; Cuenca, Y., Salavera, D., Vernet, A., Teja, A. S., and Vallès, M. (2014). Thermal conductivity of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions over a wide range of concentrations and temperatures. Int. J. Refrig. 38, 333 –340. https://doi.org/10.1016/j.ijrefrig.2013.08.010; Elperin, T., and Fominykh, A. (2003). Four stages of the simultaneous mass and heat transfer during bubble formation and rise in a bubbly absorber. Chem. Eng. Sci. 58, 3555 –3564. https://doi.org/10.1016/S0009-2509(03)00192-1; Florides, G. A., Tassou, S. A., Kalogirou, S. A., and Wrobel, L. C. (2002). Review of solar and low energy cooling technologies for buildings. Renew. Sustain. Energy Rev. 6, 557 –572. https://doi.org/10.1016/S1364-0321(02)00016-3; Haltenberger, W. (1939). Enthalpy -Concentration Charts from Vapor Pressure Data. Ind. Eng. Chem. 31, 783 –786. https://doi.org/10.1021/ie50354a032; Hosseinnia, S. M., Naghashzadegan, M., and Kouhikamali, R. (2016). CFD simulation of adiabatic water vapor absorption in large drops of water -LiBr solution. Appl. Therm. Eng. 102, 17 –29. https://doi.org/10.1016/j.applthermaleng.2016.03.144; Hosseinnia, S. M., Naghashzadegan, M., and Kouhikamali, R. (2017). CFD simulation of water vapor absorption in laminar falling film solution of water -LiBr ─ Drop and jet modes. Appl. Therm. Eng. 115, 860 –873. https://doi.org/10.1016/j.applthermaleng.2017.01.022; Kang, Y. T., Akisawa, A., and Kashiwagi, T. (2000). Analytical investigation of two different absorption modes: falling film and bubble types. Int. J. Refrig. 23, 430 –443. https://doi.org/10.1016/S0140-7007(99)00075-4; Kang, Y. T., Kashiwagi, T., and Christensen, R. N. (1998). Ammonia - water bubble absorber with a plate heat exchanger. in ASHRAE Transactions, 1565 –1575.; Karima, A., Djamel, S., Ali, N., and Houari, A. (2018). CFD investigations of thermal and dynamic behaviors in a tubular heat exchanger with butterfly baffles. Front. Heat Mass Transf. 10. https://doi.org/10.5098/hmt.10.27; Libotean, S., Martín, A., Salavera, D., Valles, M., Esteve, X., and Coronas, A. (2008). Densities, viscosities, and heat capacities of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions between (293.15 and 353.15) K. J. Chem. Eng. Data 53, 2383 –2388. https://doi.org/10.1021/je8003035; Libotean, S., Salavera, D., Valles, M., Esteve, X., and Coronas, A. (2007). Vapor -liquid equilibrium of ammonia + lithium nitrate + water and ammonia + lithium nitrate solutions from (293.15 to 353.15) K. J. Chem. Eng. Data 52, 1050 –1055. https://doi.org/10.1021/je7000045; Lima, A. A. S., Ochoa, A. A. V, Da Costa, J. A. P., and Henríquez, J. R. (2019). CFD simulation of heat and mass transfer in an absorber that uses the pair ammonia/water as a working fluid. Int. J. Refrig. 98, 514 –525. https://doi.org/10.1016/j.ijrefrig.2018.11.010; McNeely, L. A. (1979). Thermodynamic properties of aqueous solutions of lithium bromide. ASHRAE Trans. 85, 413 –434 .; Mendoza, J., Rhenals, J., Avila, A., Martinez, A., De la Vega, T., and Durango, E. (2021). Heat absorption cooling with renewable energies: a case study with photovoltaic solar energy and biogas in Cordoba, Colombia. INGE CUC 17, 1 –10. https://doi.org/10.17981/ingecuc.17.2.2021.01; Merrill, T. L., and Perez -Blanco, H. (1997). Combined heat and mass transfer during bubble absorption in binary solutions. Int. J. Heat Mass Transf. 40, 589 –603. https://doi.org/10.1016/0017-9310(96)00118 - 4; Mirzaie, M., Talebizadeh, A. R., and Hashemipour, H. (2020). CFD simulation of benzene adsorption on pistachio activated carbon porous media. Front. Heat Mass Transf. 14, 1 –7. https://doi.org/10.5098/hmt.14.1 9; Oronel, C., Amaris, C., Vallès, M., and Bourouis, M. (2010). Experiments on the characteristics of saturated boiling heat transfer in a plate heat exchanger for ammonia/lithium nitrate and ammonia/(lithium nitratewater). in 2010 3rd International Conference on Thermal Issues in Emerging Technologies, Theory and Applications - Proceedings, ThETA3 2010, 217 –225. https://doi.org/10.1109/THETA.2010.5766401; Panda, S. K., and Mani, A. (2016). CFD heat and mass transfer studies in a R134a -DMF bubble absorber with swirl flow entry of R134a vapour. Int. Compress. Eng. Refrig. Air Cond. High Perform. Build. Conf., 1 –10.; Rodríguez -Toscano, A., Amaris, C., Sagastume -Gutiérrez, A., and Bourouis, M. (2022). Technical, environmental, and economic evaluation of a solar/gas driven absorption chiller for shopping malls inthe Caribbean region of Colombia. Case Stud. Therm. Eng. 30, 101743. https://doi.org/10.1016/J.CSITE.2021.101743; Soheel, A. H., Jumaah, O. M., and Saleem, A. M. (2021). Simulation and investigation of nano -refrigerant fluid characteristics with the two -phase flow in microchannel. Front. Heat Mass Transf. 