يعرض 1 - 20 نتائج من 69 نتيجة بحث عن '"Gutiérrez-Gúzman, Nelson"', وقت الاستعلام: 0.52s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal
  3. 3
  4. 4
    Academic Journal
  5. 5
  6. 6
  7. 7
  8. 8
    Academic Journal

    المساهمون: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural, Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments, European Social Fund, AGENCIA ESTATAL DE INVESTIGACION, Universitat Politècnica de València

    Relation: LWT - Food Science & Technology (Online); info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106148RR-C42/ES/INTEGRACION DE SUBPRODUCTOS AGROALIMENTARIOS REVALORIZADOS EN UN MODELO DE ECONOMIA CIRCULAR: INTENSIFICACION DE PROCESOS Y EVALUACION DE SOSTENIBILIDAD/; info:eu-repo/grantAgreement/AEI//PRE2020-092255//INTEGRACION DE SUBPRODUCTOS AGROALIMENTARIOS REVALORIZADOS EN UN MODELO DE ECONOMIA CIRCULAR: INTENSIFICACION DE PROCESOS Y EVALUACION DE SOSTENIBILIDAD PERSONALIZADAS/; https://doi.org/10.1016/j.lwt.2023.115472; http://hdl.handle.net/10251/205083; urn:eissn:1096-1127

  9. 9
    Academic Journal

    المساهمون: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments, Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural, Universitat Politècnica de València

    Relation: LWT - Food Science and Technology; https://doi.org/10.1016/j.lwt.2022.113335; urn:issn:0023-6438; http://hdl.handle.net/10251/193717

  10. 10
  11. 11
    Dissertation/ Thesis

    المؤلفون: GUTIÉRREZ GUZMÁN, NELSON

    المساهمون: University/Department: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments

    Thesis Advisors: Serra Belenguer, Juan Antonio, Clemente Marín, Gonzalo

    المصدر: Riunet

  12. 12
    Book
  13. 13
    Academic Journal

    المصدر: Erasmus Semilleros de Investigación; Núm. Extra (2021): Número Extraordinario - Jóvenes Investigadores; 45-49 ; 2590-759X

