يعرض 1 - 19 نتائج من 19 نتيجة بحث عن '"Guezgouz, Mohammed"', وقت الاستعلام: 0.56s تنقيح النتائج
  1. 1
    Conference

    المصدر: Linköping Electronic Conference Proceedings ; Proceedings of the 64th International Conference of Scandinavian Simulation Society, SIMS 2023 Västerås, Sweden, September 25-28, 2023 ; volume 200, page 8-13 ; ISSN 1650-3686

  2. 2
    Academic Journal

    المساهمون: Wroclaw University of Science and Technology, Mälardalen University (MDH), Universidade de Lisboa = University of Lisbon = Université de Lisbonne (ULISBOA), University of Bristol Bristol, Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP), Université Grenoble Alpes (UGA), International Institute for Applied Systems Analysis Laxenburg (IIASA), Vrije Universiteit Brussel Bruxelles (VUB), Tanta University

    المصدر: ISSN: 1364-0321.

  3. 3
    Academic Journal
  4. 4
    Academic Journal

    جغرافية الموضوع: Europe

    وصف الملف: 15 páginas; application/pdf

    Relation: Renewable and Sustainable Energy Reviews; [1] Sims REH. Renewable energy: a response to climate change. Sol Energy 2004;76: 9–17. https://doi.org/10.1016/S0038-092X(03)00101-4.; [2] Kapica J, Canales FA, Jurasz J. Global atlas of solar and wind resources temporal complementarity. Energy Convers Manag 2021;246:114692. https://doi.org/ 10.1016/j.enconman.2021.114692.; [3] Yoro KO, Daramola MO, Sekoai PT, Wilson UN, Eterigho-Ikelegbe O. Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems. Renew Sustain Energy Rev 2021;150: 111506. https://doi.org/10.1016/j.rser.2021.111506.; [4] Nieto KRT, Potes LR. Habitat ´ sostenible: adaptacion ´ y mitigacion ´ frente al cambio clim´ atico. Hacia los territorios resilientes. MODULO ´ ARQUITECTURA CUC 2018; 21:63–96. https://doi.org/10.17981/moducuc.21.1.2018.03.; [5] Zhao J, Sinha A, Inuwa N, Wang Y, Murshed M, Abbasi KR. Does structural transformation in economy impact inequality in renewable energy productivity? Implications for sustainable development. Renew Energy 2022;189:853–64. https://doi.org/10.1016/j.renene.2022.03.050.; [6] Denholm P, Brinkman G, Mai T. How low can you go? The importance of quantifying minimum generation levels for renewable integration. Energy Pol 2018;115:249–57. https://doi.org/10.1016/j.enpol.2018.01.023.; [7] Canales FA, Jurasz J, Beluco A, Kies A. Assessing temporal complementarity between three variable energy sources through correlation and compromise programming. Energy 2020;192:116637. https://doi.org/10.1016/j. energy.2019.116637.; [8] Sueyoshi T, Mo F, Wang DD. Sustainable development of countries all over the world and the impact of renewable energy. Renew Energy 2022;184:320–31. https://doi.org/10.1016/j.renene.2021.11.015.; [9] Jałowiec T, Wojtaszek H. Analysis of the RES potential in accordance with the energy policy of the European union. Energies 2021;14:6030. https://doi.org/ 10.3390/en14196030.; [10] Bürgin A. National binding renewable energy targets for 2020, but not for 2030 anymore: why the European Commission developed from a supporter to a brakeman. J Eur Publ Pol 2015;22:690–707. https://doi.org/10.1080/ 13501763.2014.984747.; [11] The Royal Society. Large-scale electricity storage. London: The Royal Society; 2023.; [12] Brown TW, Bischof-Niemz T, Blok K, Breyer C, Lund H, Mathiesen BV. Response to ‘Burden of proof: a comprehensive review of the feasibility of 100% renewableelectricity systems. Renew Sustain Energy Rev 2018;92:834–47. https://doi.org/ 10.1016/j.rser.2018.04.113.; [13] International Renewable Energy Agency. Global renewables outlook energy transformation 2050. Abu Dhabi: IRENA; 2020.; [14] Canales FA, Jurasz JK, Guezgouz M, Beluco