17. https://doi.org/10.5098/hmt.17.21; Suresh, M., and Mani, A. (2010). Heat and mass transfer studies on R134a bubble absorber in R134a/DMF solution based on phenomenological theory. Int. J. Heat Mass Transf. 53, 2813 –2825. https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.016; Triché, D., Bonnot, S., Perier -Muzet, M., Boudéhenn, F., Demasles, H., and Caney, N. (2017). Experimental and numerical study of a falling film absorber in an ammonia -water absorption chiller. Int. J. Heat Mass Transf. 111, 374 –385. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.008; Turkyilmazoglu, M. (2019). Cooling of Particulate Solids and Fluid in a Moving Bed Heat Exchanger. J. Heat Transfer 141, 114501. https://doi.org/10.1115/1.4044590; Turkyilmazoglu, M. (2021). Heat absorption due to falling film with imposed uniform mass fraction at the wall. Int. J. Heat Mass Transf. 177, 121585. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121585; Ullah, K. R., Saidur, R., Ping, H. W., Akikur, R. K., and Shuvo, N. H. (2013). A review of solar thermal refrigeration and cooling methods. Renew. Sustain. Energy Rev. 24, 499 –513. https://doi.org/10.1016/j.rser.2013.03.024; Versteeg, H. K., and Malalasekera, W. (1995). An introduction to computational fluid dynamics. The finite volume method. 1st ed. , ed. Longman Group Ltd New York.; Wu, X., Xu, S., and Jiang, M. (2018). Development of bubble absorption refrigeration technology: A review. Renew. Sustain. Energy Rev. 82, 3468 –3482. https://doi.org/10.1016/J.RSER.2017.10.109; Zapata, A., Amaris, C., Sagastume, A., and Rodríguez, A. (2021). CFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3/LiNO3. Case Stud. Therm. Eng. 27, 101311. https://doi.org/10.1016/J.CSITE.2021.101311; Zhou, R., Wang, M., Jin, Z., and Li, S. (2023). Modeling and experimental verification of the enhancement of TiO2 nanofluid on ammonia falling film absorption process. Int. J. Therm. Sci. 184, 107917. https://doi.org/10.1016/j.ijthermalsci.2022.107917; 19; Amaris, C., Zapata, A., Sagastume, A., & Rodríguez, A. (2022). VAPOUR ABSORPTION PROCESS IN AN NH3/LINO3 BUBBLE ABSORBER USING AN OPTIMIZED CFD MODEL. Frontiers in Heat and Mass Transfer (FHMT), 19. https://doi.org/10.5098/hmt.19.33; https://hdl.handle.net/11323/12889; Corporación Universidad de la Costa; REDICUC – Repositorio CUC; https://repositorio.cuc.edu.co/
-
16Academic Journal
المؤلفون: Cabello Eras, Juan José, MENDOZA FANDIÑO, JORGE MARIO, Sagastume Gutierrez, Alexis, Rueda-Bayona, Juan Gabriel
مصطلحات موضوعية: Causality relationship, Human development, Per capita electricity consumption
جغرافية الموضوع: Colombia
وصف الملف: 14 páginas; application/pdf
Relation: Energy Reports; Amer, H., 2020. The impact of renewable energy consumption on the human development index in selected countries: Panel analysis (1990–2015). Int. J. Econ. Energy Environ. 5 (47), http://dx.doi.org/10.11648/j.ijeee.20200504.12.; Apergis, N., Payne, J., 2009. Energy consumption and economic growth in central america: Evidence from a panel cointegration and error correction model. Energy Econ. 31, 2011–2016.; Apergis, N., Payne, J.E., 2011. A dynamic panel study of economic development and the electricity consumption-growth nexus. Energy Econ. 33, 770–781. http://dx.doi.org/10.1016/j.eneco.2010.12.018.; Armin Razmjoo, A., Sumper, A., Davarpanah, A., 2019. Development of sustainable energy indexes by the utilization of new indicators: A comparative study. Energy Rep. 5, 375–383. http://dx.doi.org/10.1016/j.egyr.2019.03.006.; Banday, U.J., Kocoglu, M., 2022. Modelling simultaneous relationships between human development energy, and environment: Fresh evidence from panel quantile regression. J. Knowl. Econ.; BANREP, 2021. Población [WWW Document]. Banco la república (banco cent. Colomb. URL https://www.banrep.gov.co/es/estadisticas/poblacion (Accessed 11 June 2021).; Belke, A., Dobnik, F., Dreger, C., 2011. Energy consumption and economic growth: New insights into the cointegration relationship. Energy Econ. 33, 782–789. http://dx.doi.org/10.1016/j.eneco.2011.02.005.; Boukhelkhal, A., Bengana, I., 2018. Cointegration and causality among electricity consumption economic, climatic and environmental factors: evidence from North -Africa region. Energy 163, 1193–1206. http://dx.doi.org/10.1016/j. energy.2018.08.163.; Bridge, B.A., Adhikari, D., Fontenla, M., 2016. Electricity income, and quality of life. Soc. Sci. J. 53, 33–39.; Cabello, J.J., Balbis, M., Sagastume, A., Pardo, A., Cabello, M.J., Rey, F.J., RuedaBayona, J.G., 2019. A look to the electricity generation from non-conventional renewable energy sources in Colombia. Int. J. Energy Econ. Policy 9, http: //dx.doi.org/10.32479/ijeep.7108.; Cabello, J., Mendoza, J., Sagastume, A., Rueda, J., 2022. The inequality of electricity