    وصف الملف: application/pdf; text/html

    Relation: http://journalusco.edu.co/index.php/erasmus/article/view/3440/4355; http://journalusco.edu.co/index.php/erasmus/article/view/3440/4463; Pacheco, Teresa M., y Torrez A´ lvarez, Sergio, y Almanza, Giovanna R. (2018). Cuantificaci´on de compuestos bioactivos en c´ascara de coffea arabica en bolivia. revista boliviana de qu´ımica, 35 (5), 123-132. issn: 0250-5460. disponible en: https://www.redalyc.org/articulo.oa?id=426358213001; Barrios Rodriguez, Y. F., Salas Calderon, K. T., Gir´on Hern´andez, J. (2020). Comparison of sensory attributes and chemical markers of the infrared spectrum between defective and non-defective Colombian coffee samples. Coffee Science, 15, 1–10. https://doi.org/10.25186/.v15i.1659; Murthy, P. S., Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition—A review. Resources, Conservation and Recycling, 66, 45–58. https://doi.org/10.1016/j.resconrec.2012.06.005; Cheng, B., Furtado, A., Smyth, H. E., Henry, R. J. (2016). Influence of genotype and environment on coffee quality. Trends in Food Science Technology, 57, 20–30. https://doi.org/10.1016/j.tifs.2016.09.003; Clifford, M. N., Knight, S., Surucu, B., Kuhnert, N. (2006). Characterization by LC-MSnof Four New Classes of Chlorogenic Acids in Green Coffee Beans: Dimethoxycinnamoylquinic Acids, Diferuloylquinic Acids, Caffeoyl-dimethoxycinnamoylquinic Acids, and Feruloyl-dimethoxycinnamoylquinic Acids. Journal of Agricultural and Food Chemistry, 54(6), 1957–1969. https://doi.org/10.1021/jf0601665; Clifford, M., Ramirez-Martinez, J. (1991). Phenols and caffeine in wet-processed coffee beans and coffee pulp. Food Chemistry, 40(1), 35–42. https://doi.org/10.1016/0308-8146(91)90017-i; Craig, A. P., Franca, A. S., Oliveira, L. S. (2012a). Discrimination between defective and non-defective roasted coffees by diffuse reflectance infrared Fourier transform spectroscopy. LWT, 47(2), 505–511. https://doi.org/10.1016/j.lwt.2012.02.016; Craig, A. P., Franca, A. S., Oliveira, L. S. (2012b). Evaluation of the potential of FTIR and chemometrics for separation between defective and nondefective coffees. Food Chemistry, 132(3), 1368–1374. https://doi.org/10.1016/j.foodchem.2011.11.121; Craig, A. P., Franca, A. S., Oliveira, L. S., Irudayaraj, J., Ileleji, K. (2014). Application of elastic net and infrared spectroscopy in the discrimination between defective and non-defective roasted coffees. Talanta, 128, 393–400. https://doi.org/10.1016/j.talanta.2014.05.001; Esquivel, P., Jim´enez, V. M. (2012). Functional properties of coffee and coffee by-products. Food Research International, 46(2), 488–495. https://doi.org/10.1016/j.foodres.2011.05.028; Guzman, N. G., Baham´on Monje, A. F., Parrado Mu˜noz, L. X. (2018). ATR-FTIR FOR DISCRIMINATION OF ESPRESSO AND AMERICANO COFFEE PODS. Coffee Science, 13(4), 550. https://doi.org/10.25186/cs.v13i4.1499; Heeger, A., Kosi´nska-Cagnazzo, A., Cantergiani, E., Andlauer, W. (2017). Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage. Food Chemistry, 221, 969–975. https://doi.org/10.1016/j.foodchem.2016.11.067; ICONTEC., 2004. Norma T´ecnica Colombiana NTC 5247. Caf´e tostado en grano o molido. Determinaci´on de la acidez titulable.; Janissen, B., & Huynh, T. (2018). Chemical composition and value-adding applications of coffee industry by-products: A review. Resources, Conservation and Recycling, 128, 110–117. https://doi.org/10.1016/j.resconrec.2017.10.001; Lyman, D. J., Benck, R., Dell, S., Merle, S., & Murray-Wijelath, J. (2003). FTIR-ATR Analysis of Brewed Coffee: Effect of Roasting Conditions. Journal of Agricultural and Food Chemistry, 51(11), 3268–3272. https://doi.org/10.1021/jf0209793; Palominio García, L. R., Biasetto, C. R., Araujo, A. R., & Bianchi, V. L. D. (2015). Enhanced extraction of phenolic compounds from coffee industry’s residues through solid-state fermentation by Penicillium purpurogenum. Food Science and Technology, 35(4), 704–711. https://doi.org/10.1590/1678-457x.6834; Paradkar, M. M., & Irudayaraj, J. (2002). Rapid determination of caffeine content in soft drinks using FTIR–ATR spectroscopy. Food Chemistry, 78(2), 261–266. https://doi.org/10.1016/s0308-8146(02)00116-4; Pérez-Hernández, L. M., Chávez-Quiroz, K., Medina-Juárez, L. N., & Gámez Meza, N. (2013). COMPUESTOS FENÓLICOS, MELANOIDINAS Y ACTIVIDAD ANTIOXIDANTE DE CAFE VERDE Y PROCESADO DE LAS ESPECIES Coffea arabica Y Coffea canephora. BIOtecnia, 15(1), 51. https://doi.org/10.18633/bt.v15i1.136; Reis, N., Franca, A. S., & Oliveira, L. S. (2013). Quantitative evaluation of multiple adulterants in roasted coffee by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and chemometrics. Talanta, 115, 563–568. https://doi.org/10.1016/j.talanta.2013.06.004; Ribeiro, J., Ferreira, M., & Salva, T. (2011). Chemometric models for the quantitative descriptive sensory analysis of Arabica coffee beverages using near infrared spectroscopy. Talanta, 83(5), 1352–1358. https://doi.org/10.1016/j.talanta.2010.11.001; Rodríguez-Durán, L. V., Ramírez-Coronel, M. A., Aranda-Delgado, E., Nampoothiri, K. M., Favela-Torres, E., Aguilar, C. N., & Saucedo-Castañeda, G. (2014). Soluble and Bound Hydroxycinnamates in Coffee Pulp (Coffea arabica) from Seven Cultivars at Three Ripening Stages. Journal of Agricultural and Food Chemistry, 62(31), 7869–7876. https://doi.org/10.1021/jf5014956; Serna-Jiménez, J. A., Torres-Valenzuela, L. S., Martínez Cortínez, K., & Hernández Sandoval, M. C. (2018). Aprovechamiento de la pulpa de café como alternativa de valorización de subproductos. Revista ION, 31(1), 37–42. https://doi.org/10.18273/revion.v31n1-2018006; Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2005). Spectrometric Identification of Organic Compounds (7.a ed.). John Wiley & Sons Inc.; http://journalusco.edu.co/index.php/erasmus/article/view/3440