A. Cost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community. Sustain Energy Technol Assessments 2021;44:101062. https://doi. org/10.1016/j.seta.2021.101062.; [15] Perera ATD, Nik VM, Chen D, Scartezzini J-L, Hong T. Quantifying the impacts of climate change and extreme climate events on energy systems. Nat Energy 2020;5: 150–9. https://doi.org/10.1038/s41560-020-0558-0.; [16] Zhao X, Huang G, Lu C, Zhou X, Li Y. Impacts of climate change on photovoltaic energy potential: a case study of China. Appl Energy 2020;280:115888. https:// doi.org/10.1016/j.apenergy.2020.115888.; [17] Moriarty P, Honnery D. The limits of renewable energy. AIMS Energy 2021;9: 812–29. https://doi.org/10.3934/energy.2021037.; [18] Jung C, Schindler D. A review of recent studies on wind resource projections under climate change. Renew Sustain Energy Rev 2022;165:112596. https://doi.org/ 10.1016/j.rser.2022.112596.; [19] Dutta R, Chanda K, Maity R. Future of solar energy potential in a changing climate across the world: a CMIP6 multi-model ensemble analysis. Renew Energy 2022; 188:819–29. https://doi.org/10.1016/j.renene.2022.02.023.; [20] Gernaat DEHJ, de Boer HS, Daioglou V, Yalew SG, Müller C, van Vuuren DP. Climate change impacts on renewable energy supply. Nat Clim Change 2021;11: 119–25. https://doi.org/10.1038/s41558-020-00949-9.; [21] Oka K, Mizutani W, Ashina S. Climate change impacts on potential solar energy production: a study case in Fukushima, Japan. Renew Energy 2020;153:249–60. https://doi.org/10.1016/j.renene.2020.01.126.; [22] Bloomfield HC, Brayshaw DJ, Deakin M, Greenwood D. Hourly historical and nearfuture weather and climate variables for energy system modelling. Earth Syst Sci Data 2022;14:2749–66. https://doi.org/10.5194/essd-14-2749-2022.; [23] Huang J, Jones B, Thatcher M, Landsberg J. Temperature impacts on utility-scale solar photovoltaic and wind power generation output over Australia under RCP 8.5. J Renew Sustain Energy 2020;12:046501. https://doi.org/10.1063/ 5.0012711.; [24] Poddar S, Evans JP, Kay M, Prasad A, Bremner S. Estimation of future changes in photovoltaic potential in Australia due to climate change. Environ Res Lett 2021; 16:114034. https://doi.org/10.1088/1748-9326/ac2a64.; [25] Yang Y, Javanroodi K, Nik VM. Climate change and renewable energy generation in europe—long-term impact assessment on solar and wind energy using highresolution future climate data and considering climate uncertainties. Energies 2022;15:302. https://doi.org/10.3390/en15010302.; [26] Craig MT, Wohland J, Stoop LP, Kies A, Pickering B, Bloomfield HC, et al. Overcoming the disconnect between energy system and climate modeling. Joule 2022;6:1405–17. https://doi.org/10.1016/j.joule.2022.05.010.; [27] Tobin I, Vautard R, Balog I, Br´eon F-M, Jerez S, Ruti PM, et al. Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections. Climatic Change 2015;128:99–112. https://doi.org/10.1007/ s10584-014-1291-0.; [28] Jerez S, Tobin I, Turco M, Jim´enez-Guerrero P, Vautard R, Montavez ´ JP. Future changes, or lack thereof, in the temporal variability of the combined wind-plussolar power production in Europe. Renew Energy 2019;139:251–60. https://doi. org/10.1016/j.renene.2019.02.060.; [29] Tobin I, Greuell W, Jerez S, Ludwig F, Vautard R, van Vliet MTH, et al. Vulnerabilities and resilience of European power generation to 1.5 ◦C, 2 ◦C and 3 ◦C warming. Environ Res Lett 2018;13:044024. https://doi.org/10.1088/1748- 9326/aab211.; [30] Costoya X, deCastro M, Carvalho D, Arguil´e-P´erez B, Gomez-Gesteira ´ M. Combining offshore wind and solar photovoltaic energy to stabilize energy supply under climate change scenarios: a case study on the western