consumption in Colombia projections and implications. Energy 249, 123711–12386.; CONPES, 2018. Estrategia para la implementación de los objetivos de desarrollo sostenible (ODS) en Colombia, documento conpes 3918. Bogotá, Colombia.; CPC, 2014. Informe Nacional de Competitividad 2013–2014. Bogotá, Colombia.; Da Silveira Bezerra, P.B., Callegari, C.L., Ribas, A., Lucena, A.F.P., PortugalPereira, J., Koberle, A., Szklo, A., Schaeffer, R., 2017. The power of light: Socio-economic and environmental implications of a rural electrification program in Brazil. Environ. Res. Lett. 12, http://dx.doi.org/10.1088/1748- 9326/aa7bdd.; DANE, 2019a. Proyecciones de población [WWW Document]. URL https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-ypoblacion/proyecciones-de-poblacion. (Accessed 15 October 2020).; DANE, 2019b. Proyecciones y retroproyecciones de población [WWW Document].; DANE, 2021. Pobreza monetaria y pobreza monetaria extrema [WWW Document]. Pobr. y Desigual. URL https://www.dane.gov.co/index.php/ estadisticas-por-tema/pobreza-y-condiciones-de-vida/pobreza-monetaria. (Accessed 11 June 2021); Delgado, R., Wild, T.B., Arguello, R., Clarke, L., Romero, G., 2020. Options for Colombia’s mid-century deep decarbonization strategy. Energy Strateg. Rev. 32, 100525. http://dx.doi.org/10.1016/j.esr.2020.100525.; Departamento Nacional de Planeación, 2022. Plan Nacional de Desarrollo 2018–2022 Pacto por Colombia, pacto por la equidad [WWW Document]. URL https://www.dnp.gov.co/DNPN/Paginas/Plan-Nacional-deDesarrollo.aspx. (Accessed 17 January 2022).; Dias, R.A., Mattos, C.R., Balestieri, J.A.P., 2006. The limits of human development and the use of energy and natural resources. Energy Policy 34, 1026–1031. http://dx.doi.org/10.1016/j.enpol.2004.09.008.; Ðurišić, V., Rogić, S., Smolović, J.C., Radonjić, M., 2020. Determinants of household electrical energy consumption: Evidences and suggestions with application to Montenegro. Energy Rep. 6, 209–217. http://dx.doi.org/10.1016/J.EGYR.2019. 10.039.; Ehigiamusoe, K.U., 2020. A disaggregated approach to analyzing the effect of electricity on carbon emissions: Evidence from African countries. Energy Rep. 6, 1286–1296. http://dx.doi.org/10.1016/J.EGYR.2020.04.039.; Ferguson, R., Wilkinson, W., Hill, R., 2000. Electricity use and economic development. Energy Policy 28, 923–934. http://dx.doi.org/10.1016/S0301-4215(00) 00081-1.; Giannetti, B.F., Agostinho, F., Eras, J.J.C., Yang, Z., Almeida, C.M.V.B., 2020. Cleaner production for achieving the sustainable development goals. J. Clean. Prod. 271, 122127. http://dx.doi.org/10.1016/j.jclepro.2020.122127.; Hashemizadeh, A., Bui, Q., Zaidi, S.A.H., 2022. A blend of renewable and nonrenewable energy consumption in G-7 countries: The role of disaggregate energy in human development. Energy 241, 122520. http://dx.doi.org/10. 1016/j.energy.2021.122520.; Herrero, M.S., Herrera, F., Lara, M.A.A., Gil, E.G., Téllez, D.H., 2018. ODS en Colombia: Los retos para 2030. Bogotá, Colombia.; IMRUR, 2020. Subnational Human Development Index (4.0). Institute for Management Research University of Radboud, [WWW Document]. Glob. Data Lab.; Jaramillo-Echeverri, J., Meisel-Roca, A., Teresa Ramírez-Giraldo, M., 2017. More than one hundred years of improvements in living standards: the case of Colombia. Borradores Econ.; Jin, H., Qian, X., Chin, T., Zhang, H., 2020. A global assessment of sustainable development based on modification of the human development index via the entropy method. Sustain 12, http://dx.doi.org/10.3390/SU12083251.; Korsakiene, R., Breivyt ˙ e, I., Wamboye, E., 2011. Sustainable development and ˙ human development index. J. Secur. Sustain. Issues 2, 103–112.; Kumar, A., Mary, L., Nair, S.R., 2021. Electricity consumption and economic growth at the state and sectoral level in IndiaEvidence using heterogeneous panel data methods. Energy Econ. 94, 105064. http://dx.doi.org/10.1016/j. eneco.2020.105064.; Lambert, J., Hall, C., Balogh, S., Gupta, A., Arnold, M., 2014. Energy EROI and quality of life. Energy Policy 64, 153–167.; Lee, C., 2005. Energy consumption and GDP in developing countries A cointegrated panel analysis. Energy Econ. 27, 415–427. http://dx.doi.org/10.1016/j. eneco.2005.03.003.; Lee, J., Strazicich, M.C., 2003. Minimum Lagrange multiplier unit root test with two structural breaks. Rev. Econ. Stat. 85, 1082–1089. http://dx.doi.org/10. 1162/003465303772815961.; Lekana, H.C., Bruno, C., Ikiemi, S., 2021. Effect of energy consumption on human development in the countries of the economic and monetary community of central Africa ( EMCCA ). Theor. Econ. Lett. 2, 404–421. http://dx.doi.org/10. 