يعرض 1 - 20 نتائج من 1,084 نتيجة بحث عن '"Guerrero-Martinez A."', وقت الاستعلام: 0.76s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Dissertation/ Thesis

    المؤلفون: Guerrero Martínez, Marta

    المساهمون: University/Department: Universitat de Barcelona. Departament de Farmàcia i Tecnologia Farmacèutica

    Thesis Advisors: Suñé i Negre, Josep M. (Josep Maria), Ticó Grau, Josep R., Miñarro Carmona, Montserrat

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  4. 4
    Academic Journal
  5. 5
    Book
  6. 6
    Academic Journal
  7. 7
    Academic Journal

    المؤلفون: Guerrero Martínez, Rodolfo

    المصدر: Journal of the Faculty of Law of Mexico; Vol. 74 No. e (2024): Número Especial en Homenaje al Doctor Sergio García Ramírez ; 785-808 ; Revista de la Facultad de Derecho de México; Vol. 74 Núm. e (2024): Número Especial en Homenaje al Doctor Sergio García Ramírez ; 2448-8933 ; 1870-8722 ; 10.22201/fder.24488933e.2024.e

    مصطلحات موضوعية: Derecho, Ciberseguridad, Datos, Legislación, Estrategia

    وصف الملف: application/pdf

  8. 8
    Academic Journal
  9. 9
  10. 10
    Academic Journal

    Time: 544

    وصف الملف: application/pdf

    Relation: PID2021-123228NB-I00; PID2023-150760NA-I00; CAM/REACT ANTICIPA-UCM; Labrador-Páez L, Casasnovas-Melián A, Junquera E, Guerrero-Martínez A, Ahijado-Guzmán R. Optical dark-field spectroscopy of single plasmonic nanoparticles for molecular biosciences. Nanoscale 2024;16:19192–206. https://doi.org/10.1039/D4NR03055A; https://hdl.handle.net/20.500.14352/110607

  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal

    المصدر: Revista Mutis; Vol. 14 Núm. 2 (2024); 1-33 ; Revista Mutis; Vol. 14 No. 2 (2024); 1-33 ; 2256-1498