Iberian Peninsula. Renew Sustain Energy Rev 2022;157:112037. https://doi.org/10.1016/j. rser.2021.112037.; [31] Bloomfield HC, Brayshaw DJ, Troccoli A, Goodess CM, De Felice M, Dubus L, et al. Quantifying the sensitivity of european power systems to energy scenarios and climate change projections. Renew Energy 2021;164:1062–75. https://doi.org/ 10.1016/j.renene.2020.09.125.; [32] Wohland J. Process-based climate change assessment for European winds using EURO-CORDEX and global models. Environ Res Lett 2022;17:124047. https://doi. org/10.1088/1748-9326/aca77f.; [33] Weiss CVC, Menendez M, Ondiviela B, Guanche R, Losada IJ, Juanes J. Climate change effects on marine renewable energy resources and environmental conditions for offshore aquaculture in Europe. ICES (Int Counc Explor Sea) J Mar Sci 2020;77:3168–82. https://doi.org/10.1093/icesjms/fsaa226.; [34] de la Vara A, Guti´errez C, Gonzalez-Alem ´ ´ an JJ, Gaertner MA. ´ Intercomparison study of the impact of climate change on renewable energy indicators on the mediterranean islands. Atmosphere 2020;11:1036. https://doi.org/10.3390/ atmos11101036.; [35] Raynaud D, Hingray B, François B, Creutin JD. Energy droughts from variable renewable energy sources in European climates. Renew Energy 2018;125:578–89. https://doi.org/10.1016/j.renene.2018.02.130.; [36] Carvalho D, Rocha A, Costoya X, deCastro M, Gomez-Gesteira ´ M. Wind energy resource over Europe under CMIP6 future climate projections: what changes from CMIP5 to CMIP6. Renew Sustain Energy Rev 2021;151:111594. https://doi.org/ 10.1016/j.rser.2021.111594.; [37] Costoya X, deCastro M, Carvalho D, Gomez-Gesteira ´ M. Assessing the complementarity of future hybrid wind and solar photovoltaic energy resources for North America. Renew Sustain Energy Rev 2023;173:113101. https://doi.org/ 10.1016/j.rser.2022.113101.; [38] Ohlendorf N, Schill W-P. Frequency and duration of low-wind-power events in Germany. Environ Res Lett 2020;15:084045. https://doi.org/10.1088/1748-9326/ ab91e9.; [39] Doddy Clarke E, Griffin S, McDermott F, Monteiro Correia J, Sweeney C. Which reanalysis dataset should we use for renewable energy analysis in Ireland? Atmosphere 2021;12:624. https://doi.org/10.3390/atmos12050624.; [40] Hayes L, Stocks M, Blakers A. Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis. Energy 2021;229:120603. https://doi.org/10.1016/j.energy.2021.120603.; [41] Vega-Dur´ an J, Escalante-Castro B, Canales FA, Acuna ˜ GJ, Ka´zmierczak B. Evaluation of areal monthly average precipitation estimates from MERRA2 and ERA5 reanalysis in a Colombian caribbean basin. Atmosphere 2021;12:1430. https://doi.org/10.3390/atmos12111430.; [42] Yao L, Lu J, Xia X, Jing W, Liu Y. Evaluation of the ERA5 Sea surface temperature around the pacific and the atlantic. IEEE Access 2021;9:12067–73. https://doi.org/ 10.1109/ACCESS.2021.3051642.; [43] Brown PT, Farnham DJ, Caldeira K. Meteorology and climatology of historical weekly wind and solar power resource droughts over western North America in ERA5. SN Appl Sci 2021;3:814. https://doi.org/10.1007/s42452-021-04794-z.; [44] Rinaldi KZ, Dowling JA, Ruggles TH, Caldeira K, Lewis NS. Wind and solar resource droughts in California highlight the benefits of long-term storage and integration with the western interconnect. Environ Sci Technol 2021;55:6214–26. https://doi. org/10.1021/acs.est.0c07848.; [45] Jurasz J, Mikulik J, Dąbek PB, Guezgouz M, Ka´zmierczak B. Complementarity and ‘resource droughts’ of solar and wind energy in Poland: an ERA5-based analysis. Energies 2021;14:1118. https://doi.org/10.3390/en14041118.; [46] Otero N, Martius O, Allen S, Bloomfield H, Schaefli B. A copula-based assessment of renewable energy droughts across Europe. Renew Energy 2022;201:667–77. https://doi.org/10.1016/j.renene.2022.10.091.; [47] Allen S, Otero N. Standardised indices to monitor energy droughts. Renew Energy 2023;217:119206. https://doi.org/10.1016/j.renene.2023.119206.; [48] Copernicus Climate Change Service (C3S). Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections. 2021. https://cds. climate.copernicus.eu/cdsapp#!/dataset/sis-energy-derived-projections?tab=over view. [Accessed 6 June 2022].; [49] Dubus L, Saint-Drenan Y-M, Troccoli A, De Felice M, Moreau Y, Ho L, et al. C3S Energy: an operational service to deliver power demand and supply for different electricity sources, time and spatial scales over Europe. Applied Statistics; 2021. https://doi.org/10.31223/X5MM06.; [50] Doddy Clarke E, Sweeney C, McDermott F, Griffin S, Correia JM, Nolan P, et al. Climate change impacts on wind energy generation in Ireland. Wind Energy 2022; 25:300–12. https://doi.org/10.1002/we.2673.; [51] Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, et al. Rcp 8.5—a scenario of comparatively high greenhouse gas emissions. Climatic Change 2011;109:33. https://doi.org/10.1007/s10584-011-0149-y.; [52] Nakicenovic N, Alcamo J, Davis G, Vries B, Fenhann J, Gaffin S, et al. Special report on emissions scenarios. Intergovernmental Panel on Climate Change; 2000.; [53] Saint-Drenan Y-M, Wald L, Ranchin T, Dubus L, Troccoli A. An approach for the estimation of the aggregated photovoltaic power generated in several European countries from meteorological data. Adv Sci Res 2018;15:51–62. https://doi.org/ 10.5194/asr-15-51-2018.; [54] Troccoli A, Sanger L, Goodess C, Ogonji J, Dubus L, Vautard R, et al. Copernicus Climate Change Service (C3S) - technical description of methodologies followed in the development of each product. Reading: European Centre for Medium-Range Weather Forecasts; 2020.; [55] AR6 Synthesis Report. Climate change. 2023. https://www.ipcc.ch/report /ar6/syr/. [Accessed 13 September 2023].; [56] Kapica J, Jurasz J, Canales AF, Bloomfield H, Guezgouz M, De Felice M, et al. The potential impact of climate change on European renewable energy droughts. 2023. https://doi.org/10.5281/zenodo.8333762.; [57] Solaun K, Cerd´ a E. Climate change impacts on renewable energy generation. A review of quantitative projections. Renew Sustain Energy Rev 2019;116. https:// doi.org/10.1016/j.rser.2019.109415. 109415–109415.; [58] Weber J, Wohland J, Reyers M, Moemken J, Hoppe C, Pinto JG, et al. Impact of climate change on backup energy and storage needs in wind-dominated power systems in Europe. PLoS One 2018;13:e0201457. https://doi.org/10.1371/journal. pone.0201457.; [59] European Commission, Directorate-General for Energy Andrey C, Barberi P, Florez E, Veen W, et al. Offshore renewable energy and grids: an analysis of visions towards 2050 for the Northern seas region and recommendations for upcoming scenario-building exercises. Publications Office of the European Union; 2022. https://doi.org/10.2833/693330.; [60] Bloomfield HC, Suitters CC, Drew DR. Meteorological drivers of European power system stress. J. Renewable Energy 2020;2020:1–12. https://doi.org/10.1155/ 2020/5481010.; [61] ENTSO-E Transparency Platform n.d. https://transparency.entsoe.eu/(accessed September 13, 2023).; [62] Parzen M, Abdel-Khalek H, Fedotova E, Mahmood M, Frysztacki MM, Hampp J, et al. PyPSA-Earth. A new global open energy system optimization model demonstrated in Africa. Appl Energy 2023;341:121096. https://doi.org/10.1016/j. apenergy.2023.121096.; 15; 189; https://hdl.handle.net/11323/13082; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/