4236/tel.2021.113027.; Lin, B., Wang, Y., 2019. Inconsistency of economic growth and electricity consumption in China: A panel VAR approach. J. Clean. Prod. 229, 144–156. http://dx.doi.org/10.1016/j.jclepro.2019.04.396.; Maqin, R.A., Sidharta, I., 2017. The relationship of economic growth with human development and electrıcıty consumptıon in Indonesia. Int. J. Energy Econ. Policy 7, 201–207.; Mazur, A., 2011. Does increasing energy or electricity consumption improve quality of life in industrial nations. Energy Policy 39, 2568–2572. http: //dx.doi.org/10.1016/j.enpol.2011.02.024.; MINCIT, 2021. Perfil de Colombia, Colombia: datos generales. Bogotá, Colombia.; Minenergía, 2019. Grupo de gestión de la información y servicio al ciudadano. lnforme documento en discusión. Bogotá, Colombia.; Minenergía, 2020. Resolución 410617. Colombia.; Mulugetta, Y., Ben Hagan, E., Kammen, D., 2019. Energy access for sustainable development. Environ. Res. Lett. 14, http://dx.doi.org/10.1088/1748-9326/ aaf449.; Nacional, Gobierno, 2014. Ley 1715, congreso de la república de Colombia.; Nadimi, R., Tokimatsu, K., 2018. Modeling of quality of life in terms of energy and electricity consumption. Appl. Energy 212, 1282–1294. http://dx.doi.org/ 10.1016/j.apenergy.2018.01.006.; Niu, S., Jia, Y., Wang, W., He, R., Hu, L., Liu, Y., 2013. Electricity consumption and human development level: A comparative analysis based on panel data for 50 countries. Int. J. Electr. Power Energy Syst. 53, 338–347. http: //dx.doi.org/10.1016/j.ijepes.2013.05.024.; Nuryartono, N., Rifai, M.A., 2017. Analysis of causality between economic growth energy consumption and carbon dioxide emissions in 4 ASEAN countries. Int. J. Energy Econ. Policy 7, 141–152.; Nussbaumer, P., Nerini, F.F., Onyeji, I., Howells, M., 2013. Global insights based on the multidimensional energy poverty index (MEPI). Sustainability 5, 2060–2076. http://dx.doi.org/10.3390/su5052060.; Osman, M., Gachino, G., Hoque, A., 2016. Electricity consumption and economic growth in the GCC countries: Panel data analysis. Energy Policy 98, 318–327. http://dx.doi.org/10.1016/j.enpol.2016.07.050.; Ouedraogo, N.S., 2013. Energy consumption and human development: Evidence from a panel cointegration and error correction model. Energy 63, 28–41. http://dx.doi.org/10.1016/j.energy.2013.09.067.; Ozturk, I., 2010. A literature survey on energy – growth nexus. Energy Econ. 38, 340–349. http://dx.doi.org/10.1016/j.enpol.2009.09.024.; Pasten, C., Santamarina, J.C., 2012. Energy and quality of life. Energy Policy 49, 468–476. http://dx.doi.org/10.1016/j.enpol.2012.06.051.; Pasternak, A.D., 2000. Global energy futures and human development : a framework for analysis. California.; Payne, J.E., 2010. A Survey of the Electricity Consumption-Growth Literature 87, 723–731. http://dx.doi.org/10.1016/j.apenergy.2009.06.034.; Pedrozo, D.I., 2020. Desigualdad En Colombia: Una Visión a Través Del índice de Gini Y Los Indicadores de Pobreza Económica Y Multidimensional. (2000-2019). Universidad Militar Nueva Granada.; Pereira, M.G., Freitas, M.A.V., da Silva, N.F., 2010. Rural electrification and energy poverty: Empirical evidences from Brazil. Renew. Sustain. Energy Rev. 14, 1229–1240. http://dx.doi.org/10.1016/j.rser.2009.12.013.; Pérez, J.J., 2019. Energy Poverty in Colombia: Empirical Evidence from 2011 to 2016. Pontificia Universidad Javeriana, Bogotá, Colombia.; Pervaiz, R., Faisal, F., Rahman, S.U., Chander, R., Ali, A., 2021. Do health expenditure and human development index matter in the carbon emission function for ensuring sustainable development? Evidence from the heterogeneous panel. Air Qual. Atmos. Heal 14, 1773–1784. http://dx.doi.org/10. 1007/s11869-021-01052-4.; Rao, N.D., Pachauri, S., 2017. Energy access and living standards: Some observations on recent trends. Environ. Res. Lett. 12, 025011. http://dx.doi.org/10. 1088/1748-9326/aa5b0d.; Rej, S., Nag, B., 2018. Does socio-economic development impact energy consumption? A causality test for India. J. Energy Dev. 44, 143–159.; Rueda-Bayona, J.G., Guzmán, A., Eras, J.J.C., Silva-Casarín, R., Bastidas-Arteaga, E., Horrillo-Caraballo, J., 2019. Renewables energies in Colombia and the opportunity for the offshore wind technology. J. Clean. Prod. http://dx.doi.org/10. 1016/j.jclepro.2019.02.174.; Sanchez-Loor, D.A., Zambrano-Monserrate, M.A., 2015. Causality analysis between electricity consumption real gross domestic product, foreign direct investment, human development and remittances in colombia, ecuador and mexico. Int. J. Energy Econ. Policy 5, 746–753.; Sarkodie, S.A., Adams, S., 2020a. Electricity access human development index, governance and income inequality in sub-saharan africa. Energy Rep. 6, 455–466. http://dx.doi.org/10.1016/j.egyr.2020.02.009.; Sarkodie, S.A., Adams, S., 2020b. Electricity access and income inequality in South Africa: Evidence from Bayesian and NARDL analyses. Energy Strateg. Rev. 29, 100480. http://dx.doi.org/10.1016/j.esr.2020.100480.; Sharma, K.R., Chan, G., 2016. Energy poverty: Electrification and well-being. Nat. Energy 1, http://dx.doi.org/10.1038/nenergy.2016.171.; Shobande, O., 2020. The effects of energy use on infant mortality rates in Africa. Environ. Sustain. Indic. 