    وصف الملف: application/pdf

    Relation: https://revistas.utadeo.edu.co/index.php/mutis/article/view/revision-efecto-factor-estres-haematococcus-pluvialis/2144; Ahirwar, A., Meignen, G., Khan, M. J., Sirotiya, V., Scarsini, M., Roux, S., . & Vinayak, V. (2021). Light modulates transcriptomic dynamics upregulating astaxanthin accumulation in Haematococcus: A review. Bioresource Technology, 340, 125707. https://doi.org/10.1016/j.biortech.2021.125707; Angulo, L. D. M. y Mérida, L. G. R. (2017). Estado actual de las empresas productoras de microalgas destinadas a alimentos y suplementos alimenticios en América Latina. Revista Venezolana De Ciencia Y Tecnología De Alimentos, 8(2), 130-147. https://explore.openaire.eu/search/result?id=doajarticles::97ca7a36902ddf703224ae23c67c5bc4; Aslanbay Guler, B., Deniz, I., Demirel, Z. & Imamoglu, E. (2020). Computational fluid dynamics simulation in scaling-up of airlift photobioreactor for astaxanthin production. Journal of Bioscience and Bioengineering, 129(1), 86-92. https://doi.org/10.1016/j.jbiosc.2019.06.010; Bas, T. G., Contreras, A., Oliu, C. A., & Abarca, A. (2021). Determinants of astaxanthin industrial-scale production under stress caused by light photoperiod management of Haematococcus pluvialis cultivation. Latin american journal of aquatic research, 49(5), 725-738. https://doi.org/10.3856/vol49-issue5-fulltext-2752; Benavente-Valdés, J. R., Montañez, J. C., Aguilar, C. N., Méndez-Zavala, A., y Valdivia, B. (2012). Tecnología de cultivo de microalgas en fotobiorreactores. Acta Química Mexicana, 4(7), 1-12.; Benner, P., Meier, L., Pfeffer, A., Krüger, K., Oropeza Vargas, J. E., & Weuster-Botz, D. (2022). Lab-scale photobioreactor systems: principles, applications, and scalability. Bioprocess and Biosystems Engineering, 45(5), 791-813. https://doi.org/10.1007/s00449-022-02711-1; Blanken, W., Cuaresma, M., Wijffels, R. H., & Janssen, M. (2013). Cultivation of microalgae on artificial light comes at a cost. Algal Research, 2(4), 333-340. https://doi.org/10.1016/j.algal.2013.09.004; Borowiak, D., Lenartowicz, P., Grzebyk, M., Wiśniewski, M., Lipok, J., & Kafarski, P. (2021). Novel, automated, semi-industrial modular photobioreactor system for cultivation of demanding microalgae that produce fine chemicals—The next story of H. pluvialis and astaxanthin. Algal Research, 53, 102151. https://doi.org/10.1016/j.algal.2020.102151; Bruder, S., Reifenrath, M., Thomik, T., Boles, E., & Herzog, K. (2016). Parallelised online biomass monitoring in shake flasks enables efficient strain and carbon source dependent growth characterisation of Saccharomycescerevisiae. Microbial Cell Factories, 15(1). https://doi.org/10.1186/s12934-016-0526-3; Butler, T. O., McDougall, G. J., Campbell, R., Stanley, M. S., & Day, J. G. (2017). Media Screening for Obtaining Haematococcus pluvialis Red Motile Macrozooids Rich in Astaxanthin and Fatty Acids. Biology, 7(1), 2. https://doi.org/10.3390/biology7010002; Camacho Kurmen, J. E., González, G., & Klotz, B. (2013). Producción de Astaxantina en Haematococcus pluvialis bajo diferentes condiciones de estrés. Nova, 11(19), 94-104. https://doi.org/10.22490/24629448.1022; Christian, D., Zhang, J., Sawdon, A. J., & Peng, C. (2018). Enhanced astaxanthin accumulation in Haematococcus pluvialis using high carbon dioxide concentration and light illumination. Bioresource Technology, 256, 548-551. https://doi.org/10.1016/j.biortech.2018.02.074; Cheirsilp, B., Wantip, K., Chai-issarapap, N., Maneechote, W., Pekkoh, J., Duangjan, K., . & Srinuanpan, S. (2022). Enhanced production of astaxanthin and co-bioproducts from microalga Haematococcus sp. integrated with valorization of industrial wastewater under two-stage ledlight