  5. 5
    Academic Journal

    وصف الملف: text

    Relation: https://centaur.reading.ac.uk/97418/1/Revised%20Manuscript%20with%20no%20changes%20marked.pdf; Guezgouz, M., Jurasz, J., Chouai, M., Bloomfield, H. orcid:0000-0002-5616-1503 and Bekkouche, B. (2021) Assessment of solar and wind energy complementarity in Algeria. Energy Conversion and Management, 238. 114170. ISSN 0196-8904 doi: https://doi.org/10.1016/j.enconman.2021.114170

  6. 6
    Academic Journal

    المصدر: Sustainable Energy Technologies and Assessments ; https://www.sciencedirect.com/science/article/abs/pii/S2213138821000722

    وصف الملف: application/pdf

    Relation: International Renewable Energy Agency Global renewables outlook: energy transformation 2050 IRENA, Abu Dhabi (2020); M.Z. Jacobson, M.A. Delucchi, G. Bazouin, M.J. Dvorak, R. Arghandeh, Z.A.F. Bauer, T.W. Yeskoo, et al. A 100% wind, water, sunlight (WWS) all-sector energy plan for Washington State Renewable Energy, 86 (2016), pp. 75-88, 10.1016/j.renene.2015.08.003; M. Diesendorf, B. Elliston The feasibility of 100% renewable electricity systems: a response to critics Renew Sustain Energy Rev, 93 (2018), pp. 318-330, 10.1016/j.rser.2018.05.042; M.Z. Jacobson, M.A. Delucchi Providing all global energy with wind, water, and solar power, Part I: technologies, energy resources, quantities and areas of infrastructure, and materials Energy Policy, 39 (3) (2011), pp. 1154-1169, 10.1016/j.enpol.2010.11.040; I.G. Mason, S.C. Page, A.G. Williamson A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources Energy Policy, 38 (8) (2010), pp. 3973-3984, 10.1016/j.enpol.2010.03.022; Z. Bačelić Medić, B. Ćosić, N. Duić Sustainability of remote communities: 100% renewable island of Hvar J Renewable Sustainable Energy, 5 (4) (2013), p. 041806, 10.1063/1.4813000; Elliston B, Diesendorf M, MacGill I. Reliability of 100 % Renewable Electricity Supply in the Australian National Electricity Market. In: Uyar TS, editor. Towar. 100% Renew. Energy. Springer Proc. Energy, Cham: Springer; 2017, p. 297–303. https://ezproxy.cuc.edu.co:2067/10.1007/978-3-319-45659-1_32.; C.G. Meza, N.B. Amado, I.L. Sauer Transforming the Nicaraguan energy mix towards 100% renewable Energy Procedia, 138 (2017), pp. 494-499, 10.1016/j.egypro.2017.10.234; M.Z. Jacobson, M.A. Delucchi, M.A. Cameron, B.V. Mathiesen Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes Renewable Energy, 123 (2018), pp. 236-248, 10.1016/j.renene.2018.02.009; A. Aghahosseini, D. Bogdanov, L.S.N.S. Barbosa, C. Breyer Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030 Renew Sustain Energy Rev, 105 (2019), pp. 187-205, 10.1016/j.rser.2019.01.046; R. Hinrichs-Rahlwes, H.-J. Fell, S. Furuya, L. Gorroño, L. Holm, T. Kåberger, et al. Towards 100% Renewable Energy: Status Trends and Lessons Learned IRENA, Abu Dhabi (2019); M. Fasihi, C. Breyer Baseload electricity and hydrogen supply based on hybrid PV-wind power plants J Cleaner Prod, 243 (2020), p. 118466, 10.1016/j.jclepro.2019.118466; T. Weir Renewable energy in the Pacific Islands: Its role and status Renew Sustain Energy Rev, 94 (2018), pp. 762-771, 10.1016/j.rser.2018.05.069; Muehlenhaus I, editor. Geography Today: An Encyclopedia of Concepts, Issues, and Technology. Santa Barbara: ABC-CLIO; 2019.; K. Sperling How does a pioneer community energy project succeed in practice? The case of the Samsø Renewable Energy Island Renew Sustain Energy Rev, 71 (2017), pp. 884-897, 10.1016/j.rser.2016.12.116; A.S. Oyewo, J. Farfan, P. Peltoniemi, C. Breyer Repercussion of large scale hydro dam deployment: the case of Congo grand Inga hydro Project Energies, 11 (2018), p. 972, 10.3390/en11040972; T.W. Brown, T. Bischof-Niemz, K. Blok, C. Breyer, H. Lund, B.V. Mathiesen Response to ‘Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems’ Renew Sustain Energy Rev, 92 (2018), pp. 834-847, 10.1016/j.rser.2018.04.113; B.K. Sovacool The intermittency of wind, solar, and renewable electricity generators: technical barrier or rhetorical excuse? Util Policy, 17 (3-4) (2009), pp. 