5, 100015.; Sinaga, R., Prastowo, B.C.H., Liebman, A., Tambunan, A.H., 2019. Analysis of barriers in supplying electricity using interpretative structural modeling. Energy Strateg. Rev. 25, 11–17. http://dx.doi.org/10.1016/j.esr. 2019.04.011.; Singh, K., Vashishtha, S., 2020. A re-examination of the relationship between electricity consumption and economic growth in India. Energy Econ. Lett. 7, 36–45. http://dx.doi.org/10.18488/journal.82.2020.71.36.45.; Sistema de Información Eléctrico Colombiano, 2018. Consultas estadisticas [WWW Document]. Cober. Energía eléctrica. URL http://www.siel.gov.co/ Inicio/CoberturadelSistemaIntercontecadoNacional/ConsultasEstadisticas/ tabid/81/Default.aspx. (Accessed 15 October 2020).; Superservicios, 2017. Zonas no interconectadas- znI. Diagnóstico de la prestación del servicio de energía eléctrica 2017. Bogotá, Colombia.; Superservicios, 2020a. Sistema único de información superservicios [WWW Document]. Consolidado energía por empres. Dep. y Munic. URL http://www. sui.gov.co/web/. (Accessed 15 October 2020).; SUPERSERVICIOS, 2020b. Consolidado energía por empresa departamento y municipio [www document]. Sist. Único Inf. Serv. Públicos Domic.; UNDP, 2019. Human Development Report 2019. United Nations Development Programme, New York.; UNDP, 2020. Human development reports. United nations development programme [WWW Document]. Latest Hum. Dev. Index Rank.; United Nations Development Programme (UNDP), 2020. What is human development? [WWW Document].; UPME, 2011. Determinación del consumo básico de subsistencia en el sector residencial y del consumo básico en los sectores industrial, comercial y hotelero en los departamentos de guainía, vichada y choco. Bogotá, Colombia.; UPME, 2015. Plan energetico nacional Colombia: Ideario energético 2050. Bogotá, Colombia.; UPME, 2019a. Plan indicativo de expansión de cobertura de energía eléctrica PIEC 2019–2023. Bogotá, Colombia.; UPME, 2019b. Proyección de la demanda de energía eléctrica y potencia máxima en Colombia. Revisión julio de 2019. Bogotá, Colombia.; Wang, Z., Bui, Q., Zhang, B., 2020a. The relationship between biomass energy consumption and human development: Empirical evidence from BRICS countries. Energy 194, 116906. http://dx.doi.org/10.1016/J.ENERGY. 2020.116906.; Wang, Z., Mansoor, M., Anees, S., Zaidi, H., Nawaz, K., Wang, B., Zhao, W., Xu, F., 2020b. The dynamic relationship between economic growth and life expectancy Contradictory role of energy consumption and financial development in Pakistan. Struct. Chang. Econ. Dyn. 53, 257–266. http://dx. doi.org/10.1016/j.strueco.2020.03.004.; WHO, 2014. Indoor air quality guidelines: household fuel combustion. World Health Organization, Geneva, Switzerland.; World Bank, 2020a. Total population [www document]. Data.; World Bank, 2020b. Electric power consumption (kwh per capita) [www document]. Data. URL https://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC (accessed 12 October 2020).; Wu, Q., Maslyuk, S., Clulow, V., 2010. Energy consumption transition and human development. In: Morvaj, Z. (Ed.), Energy Efficiency. a Bridge To Low Carbon Economy. http://dx.doi.org/10.5772/38338, IntechOpen.; Yumashev, A., Kondrashev, S., Mikhaylov, A., Slusarczyk, B., 2020. Global indicators of sustainable development: Evaluation of the influence of the human. Energies 13.; Zahnd, A., Kimber, H.M.K., 2009. Benefits from a renewable energy village electrification system. Renew. Energy 34, 362–368. http://dx.doi.org/10.1016/ j.renene.2008.05.011.; Zhang, C., Zhou, K., Yang, S., Shao, Z., 2017. On electricity consumption and economic growth in China. Renew. Sustain. Energy Rev. 76, 353–368. http: //dx.doi.org/10.1016/j.rser.2017.03.071.; 10477; 10464; https://hdl.handle.net/11323/10730; Corporación Universidad de la Costa; REDICUC – Repositorio CUC; https://repositorio.cuc.edu.co/
-
17Academic Journal
المؤلفون: Rueda-Bayona, Juan Gabriel, Paez, Natalia, Cabello Eras, Juan José, Sagastume Gutierrez, Alexis
مصطلحات موضوعية: CFD, DOE-ANOVA, Hydrokinetic microturbine, Multiple regression, Optimization
وصف الملف: 10 páginas; application/pdf