  14. 14
    Academic Journal
  15. 15
    Book
  16. 16
  17. 17
    Academic Journal

    المصدر: Ingeniería y Región; Vol. 20 (2018); 9-17 ; 2216-1325 ; 1657-6985

    وصف الملف: application/pdf; text/html

    Relation: http://journalusco.edu.co/index.php/iregion/article/view/1909/3207; http://journalusco.edu.co/index.php/iregion/article/view/1909/3862; Alves, E. G., Isquierdo, P. E., Borém, M. F., Siqueira, C. V., Oliveira, D. P., Andrade, T. E., 2013. Drying kinetics of natural coffee for different temperature and low relative humidity. Coffee Science, Lavras 8(2):238-247. Consultado el 2 de agosto de 2018. https://www.researchgate.net/publication/289327720_Drying_kinetics_of_natural_coffee_for_different_temperatures_and_low_relative_humidity; Baptestini, M. F., Corrêa, P. C., Horta de Oliveira, Cecon, P. R., Ferreira, S. F., 2017. Kinetic modeling of water sorption by roasted and ground coffee. Acta Scientiarum Agronomy. Doi:10.4025/actasciagron.v39i3.32576; Bastıoğlu, A. Z., Koç, M., Ertekin, F. G., 2017. Moisture sorption isotherm of microencapsulated extra virgin olive oil by spray drying. Food Measure. DOI 10.1007/s11694-017-9507-4; Bensebia, O., Allia, K., 2016. Analysis of adsorption- desorption moisture isotherms of rosemary leaves. Journal applied Research on Medicinal And Aromatics Plants. http://dx.doi.org/10.1016/j.jarmap.2016.01.005; Bon, J., Vaquiro, H. A., Mulet, A., 2012. Modeling sorption isotherms and isosteric heat of sorption of mango pulp cv. tommy atkins. Biotecnología en el Sector Agropecuario y Agroindustrial. Vol 10 No. 2 (34 - 43). Consultado el 10 de septiembre de 2017. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-35612012000200005; Bonner, I. J., Kenney, K. L., 2013. Moisture sorption characteristics and modeling of energy sorghum (Sorghum bicolor (L.) Moench. Journal of Stored Products Research. http://dx.doi.org/10.1016/j.jspr.2012.11.002; Brunauer, S., Deming, S. L., Deming, E. W., Teller, E., 1940. On a Theory of the van der Waals Adsorption of Gases. J. Am. Chem. Soc. DOI:10.1021/ja01864a025; Caballero-Cerón, C., Serment-Moreno, V., Velazquez, G., Torres, J. A. Welti-Chanes, J., 2017. Hygroscopic properties and glass transition of dehydrated mango, apple and banana. J Food Sci Technol. https://doi.org/10.1007/s13197-017-2963-3; Cano-Higuita, D. M., Villa-Vélez, H. A., Telis-Romero, J., Váquiro, H. A., Nicoletti, T. V. R., 2015. Influence of alternative drying aids on watersorption of spray dried mango mix powders:A thermodynamic approach. Food and Bioproducts Processing. http://dx.doi.org/10.1016/j.fbp.2013.10.005; Červenka,, L., Hloušková, L., Žabčíková, S., 2015. Moisture adsorption isotherms and thermodynamic properties of green and roasted Yerba mate (Ilex paraguariensis). Food Bioscience. https://doi.org/10.1016/j.fbio.2015.10.001; Corrêa, P. C., Reis, T. M. F., Horta de Oliveira, G. H., Rodrigues de Oliveira, A. P. L., Botelho, F. M., 2015. Moisture desorption isotherms of cucumber seeds: modeling and thermodynamic properties. Journal of Seed Science. http://dx.doi.org/10.1590/2317-1545v37n3149549; Corrêa, P.C, Botelho, M. F., Botelho, C. Silva de C., Goneli, D. L. A., 2014. Isotermas de sorção de água de frutos de Coffea canephora. Revista Brasileira de Engenharia Agrícola e Ambiental., Campina Grande, PB, UAEA/UFCG. DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v18n10p1047-1052; Corrêa, P.C, Goneli, L. A., Junior, A. Oliveira, H. G., Valente, D., 2010. Moisture sorption isotherms and isosteric heat of sorption of coffee in different processing levels. International Journal of Food Science and Technology. doi:10.1111/j.1365-2621.2010.02373.x; Domian, E., Brynda-Kopytowska, A., Ciesla, J., Górska, A., 2018. Effect of carbohydrate type on the DVS isotherminduced phase transitions in spray-dried fat-filled pea protein-based powders. Journal of Food Engineering. DOI: https://doi.org/10.1016/j.jfoodeng.2017.11.012; Ekechukwu, O. V., Norton, B., 1999. Review of solar-energy drying systems II: an overview of solar drying technology. Energy Conversion & Management. DOI: https://doi.org/10.1016/S0196-8904(98)00093-4; Ferreira de Souza, S. J., Váquiro, H. A., Villa-Vélez, H. A., Polachini, T. C., Telis-Romero, J., 2014. Physical, Thermal and Water-Sorption Properties of Passion Fruit Seeds. International Journal of Food Engineering. doi10.1515/ijfe-2014-0138; Ghosh, P., Venkatachalapathy, N., 2015. Changes in physico-chemical properties of coffee due to hot air assisted microwave drying. International Journal of Processing and Post-Harvest Technology. DOI:10.15740/HAS/IJPPHT/6.1/69-79; Goneli, A.L.D., Corrêa, P. C., Oliveira, G.H.H., Afonso Júnior, P.C., 2013. Water sorption properties of coffee fruits, pulped and green coffee. LWT - Food Science and Technology. DOI: http://dx.doi.org/10.1016/j.lwt.2012.09.006; Mireles-Arriaga, A. I., Ruiz-López, I. I., Hernández-García, P. A., Espinosa-Ayala, E., López-Martínez, L. X., Márquez-Molina, O., (2016). The impact of convective drying on the color, phenolic content and antioxidant capacity of noni (Morinda citrifolia L.). Food Science and Technology. DOI: http://dx.doi.org/10.1590/1678-457X.00415; Mousa, W., Mohamad, F., Jinap, S. G., Mohd, H., Radu, S., 2012. Sorption isotherms and isosteric heats of sorption of Malaysian paddy. J Food Sci Technol DOI 10.1007/s13197-012-0799-4; Noshad, M., Shahidi, F., Mohebbi, M., Mortazavi, S. A., 2012. Desorption isotherms and thermodynamic properties of fresh and osmotic–ultrasonic dehydrated quinces. Journal of Food Processing and Preservation ISSN 1745-4549. doi:10.1111/j.1745-4549.2011.00671.x; Patiño-Velasco, M. M., Pencue-Fierro, E. L., Vargas-Cañas, R., 2016. Determinación del contenido de humedad en granos de café pergamino seco utilizando speckle dinámico. Biotecnología en el Sector Agropecuario y Agroindustrial. DOI:10.18684/BSAA(14)84-91; Poltronieri, P., Rossi, F., 2016. Challenges in Specialty Coffee Processing and Quality Assurance. Journal Challenges. DOI:10.3390/challe7020019; Resende, O., Arcanjo, V. R., Siqueira, C. V., Rodrigues, S., 2009. Modelagem matemática para a secagem de clones de café (Coffea canephora Pierre) em terreiro de concreto. Acta Scientiarum. Agronomy. DOI:10.4025/actasciagron.v31i2.588; Shittu, T. A., Idowu-Adebayo, F., Adedokun, I. I., Alade, O., 2015. Water vapor adsorption characteristics of starch-albumen powder and rheological behavior of its paste. Nigerian Food Journal. DOI: http://dx.doi.org/10.1016/j.nifoj.2015.04.014; Tadapaneni, R. K., Yang, R., Carter, B., Tang, J., 2017. A new method to determine the water activity and the net isosteric heats of sorption for low moisture foods at elevated temperatures. Food Research International. http://dx.doi.org/10.1016/j.foodres.2017.09.070; Taoufik, F., Hadek, M., Hnini, M. C., Benchanaa, M´B., Hammioui, M., Hassani, I. L. M., 2017. Sorption isotherms and isosteric heats of sorption of mint variety (Mentha viridis) leaves and stems: Experimental and mathematical investigations. The European physical journal special topics. DOI:10.1140/epjst/e2016-60180-1; Váquiro, H A., 2009. Contribución al estudio y optimización del secado intermitente: aplicación al secado de mango (Mangifera indica L var. Tommy Atkins). Thesis for: Doctor, Universidad Politécnica de Valencia, Departamento de Tecnología de Alimentos. Valencia, España Advisor: José Bon Corbín, Antonio Mulet Pons. DOI:10.4995/Thesis/10251/6062; Villa-Velez, H. A., Váquiro, H. A., Bon, J., Telis-Romero, J., 2012. Modelling thermodynamic properties of Banana waste by analytical derivation of desorption isotherms. International Journal of Food Engineering. DOI: https://doi.org/10.1515/1556-3758.2191; Yang, Z., Zhu, E., Zhu, Z., 2015. Water desorption isotherm and drying characteristics of green soybean. Journal of Stored Products Research. https://doi.org/10.1016/j.jspr.2014.10.006; Zhang, L., Da-Wen, S., Zhang, Z., 2015. Methods for Measuring Water Activity (aw) of Foods and Its Applications to Moisture Sorption Isotherm Studies. Critical Reviews in Food Science and Nutrition. DOI: http://dx.doi.org/10.1080/10408398.2015.1108282; http://journalusco.edu.co/index.php/iregion/article/view/1909