288-296, 10.1016/j.jup.2008.07.001; B.P. Heard, B.W. Brook, T.M.L. Wigley, C.J.A. Bradshaw Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems Renew Sustain Energy Rev, 76 (2017), pp. 1122-1133, 10.1016/j.rser.2017.03.114; M.W. Murage, C.L. Anderson Contribution of pumped hydro storage to integration of wind power in Kenya: an optimal control approach Renewable Energy, 63 (2014), pp. 698-707, 10.1016/j.renene.2013.10.026; J. Jurasz, P.B. Dąbek, B. Kaźmierczak, A. Kies, M. Wdowikowski Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for Lower Silesia (Poland) Energy, 161 (2018), pp. 183-192, 10.1016/j.energy.2018.07.085; Lacal Arantegui R, Jaeger-Waldau A, Vellei M, Sigfusson B, Magagna D, Jakubcionis M, et al. ETRI 2014 - Energy Technology Reference Indicator projections for 2010-2050. Petten: Publications Office of the European Union; 2014. https://ezproxy.cuc.edu.co:2067/10.2790/057687.; T. Hino, A. Lejeune Pumped storage hydropower developments Compr. Renew. Energy, Elsevier (2012), pp. 405-434, 10.1016/B978-0-08-087872-0.00616-8; E. Pujades, T. Willems, S. Bodeux, P. Orban, A. Dassargues Underground pumped storage hydroelectricity using abandoned works (deep mines or open pits) and the impact on groundwater flow Hydrogeol J, 24 (6) (2016), pp. 1531-1546, 10.1007/s10040-016-1413-z; J. Menéndez, J. Loredo, J.M. Fernandez, M. Galdo Underground pumped-storage hydro power plants with mine water in abandoned coal mines Mine Water Circ Econ (2017), pp. 6-13; B. Lu, M. Stocks, A. Blakers, K. Anderson Geographic information system algorithms to locate prospective sites for pumped hydro energy storage Appl Energy, 222 (2018), pp. 300-312, 10.1016/j.apenergy.2018.03.177; N. Ghorbani, H. Makian, C. Breyer A GIS-based method to identify potential sites for pumped hydro energy storage - case of Iran Energy, 169 (2019), pp. 854-867, 10.1016/j.energy.2018.12.073; K. Bunker, S. Doig, K. Hawley, J. Morris Renewable microgrids: profiles from islands and remote communities across the globe Rocky Mountain Institute, Boulder (2015); N. Duić, M. da Graça Carvalho Increasing renewable energy sources in island energy supply: case study Porto Santo Renew Sustain Energy Rev, 8 (4) (2004), pp. 383-399, 10.1016/j.rser.2003.11.004; C. Bueno, J.A. Carta Technical–economic analysis of wind-powered pumped hydrostorage systems. Part II: model application to the island of El Hierro Sol Energy, 78 (3) (2005), pp. 396-405, 10.1016/j.solener.2004.08.007; C. Bueno, J.A. Carta Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands Renew Sustain Energy Rev, 10 (4) (2006), pp. 312-340, 10.1016/j.rser.2004.09.005; G. Caralis, A. Zervos Analysis of the combined use of wind and pumped storage systems in autonomous Greek islands IET Renew Power Gener, 1 (1) (2007), p. 49, 10.1049/iet-rpg:20060010; G. Caralis, K. Rados, A. Zervos On the market of wind with hydro-pumped storage systems in autonomous Greek islands Renew Sustain Energy Rev, 14 (8) (2010), pp. 2221-2226, 10.1016/j.rser.2010.02.008; S. Papaefthimiou, E. Karamanou, S. Papathanassiou, M. Papadopoulos Operating policies for wind-pumped storage hybrid power stations in island grids IET Renew Power Gener, 3 (3) (2009), p. 293, 10.1049/iet-rpg.2008.0071; D.A. Katsaprakakis, D.G. Christakis, K. Pavlopoylos, S. Stamataki, I. Dimitrelou, I. Stefanakis, P. Spanos Introduction of a wind powered pumped storage system in the isolated insular power system of Karpathos–Kasos Appl Energy, 97 (2012), pp. 38-48, 10.1016/j.apenergy.2011.11.069; M. Kapsali, J.S. Anagnostopoulos, J.K. Kaldellis Wind powered pumped-hydro storage systems for remote islands: a complete sensitivity analysis based on economic perspectives Appl Energy, 99 (2012), pp. 430-444, 10.1016/j.apenergy.2012.05.054; T. Ma, H. Yang, L. Lu, J. Peng Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong Renewable Energy, 69 (2014), pp. 7-15, 10.1016/j.renene.2014.03.028; S.V. Papaefthymiou, S.A. Papathanassiou Optimum sizing of wind-pumped-storage hybrid power stations in island systems Renew Energy, 64 (2014), pp. 187-196, 10.1016/j.renene.2013.10.047; T. Ma, H. Yang, L. Lu, J. Peng Optimal design of an autonomous solar–wind-pumped storage power supply system Appl Energy, 160 (2015), pp. 728-736, 10.1016/j.apenergy.2014.11.026; I. Barreira, C. Gueifão, J. Ferreira de Jesus Off-stream Pumped Storage Hydropower plant to increase renewable energy penetration in Santiago Island, Cape Verde J Phys Conf Ser, 813 (2017), 10.1088/1742-6596/813/1/012011 012011; P. Tsamaslis, A. Katsanevakis, G. Karagiorgis Hybridization of photovoltaics with pumped storage hydroelectricity. an approach to increase RES penetration and achieve grid benefits. Application in the island of Cyprus J Power Technol, 97 (2017), pp. 336-341; M.S. Javed, T. Ma, J. Jurasz, M.Y. Amin Solar and wind power generation systems with pumped hydro storage: Review and future perspectives Renewable Energy, 148 (2020), pp. 176-192, 10.1016/j.renene.2019.11.157; M. Guezgouz, J. Jurasz, B. Bekkouche, T. Ma, M.S. Javed, A. Kies Optimal hybrid pumped hydro-battery storage scheme for off-grid renewable energy systems 112046 Energy Convers Manage, 199 (2019), 10.1016/j.enconman.2019.112046; C.G. Meza, C. Zuluaga Rodríguez, C.A. D'Aquino, N.B. Amado, A. Rodrigues, I.L. Sauer Toward a 100% renewable island: a case study of Ometepe's energy mix Renewable Energy, 132 (2019), pp. 628-648, 10.1016/j.renene.2018.07.124; Ministerio de Energía y Minas. Plan de expansión de la generación eléctrica de 2019-2033. Managua; 2017.; L. Kapelanczyk, W.I. Rose, B. Jicha An eruptive history of Maderas volcano using new 40Ar/39Ar ages and geochemical analyses Bull Volcanol, 74 (9) (2012), pp. 2007-2021, 10.1007/s00445-012-0644-7; M. Ranaboldo, B. Domenech, G.A. Reyes, L. Ferrer-Martí, R. Pastor Moreno, A. García-Villoria Off-grid community electrification projects based on wind and solar energies: a case study in Nicaragua Sol Energy, 117 (2015), pp. 268-281, 10.1016/j.solener.2015.05.005; Empresa Nacional de Transmisión Eléctrica. Ometepe recibe energía eléctrica confiable 2017. [accessed January 5, 2020].; Ometepe – Google Maps 2020. [accessed July 7, 2020].; J. Jurasz, F.A. Canales, A. Kies, M. Guezgouz, A. Beluco A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions Sol Energy, 195 (2020), pp. 703-724; S.H. Karaki, R.B. Chedid, R. Ramadan Probabilistic performance assessment of autonomous solar-wind energy conversion systems IEEE Trans Energy Convers, 14 (1999), pp. 766-772, 10.1109/60.790949; I. Abouzahr, R. Ramakumar Loss of power supply probability of stand-alone photovoltaic systems: a closed form solution approach IEEE Trans Energy Convers, 6 (1991), pp. 1-11, 10.1109/60.73783; W.R. Powell An analytical expression for the average output power of a wind machine Sol Energy, 26 (1) (1981), pp. 77-80, 10.1016/0038-092X(81)90114-6; Bauer L, Matysik S. Enercon E-33/300-300 kW Wind Turbine. Wind Big Portal Wind Energy 2020. [accessed May 8, 2020].; ENERCON. Wind reduces fuel consumption on Falklands. Windblatt; 2007p. 10–1.; F.A. Canales, A. Beluco, C.A.B. Mendes Modelling a hydropower plant with reservoir with the micropower optimisation model (HOMER) Int J Sustain Energ, 36 (7) (2017), pp. 654-667; H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding Progress in electrical energy storage system: a critical review Prog Nat Sci, 19 (3) (2009), pp. 291-312, 10.1016/j.pnsc.2008.07.014; Copernicus Atmosphere Monitoring Service Products. CAMS radiation service n.d. [accessed November 15, 2018].; B.Y.H. Liu, R.C. Jordan The interrelationship and characteristic distribution of direct, diffuse and total solar radiation Sol Energy, 4 (3) (1960), pp. 1-19; Global Modeling and Assimilation Office (GMAO). MERRA-2 tavg1_2d_slv_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Single-Level Diagnostics V5.12.4 2015. https://ezproxy.cuc.edu.co:2067/10.5067/VJAFPLI1CSIV.; J.A. Gómez Navarrete, V. Maderas Identificación de áreas con potenciales riesgos de inundación y deslizamiento a través de geoprocesamiento con SIG Universidad Nacional del Litoral (2009); Stocks C, editor. The world's pumped storage plants. Int. Water Power Dam Constr. Yearb., London: Global Trade Media - Progressive Media Group Limited; 2012, p. 282–92.; E. Nkiaka, N.R. Nawaz, J.C. Lovett Evaluating global reanalysis precipitation datasets with rain gauge measurements in the Sudano-Sahel region: case study of the Logone catchment, Lake Chad Basin: evaluating reanalysis precipitation estimates in the Sudano-Sahel Met. Apps, 24 (1) (2017), pp. 9-18; K. Gudulas, K. Voudouris, G. Soulios, G. Dimopoulos Comparison of different methods to estimate actual evapotranspiration and hydrologic balance Desalin Water Treat, 51 (13-15) (2013), pp. 2945-2954; A.R. Ghumman, Y.M. Ghazaw, A. Alodah, A. Raufur, M. Shafiquzzaman, H. Haider Identification of parameters of evaporation equations using an optimization technique based on pan evaporation Water (Switzerland) (2020), p. 12, 10.3390/w12010228; Ministerio de Energía y Minas. Anuario estadístico del sector eléctrico 2015. Managua; 2016.; Fundación Nicaragüense para el Desarrollo Económico y Social. El sector de energía eléctrica de Nicaragua. Managua; 2016.; The World Bank. Electric power consumption (kWh per capita) 2019. https://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC [accessed December 12, 2019].; Electricity Map: Live CO2 emissions of electricity consumption 2020. [accessed May 5, 2020].; M. Guezgouz, J. Jurasz, B. Bekkouche Techno-economic and environmental analysis of a hybrid PV-WT-PSH/BB standalone system supplying various loads Energies (2019), p. 12, 10.3390/en12030514; S. Mirjalili, S. Saremi, S.M. Mirjalili, L. dos S. Coelho Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization Expert Syst Appl, 47 (2016), pp. 106-119, 10.1016/j.eswa.2015.10.039; N.H. Reich, B. Mueller, A. Armbruster, W.G.J.H.M. Van Sark, K. Kiefer, C. Reise Performance ratio revisited: Is PR > 90% realistic? Prog Photovoltaics Res Appl, 20 (2012), pp. 717-726, 10.1002/pip.1219; S. Baek, E. Park, M.-G. Kim, S.J. Kwon, K.J. Kim, J.Y. Ohm, et al. Optimal renewable power generation systems for Busan metropolitan city in South Korea Renewable Energy, 88 (2016), pp. 517-525, 10.1016/j.renene.2015.11.058; Nicaragua prepara trabajo de exploración geotérmica. Bus News Am; 2020.; Sánchez Molina P. Comienza el funcionamiento de la planta Solaris de 12 MW en Nicaragua. PV Mag; 2017.; Ong S, Campbell C, Denholm P, Margolis R, Heath G. Land-Use Requirements for Solar Power Plants in the United States. Golden; 2013.; Asturias Ozaeta J. Desarrollo y situación actual del sector eólico en América Central. Quito; 2012.; M.M.V. Cantarero Decarbonizing the transport sector: The Promethean responsibility of Nicaragua J Environ Manage, 245 (2019), pp. 311-321, 10.1016/j.jenvman.2019.05.109; B. Ceran Multi-criteria comparative analysis of clean hydrogen production scenarios Energies, 13 (2020), 10.3390/en13164180; Hydrogenics. Renewable Hydrogen Solutions 2018:18. [accessed September 9, 2020].; J. Proost State-of-the art CAPEX data for water electrolysers, and their impact on renewable hydrogen price settings Int J Hydrogen Energy, 44 (9) (2019), pp. 4406-4413, 10.1016/j.ijhydene.2018.07.164; A.A. Solomon, D. Bogdanov, C. Breyer Curtailment-storage-penetration nexus in the energy transition Appl Energy, 235 (2019), pp. 1351-1368, 10.1016/j.apenergy.2018.11.069; https://hdl.handle.net/11323/8311; https://doi.org/10.1016/j.seta.2021.101062; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/

  7. 7
    Academic Journal
  8. 8
  9. 9
    Book

    المصدر: urn:isbn:978-0-323-85527-3 ; urn:isbn:978-0-323-85528-0 ; Complementarity of Variable Renewable Energy Sources, 687-713 (2022)

  10. 10
    Book
  11. 11
    Book
  12. 12
    Book
  13. 13
    Report
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
    Academic Journal

    المؤلفون: Guezgouz, Mohammed1 bekbenm@yahoo.fr, Jurasz, Jakub2,3 mohammed.guezgouz@univ-mosta.dz, Bekkouche, Benaissa1

    المصدر: Energies (19961073). Feb2019, Vol. 12 Issue 3, p514. 1p. 3 Diagrams, 2 Charts, 18 Graphs.