Relation: Mathematical Modelling of Engineering Problems; [1] Eras, J.J.C., Morejón, M.B., Gutiérrez, A.S., GarcÃa, A.P., Ulloa, M.C., MartÃnez, F.J.R., Rueda-Bayona, F.G. (2019). A look to the electricity generation from nonconventional renewable energy sources in Colombia. International Journal of Energy Economics and Policy, 9(1): 15-25. https://doi.org/10.32479/ijeep.7108; [2] Rueda-Bayona, J.G., Guzmán, A., Eras, J.J.C., SilvaCasarín, R., Bastidas-Arteaga, E., Horrillo-Caraballo, J. (2019). Renewables energies in Colombia and the opportunity for the offshore wind technology. Journal of Cleaner Production, 220: 529-543. https://doi.org/10.1016/j.jclepro.2019.02.174; [3] International Energy Agency (IEA). (2019). World Energy Outlook 2019 – Analysis - IEA, World Energy Outlook 2019. https://www.iea.org/reports/worldenergy-outlook-2019.; [4] Salleh, M.B., Kamaruddin, N.M., Mohamed-Kassim, Z. (2019). Savonius hydrokinetic turbines for a sustainable river-based energy extraction: A review of the technology and potential applications in Malaysia. Sustainable Energy Technologies and Assessments, 36: 100554. https://doi.org/10.1016/j.seta.2019.100554; [5] Xu, J., Ni, T., Zheng, B. (2015). Hydropower development trends from a technological paradigm perspective. Energy Conversion and Management, 90: 195-206. https://doi.org/10.1016/j.enconman.2014.11.016; [6] Yuce, M.I., Muratoglu, A. (2015). Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews, 43: 72-82. https://doi.org/10.1016/j.rser.2014.10.037; [7] Behrouzi, F., Nakisa, M., Maimun, A., Ahmed, Y.M. (2016). Renewable energy potential in Malaysia: Hydrokinetic river/marine technology. Renewable and Sustainable Energy Reviews, 62: 1270-1281. https://doi.org/10.1016/j.rser.2016.05.020; [8] Maldar, N.R., Ng, C.Y., Oguz, E. (2020). A review of the optimization studies for Savonius turbine considering hydrokinetic applications. Energy Conversion and Management, 226: 113495. https://doi.org/10.1016/j.enconman.2020.113495; [9] Bersalli, G., Menanteau, P., El-Methni, J. (2020). Renewable energy policy effectiveness: A panel data analysis across Europe and Latin America. Renewable and Sustainable Energy Reviews, 133: 110351. https://doi.org/10.1016/j.rser.2020.110351; [10] Tewari, U., Kolmsee, K., Norta, D. (2015). Hydrokinetic Energy for Enlightening the Future of Rural Communities in Uttarakhand. https://www.semanticscholar.org/paper/HydrokineticEnergy-for-Enlightening-the-Future-of-TewariNorta/86aba238c132432eeb8f1bd7ee27994486da6805. [11] Quintero Aguilar, G.E., Rueda Bayona, J.G. (2021). Tidal energy potential in the center zone of the colombian pacific coast. INGE CUC, 17(2). https://doi.org/10.17981/ingecuc.17.2.2021.07; [12] Khan, M.J., Bhuyan, G., Iqbal, M.T., Quaicoe, J.E. (2009). Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Applied Energy, 86(10): 1823-1835. https://doi.org/10.1016/J.APENERGY.2009.02.017; [13] Nago, V.G., dos Santos, I.F.S., Gbedjinou, M.J., Mensah, J.H.R., Tiago Filho, G.L., Camacho, R.G.R., Barros, R.M. (2022). A literature review on wake dissipation length of hydrokinetic turbines as a guide for turbine array configuration. Ocean Engineering, 259: 111863. https://doi.org/10.1016/J.OCEANENG.2022.111863; [14] Yosry, A.G., Fernández-Jiménez, A., Álvarez-Álvarez, E., Marigorta, E.B. (2021). Design and characterization of a vertical-axis micro tidal turbine for low velocity scenarios. Energy Conversion and Management, 237: 114144. https://doi.org/10.1016/j.enconman.2021.114144; [15] Kirke, B. (2019). Hydrokinetic and ultra-low head turbines in rivers: A reality check. Energy for Sustainable Development, 52: 1-10. https://doi.org/10.1016/j.esd.2019.06.002; [16] dos Santos, I.F.S., Camacho, R.G.R., Tiago Filho, G.L. (2021). Study of the wake characteristics and turbines configuration of a hydrokinetic farm in an Amazonian river using experimental data and CFD tools. Journal of Cleaner Production, 299: 126881. https://doi.org/10.1016/j.jclepro.2021.126881; [17] Alipour, R., Alipour, R., Fardian, F., Koloor, S.S.R., Petrů, M. (2020). Performance improvement of a new proposed Savonius hydrokinetic turbine: A numerical investigation. Energy Reports, 6: 3051-3066. https://doi.org/10.1016/j.egyr.2020.10.072; [18] Shashikumar, C.M., Vijaykumar, H., Vasudeva, M. (2021). Numerical investigation of conventional and tapered Savonius hydrokinetic turbines for low-velocity hydropower application in an irrigation channel. Sustainable Energy Technologies and Assessments, 43: 100871. https://doi.org/10.1016/j.seta.2020.100871; [19] Kirke, B. (2020). Hydrokinetic turbines for moderate sized rivers. Energy for Sustainable Development, 58: 182-195. https://doi.org/10.1016/j.esd.2020.08.003; [20] Chawdhary, S., Angelidis, D., Colby, J., Corren, D., Shen, L., Sotiropoulos, F. (2018). Multiresolution large-Eddy simulation of an array of hydrokinetic turbines in a fieldscale River: The Roosevelt Island Tidal Energy Project in New York City. Water Resources Research, 54(12): 10-188. https://doi.org/10.1029/2018WR023345; [21] Verdant_Power. (2020). Verdant Power’s Roosevelt Island Tidal Energy (RITE) Project. https://www.verdantpower.com/projects.; [22] Ocean