  18. 18
    Academic Journal

    المصدر: Ingeniería y Región; Vol. 19 (2018); 12-17 ; 2216-1325 ; 1657-6985

    وصف الملف: application/pdf; text/html

    Relation: http://journalusco.edu.co/index.php/iregion/article/view/1890/3003; http://journalusco.edu.co/index.php/iregion/article/view/1890/3128; Arcila, J.; Farfán, F.; Moreno, A.; Salazar, L.; Hincapié, E., 2007. Sistemas de Producción de Café en Colombia.Fedenaricón Nacional de Cafeteros-Cenicafé.; Briandet, R., Kemsley, E. K., & Wilson, R. H., 1996. Approaches to Adulteration Detection in Instant Coffees Using Infrared Spectroscopy and Chemometrics. Journal of the Science of Food and Agriculture, 71, 359–366 p.; Clarke, R. J.; Macrae, R., 1985. Coffee. Vol. 1. Chemistry. Essex, Elsevier Applied Science Publishers. 306 p.; Craig, A., Franca, A., Oliveira, L., 2012. Evaluation of the Potential of FTIR and Chemometrics for Separation Between Defective and Non-Defective Coffees. Food Chemistry. Elsevier. 1, 7 p.; Clifford, M. N., Kirkpatrick, J., Kuhnert, N., Roozendaal, H., & Salgado, P. R., 2008. LC–MSn Analysis of the Cis Isomers of Chlorogenic Acids. Food Chemistry, 106, 379–385 p.; Federación de Cafeteros. Café del Huila con Denominación de Origen. Consultado del 20 de junio del 2015. http://www.federaciondecafeteros.org/clientes/es/buenas_noticias/cafe_del_huila_con_denominacion_de_origen/; Kemsley, E. K., Ruault, S., & Wilson, R. H., 1995. Discrimination Between Coffea arabica and Coffea canephora Variant robusta Beans Using Infrared Spectroscopy. Food Chemistry, 54, 321–326 p.; Laboratorio de técnicas Instrumentales UVA. Consultado del 23 de noviembre del 2018. http://laboratoriotecnicasinstrumentales.es/analisis-qumicos/espectrometra-ftir; Lyman, D. J., Benck, R., Dell, S., Merle, S., & Murray-Wijelath, J., 2003. FTIR-ATR Analysis of Brewed Coffee: Effect of Roasting Conditions. Journal of Agricultural and Food Chemistry, 51, 3268–3272 p.; Paradkar, M. M., & Irudayaraj, J., 2002. Rapid Determination of Caffeine Content in Soft Drinks Using FTIR-ATR Spectroscopy. Food Chemistry, 78, 261–266p.; Ribeiro, J. S., Salva, T. J., & Ferreira, M. M., 2010. Chemometric Studies for Quality Control of Processed Brazilian Coffees Using DRIFTS. Journal of Food Quality, 33, 212–227p.; Sablinskas, V., Steiner, G., & Hof, M., 2003. Applications. In G. Gauglitz & T. Vo-Dinh (Eds.), Handbook of Spectroscopy. Weinheim, Germany: Wiley-VCH, 89, 168 p.; Silverstein, Webster, y Kiemle, 2005. Spectrometric Identification of Organic Compounds.; Wang, J., Jun, S., Bittenbender, H. C., Gautz, L., & Li, Q. X., 2009. Fourier Transform Infrared Spectroscopy for Kona Coffee Authentication. Journal of Food Science, 74, C385–C391.; http://journalusco.edu.co/index.php/iregion/article/view/1890

  19. 19
    Academic Journal
  20. 20
    Academic Journal

    المؤلفون: Gutiérrez-Guzmán, Nelson

    المساهمون: "null"

    مصطلحات موضوعية: "null", Buenas Prácticas Agrícolas, Proceso Analítico Jerárquico

    جغرافية الموضوع: "null"

    وصف الملف: PDF; application/pdf

    Relation: http://revistas.javeriana.edu.co/index.php/desarrolloRural/article/view/4374/3316; Cuadernos de Desarrollo Rural; Vol. 9, Núm. 69 (2012): Cuadernos de Desarrollo Rural; Cadernos de Desenvolvimento Rural; Vol. 9, Núm. 69 (2012): Cuadernos de Desarrollo Rural; http://revistas.javeriana.edu.co/index.php/desarrolloRural/article/view/4374; http://hdl.handle.net/10554/24005