Renewable Power Company (ORPC). (2012). Tidal Energy Maine Project. https://www.energy.gov/articles/maine-project-takeshistoric-step-forward-us-tidal-energy-deployment.; [23] Fernández-Jiménez, A., Cruz, D.F.D.L., Ruiz-Torres, J., Perrino-Blanco, J.L., Jimeno-Almeida, R. (2018). Harnessing the energy of tidal currents: State-of-the-art and proposal of use in EV Charging Points. Multidisciplinary Digital Publishing Institute Proceedings, 2(23): 1504. https://doi.org/10.3390/proceedings2231504; [24] Posa, A., Broglia, R. (2021). Characterization of the turbulent wake of an axial-flow hydrokinetic turbine via large-eddy simulation. Computers & Fluids, 216: 104815. https://doi.org/10.1016/j.compfluid.2020.104815; [25] John, B., Thomas, R.N., Varghese, J. (2020). Integration of hydrokinetic turbine-PV-battery standalone system for tropical climate condition. Renewable Energy, 149: 361- 373. https://doi.org/10.1016/j.renene.2019.12.014; [26] Posa, A., Broglia, R. (2021). Momentum recovery downstream of an axial-flow hydrokinetic turbine. Renewable Energy, 170: 1275-1291. https://doi.org/10.1016/j.renene.2021.02.061; [27] Saini, G., Saini, R.P. (2020). Comparative investigations for performance and self-starting characteristics of hybrid and single Darrieus hydrokinetic turbine. Energy Reports, 6: 96-100. https://doi.org/10.1016/j.egyr.2019.11.047; [28] Chimakurthi, S.K., Reuss, S., Tooley, M., Scampoli, S. (2018). ANSYS workbench system coupling: A state-ofthe-art computational framework for analyzing multiphysics problems. Engineering with Computers, 34(2): 385-411. https://doi.org/10.1007/S00366-017- 0548-4; [29] Ramadan, A., Hemida, M., Abdel-Fadeel, W.A., Aissa W.A., Mohamed, M.H. (2021). Comprehensive experimental and numerical assessment of a drag turbine for river hydrokinetic energy conversion. Ocean Engineering, 227: 108587. https://doi.org/10.1016/j.oceaneng.2021.108587; [30] Khaled, F., Guillou, S., Méar, Y., Hadri, F. (2021). Impact of the blockage ratio on the transport of sediment in the presence of a hydrokinetic turbine: Numerical modeling of the interaction sediment and turbine. International Journal of Sediment Research, 36(6): 696- 710. https://doi.org/10.1016/j.ijsrc.2021.02.003; [31] Lee, J., Kim, Y., Khosronejad, A., Kang, S. (2020). Experimental study of the wake characteristics of an axial flow hydrokinetic turbine at different tip speed ratios. Ocean Engineering, 196: 106777. https://doi.org/10.1016/j.oceaneng.2019.106777; [32] Alizadeh, H., Jahangir, M.H., Ghasempour, R. (2020). CFD-based improvement of Savonius type hydrokinetic turbine using optimized barrier at the low-speed flows. Ocean Engineering, 202: 107178. https://doi.org/10.1016/j.oceaneng.2020.107178; [33] Sarma, N.K., Biswas, A., Misra, R.D. (2014). Experimental and computational evaluation of Savonius hydrokinetic turbine for low velocity condition with comparison to Savonius wind turbine at the same input power. Energy Conversion and Management, 83: 88-98. https://doi.org/10.1016/j.enconman.2014.03.070; [34] Shashikumar, C.M., Madav, V. (2021). Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation. Renewable Energy, 177: 1170-1197. https://doi.org/10.1016/j.renene.2021.05.086; [35] Espina-Valdés, R., Fernández-Jiménez, A., Francos, J.F., Marigorta, E.B., Álvarez-Álvarez, E. (2020). Small cross-flow turbine: Design and testing in high blockage conditions. Energy Conversion and Management, 213: 112863. https://doi.org/10.1016/j.enconman.2020.112863; [36] Tovar, A.M.R., Lopez, Y.U., Laín, S. (2017). Design and prototype of a micro hydrokinetic vertical turbine. Renewable Energy and Power Quality Journal, 1: 903- 910. https://doi.org/10.24084/repqj15.512; [37] Muratoglu, A., Tekin, R., Ertuğrul, Ö.F. (2021). Hydrodynamic optimization of high-performance blade sections for stall regulated hydrokinetic turbines using Differential Evolution Algorithm. Ocean Engineering, 220: 108389. https://doi.org/10.1016/j.oceaneng.2020.108389; [38] Labigalini, L.C., de Vasconcelos Salvo, R., de Lima, R.S., da Silva, R.C., de Marchi Neto, I. (2021). Hydrokinetic turbine design through performance prediction and hybrid metaheuristic multi-objective optimization. Energy Conversion and Management, 238: 114169. https://doi.org/10.1016/j.enconman.2021.114169; [39] Bouvant, M., Betancour, J., Velásquez, L., RubioClemente, A., Chica, E. (2021). Design optimization of an Archimedes screw turbine for hydrokinetic applications using the response surface methodology. Renewable Energy, 172: 941-954. https://doi.org/10.1016/j.renene.2021.03.076; [40] Montgomery, D.C. (2019). Design and Analysis of Experiments. Tenth Edit, John Wiley & Sons, Inc., Hoboken, NJ, USA. https://www.wiley.com/enus/Design+and+Analysis+of+Experiments,+10th+E dition-p-9781119492443.; [41] Rueda-Bayona, J.G., Gil, L., Calderón, J.M. (2021). CFD-FEM modeling of a floating foundation under extreme hydrodynamic forces generated by low sea states. Mathematical Modelling of Engineering Problems, 8: 888-896. https://doi.org/10.18280/MMEP.080607; [42] Sarpkaya, T. (1993). Offshore hydrodynamics. Journal of Offshore Mechanics and Artic Engineering, 115: 2-5. https://doi.org/10.1115/1.2920085; [43] Journée, J.M.J., Massie, W.W. (2002). Offshore Hydromechanics. https://ocw.tudelft.nl/wpcontent/uploads/OffshoreHydromechanics_Journee_Ma ssie.pdf.; [44] Rueda-Bayona, J.G. (2017). Identificación de la influencia de las variaciones convectivas en la generación de cargas transitorias y su efecto hidromecánico en las estructuras offshore. Universidad Del Norte. http://hdl.handle.net/10584/7629.; [45] Rueda-Bayona, J.G., Horrillo-Caraballo, J., Chaparro, T.R. (2020). Modelling of surface river plume using setup and input data files of Delft-3D model. Data in Brief, 31: 105899. https://doi.org/10.1016/j.dib.2020.105899; [46] Ragheb, M., Ragheb, A.M. (2011). Wind turbines theory-the betz equation and optimal rotor tip speed ratio. Fundamental and Advanced Topics in Wind Power, 1(1): 19-38. https://doi.org/10.5772/21398; [47] Hossam, S., Aleem, E.A. (2014). Mathematical analysis of the turbine coefficient of performance for tidal stream turbines. https://bura.brunel.ac.uk/bitstream/2438/11044/1/Fullte xt.pdf.; [48] Power, H.E., Gharabaghi, B., Bonakdari, H., Robertson, B., Atkinson, A.L., Baldock, T.E. (2019). Prediction of wave runup on beaches using Gene-Expression Programming and empirical relationships. Coastal Engineering, 144: 47-61. https://doi.org/10.1016/j.coastaleng.2018.10.006; [49] Young, D.L., Scully, B.M. (2018). Assessing structure sheltering via statistical analysis of AIS data. Journal of Waterway, Port, Coastal, and Ocean Engineering, 144: 04018002. https://doi.org/10.1061/(ASCE)WW.1943- 5460.0000445; [50] Rueda-Bayona, J.G., Guzmán, A., Cabello, J.J. (2020). Selection of JONSWAP spectra parameters for waterdepth ans sea-state transitions. Journal of Waterway, Port, Coastal, and Ocean Engineering. https://doi.org/10.1061/(ASCE)WW.1943- 5460.0000601; [51] Kotroni, V., Lagouvardos, K., Lykoudis, S. (2014). High-resolution model-based wind atlas for Greece. Renewable and Sustainable Energy Reviews, 30: 479- 489. https://doi.org/10.1016/j.rser.2013.10.016; [52] Qasim, A., Nisar, S., Shah, A., Khalid, M.S., Sheikh, M.A. (2015). Optimization of process parameters for machining of AISI-1045 steel using Taguchi design and ANOVA. Simulation Modelling Practice and Theory, 59: 36-51. https://doi.org/10.1016/j.simpat.2015.08.004; [53] Derschum, C., Nistor, I., Stolle, J., Goseberg, N. (2018). Debris impact under extreme hydrodynamic conditions part 1: Hydrodynamics and impact geometry. Coastal Engineering, 141: 24-35. https://doi.org/10.1016/j.coastaleng.2018.08.016; [54] Fragasso, J., Moro, L., Lye, L.M., Quinton, B.W. (2019). Characterization of resilient mounts for marine diesel engines: Prediction of static response via nonlinear analysis and response surface methodology. Ocean Engineering, 171: 14-24. https://doi.org/10.1016/j.oceaneng.2018.10.051; 988; 979; https://hdl.handle.net/11323/10764; Corporación Universidad de la Costa; REDICUC – Repositorio CUC; https://repositorio.cuc.edu.co/
-
18Academic Journal
المؤلفون: Arnaud, Luc, Gutierrez, Alexis, Zegoulli, Inès, Gonomy, Nyankona
المساهمون: Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), IZIC, State University of Haiti
المصدر: ISSN: 1431-2174.
مصطلحات موضوعية: [SDU.STU]Sciences of the Universe [physics]/Earth Sciences
Relation: hal-03771205; https://brgm.hal.science/hal-03771205; https://brgm.hal.science/hal-03771205/document; https://brgm.hal.science/hal-03771205/file/s10040-022-02469-6.pdf
-
19Academic Journal
المؤلفون: Adamson, James, Gutierrez, Alexis, Perez-Monforte, Sergio, Rodriquez-Vera, María, Lavanchy, G. Thomas, Jean-Baptiste, Gerald, Emmanuel, Evens, Moliere, Emmanuel, Gelting, Richard, Miner, Wm. Javan, Dykstra, Stuart
المساهمون: Northwater International, Bureau de Recherches Géologiques et Minières (BRGM), Inter-American Development Bank, Oklahoma State University Stillwater (OSU), Foratech Environnement, Université Quisqueya, GEEGA, Centers for Disease Control and Prevention Atlanta (CDC), Centers for Disease Control and Prevention, Calvin University Grand Rapids
المصدر: ISSN: 1431-2174.
مصطلحات موضوعية: [SDU.STU]Sciences of the Universe [physics]/Earth Sciences
Relation: hal-03771063; https://brgm.hal.science/hal-03771063; https://brgm.hal.science/hal-03771063/document; https://brgm.hal.science/hal-03771063/file/s10040-022-02518-0.pdf
-
20Academic Journal
المصدر: Case Studies in Thermal Engineering ; volume 30, page 101743 ; ISSN 2214-157X