illumination strategy. Environmental Technology & Innovation, 28, 102620.; Dalia Yirasol Martinez Tapiero, Maria Anghela Martínez Rentería, & Judith Elena Camacho Kurmen. (2024). Uso de tecnologías CRISPR-CAS9en microalgas aplicado a la obtención de productos biotecnológicos de interés industrial. Mutis, 14(1). https://doi.org/10.21789/22561498.2044; Deniz, I. (2020). Scaling-up of Haematococcus pluvialis production in stirred tank photobioreactor. Bioresource Technology, 310, 123434. https://doi.org/10.1016/j.biortech.2020.123434; Du, F., Hu, C., Sun, X., Zhang, L., & Xu, N. (2021). Transcriptome analysis reveals the promoting effect of trisodium citrate on astaxanthin accumulation in Haematococcus pluvialis under high light condition. Aquaculture, 543, 736978. https://doi.org/10.1016/j.aquaculture.2021.736978; El-Baz, F. K., Salama, A., Ali, S. I., & Elgohary, R. (2021). Haematococcus pluvialis Carotenoids Enrich Fractions Ameliorate Liver Fibrosis Induced by Thioacetamide in Rats: Modulation of Metalloproteinase and Its Inhibitor. BioMed Research International, 2021, 6631415-16. https://doi.org/10.1155/2021/6631415; El-Baz, F. K., Ali, S. I., Elgohary, R., & Salama, A. (2023). Natural β-carotene prevents acute lung injury induced by cyclophosphamide in mice. PloS One, 18(4), e0283779. https://doi.org/10.1371/journal.pone.0283779; Factiva (2021). Análisis global de la industria de la astaxantina, tamaño, cuota de mercado, crecimiento, tendencia y previsión para 2027. https://global.factiva.com/en/du/article.asp?accessionno=ICROWDS020210316eh3g00002; Fernández-Lozano, J., Guillén-Oterino, A., Gutiérrez-Alonso, G., Abel-Flores, J., y Pérez-Turrado, J. (2015). Presencia de Haematococcus pluvialis (Flotow, 1844) en la provinciade Zamora (Haematococcaceae). Boletín De La Real Sociedad Española De Historia Natural. Sección Biológica.; Gao, X., Wang, X., Li, H., Roje, S., Sablani, S. S., & Chen, S. (2017). Parameterization of a light distribution model for green cell growth of microalgae: Haematococcus pluvialis cultured under red ledlights. Algal research, 23, 20-27. https://doi.org/10.1016/j.algal.2016.12.018; Gherabli, A., Grimi, N., Lemaire, J., Vorobiev, E., & Lebovka, N. (2023). Extraction of Valuable Biomolecules from the Microalga Haematococcus pluvialis Assisted by Electrotechnologies. Molecules (Basel, Switzerland), 28(5), 2089. https://doi.org/10.3390/molecules28052089; Gómez, L., Orozco, M. I., Quiroga, C., Díaz, J. C., Huérfano, J., Díaz, L. E., Rodríguez, J., y Camacho K., J. E. (2019). Producción de Astaxantina y expresión de genes en Haematococcus pluvialis (Chlorophyceae, Volvocales) bajo condiciones de estrés por deficiencia de nitrógeno y alta irradiancia: Producción de astaxantina y expresión de genes en H. pluvialis. Mutis, 9(2), 7-24. https://doi.org/10.21789/22561498.1532; Markets and Markets (2021). Astaxanthin Market by Source, Form, Method of Production, Application and Region - Global Forecast to 2026. Plus Company Updates.; Meticulous Research (2023). Haematococcus pluvialis Markets: Product - Global Forecast to 2030. Plus Company Updates https://www.meticulousresearch.com/product/haematococcus-pluvialis-market-5142/toc; Hawick, K. A., & Husselmann, A. V. (2013). Photo-penetration depth growth dependence in an agent-based photobioreactor model. In Proceedings of the International Conference on Bioinformatics & Computational Biology (BIOCOMP). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp).; Hernández Useche, L.D. y Otalora Celis, M.A. (2022). Obtención de astaxantina sintetizada por la microalga Haematococcus pluvialis para su aplicación industrial. [Tesis de pregrado]. Universidad Colegio Mayor de Cundinamarca. https://janium.unicolmayor.edu.co/janium-bin/sumario.pl?Id=20240613201453; He, B., Hou, L., Dong, M., Shi, J., Huang, X., Ding, Y., Cong, X., Zhang, F., Zhang, X., & Zang, X. (2018). Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by High Light with Acetate and Fe2. International Journal of Molecular Sciences, 19(1), 175. https://doi.org/10.3390/ijms19010175; Hu, C., Cui, D., Sun, X., Shi, J., & Xu, N. (2020). Primary metabolism is associated with the astaxanthin biosynthesis in the green algae Haematococcus pluvialis under light stress. Algal Research (Amsterdam), 46. 101768. https://doi.org/10.1016/j.algal.2019.101768; Hu, J., Wang, D., Chen, H., & Wang, Q. (2023). Advances in Genetic Engineering in Improving Photosynthesis and Microalgal Productivity. International Journal of Molecular Sciences, 24(3). 1898. https://doi.org/10.3390/ijms24031898; Hu, Q., Huang, D., Li, A., Hu, Z., Gao, Z., Yang, Y., & Wang, C. (2021). Transcriptome-based analysis of the effects of salicylic acid and high light on lipid and astaxanthin accumulation in Haematococcus pluvialis. Biotechnology for Biofuels, 14(1). https://doi.org/10.1186/s13068-021-01933-x; Hu, Q., Song, M., Huang, D., Hu, Z., Wu, Y., & Wang, C. (2021). Haematococcus pluvialis Accumulated Lipid and Astaxanthin in a Moderate and Sustainable Way by the Self-Protection Mechanism of Salicylic Acid Under Sodium Acetate Stress. Frontiers in Plant Science, 12, 763742. https://doi.org/10.3389/fpls.2021.763742; Huang, L., Gao, B., Wu, M., Wang, F., & Zhang, C. (2019). Comparative transcriptome analysis of a long-time span two-step culture process reveals a potential mechanism for astaxanthin and biomass hyper-accumulation in Haematococcus pluvialis JNU35. Biotechnology for Biofuels, 12(1), 18. https://doi.org/10.1186/s13068-019-1355-5; Jannel, S., Caro, Y., Bermudes, M., & Petit, T. (2020). Novel Insights into the Biotechnological Production of Haematococcus pluvialis-Derived Astaxanthin: Advances and Key Challenges to Allow Its Industrial Use as Novel Food Ingredient. Journal of Marine Science and Engineering, 8(10), 789. https://doi.org/10.3390/jmse8100789; Jin, H., Lao, Y. M., Zhou, J., & Cai, Z. H. (2022). Identification of a RelA/SpoT Homolog and Its Possible Role in the Accumulation of Astaxanthin in Haematococcus pluvialis. Frontiers in Plant Science, 13, 796997. https://doi.org/10.3389/fpls.2022.796997; Koopmann, I. K., Möller, S., Elle, C., Hindersin, S., Kramer, A., & Labes, A. (2022). Optimization of Astaxanthin Recovery in the Downstream Process of Haematococcus pluvialis. Foods, 11(9), 1352. https://doi.org/10.3390/foods11091352; Lancheros-Díaz, A. G., Camacho-Kurmen, J. E., & Díaz Barrera, L. E. (2021). Producción de astaxantina bajo factores de estrés utilizando un biorreactor a escala de laboratorio de 5 L. Nova: Publicación Científica En Ciencias Biomédicas, 19(37), 99-119. https://doi.org/10.22490/24629448.5498; Lee, K. H., Chun, Y., Lee, J. H., Park, C., Yoo, H. Y., & Kwak, H. S. (2022). Improved Productivity of Astaxanthin from Photosensitive Haematococcus pluvialis Using Phototaxis Technology . Marine Drugs, 20(4), 220. https://doi.org/10.3390/md20040220; Le-Feuvre, R., Moraga-Suazo, P., Gonzalez, J., Martin, S. S., Henríquez, V., Donoso, A., & Agurto-Muñoz, C. (2020). Biotechnology applied to Haematococcus pluvialis Fotow: challenges and prospects for the enhancement of astaxanthin accumulation. Journal of Applied Phycology, 32, 3831-3852. https://doi.org/10.1007/s10811-020-02231-z; Li, F., Cai, M., Lin, M., Huang, X., Wang, J., Zheng, X., Wu, S., & An, Y. (2019). Accumulation of Astaxanthin Was Improved by the Nonmotile Cells of Haematococcus pluvialis. BioMed Research International, 2019, 8101762-7. https://doi.org/10.1155/2019/8101762; Li, F., Cai, M., Wu, Y., Lian, Q., Qian, Z., Luo, J., Zhang, Y., Zhang, N., Li, C., & Huang, X. (2022). Effects of Nitrogen and Light Intensity on the Astaxanthin Accumulation in Motile Cells of Haematococcus pluvialis. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2022.909237; Li, Q., Li, B., & Li, J. (2022). The Dynamic Behaviors of Photosynthesis during Non-Motile Cell Germination in Haematococcus pluvialis. Water (Basel), 14(8), 1280. https://doi.org/10.3390/w14081280; Li, X., Wang, X., Duan, C., Yi, S., Gao, Z., Xiao, C., Agathos, S. N., Wang, G., & Li, J. (2020). Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis. Biotechnology Advances, 43, 107602. https://doi.org/10.1016/j.biotechadv.2020.107602; Liyanaarachchi, V. C., Nishshanka, G. K. S. H., Premaratne, R. G. M. M., Ariyadasa, T. U., Nimarshana, P. H. V., & Malik, A. (2020). Astaxanthin accumulation in the green microalga Haematococcus pluvialis: Effect of initial phosphate concentration and stepwise/continuous light stress. Biotechnology Reports, 28, e00538. https://doi.org/10.1016/j.btre.2020.e00538; Lv, H., Xia, F., Liu, M., Cui, X., Wahid, F., & Jia, S. (2016). Metabolomic profiling of the astaxanthin accumulation process induced by high light in Haematococcus pluvialis. Algal Research, 20, 35-43. https://doi.org/10.1016/j.algal.2016.09.019; Luo, Q., Bian, C., Tao, M., Huang, Y., Zheng, Y., Lv, Y., Li, J., Wang, C., You, X., Jia, B., Xu, J., Li, J., Li, Z., Shi, Q., & Hu, Z. (2019). Genome and Transcriptome Sequencing of the Astaxanthin-Producing Green Microalga, Haematococcus pluvialis. Genome Biology and Evolution, 11(1), 166-173. https://doi.org/10.1093/gbe/evy263; Madhubalaji, C. K., Sarat Chandra, T., Chauhan, V. S., Sarada, R., & Mudliar, S. N. (2020). Chlorella vulgaris cultivation in airlift photobioreactor with transparent draft tube: effect of hydrodynamics, light and carbon dioxide on biochemical profile particularly ω-6/ω-3 fatty acid ratio. Journal of Food Science and Technology, 57(3), 866-876. https://doi.org/10.1007/s13197-019-04118-5; Ma, R., Thomas-Hall, S. R., Chua, E. T., Alsenani, F., Eltanahy, E., Netzel, M. E., Netzel, G., Lu, Y., & Schenk, P. M. (2018). Gene expression profiling of astaxanthin and fatty acid pathways in Haematococcus pluvialis in response to different ledlighting conditions. Bioresource Technology, 250, 591-602. https://doi.org/10.1016/j.biortech.2017.11.094; Ma, R., Thomas-Hall, S. R., Chua, E. T., Eltanahy, E., Netzel, M. E., Netzel, G., Lu, Y., & Schenk, P. M. (2018). Blue light enhances astaxanthin biosynthesis metabolism and extraction efficiency in Haematococcus pluvialis by inducing haematocyst germination. Algal Research, 35, 215-222. https://doi.org/10.1016/j.algal.2018.08.023; Martínez Rodríguez, P. A., Peinado Cárdenas, M. J., & Camacho Kurmen, J. E. (2022). Efecto de los parámetros cinéticos de escalamiento del cultivo de Haematococcus pluvialis en fotobiorreactores para producir astaxantina. Mutis, 12(2). https://doi.org/10.21789/22561498.1739; Medina, E. y Camacho Kurmen, J. E. (2023). Efectos de luz led roja y azul sobre la producción de astaxantina en la biomasa de Haematococcus pluvialis.; Miranda, A. M., Ossa, E. A., Vargas, G. J. y Sáez, A. A. (2019). Efecto de las bajas concentraciones de Nitratos y Fosfatos sobre la Acumulación de Astaxantina en Haematococcus pluvialis UTEX 2505. Información tecnológica, 30(1), 23-32. https://doi.org/10.4067/S0718-07642019000100023; Miyakawa, K. (2021). Commercial Production of Astaxanthin from the Green Alga Haematococcus pluvialis. Advances in experimental medicine and biology (pp. 3-10). Springer Singapore. https://doi.org/10.1007/978-981-15-7360-6_1; Morales-Carvajal, J., Villabona-Nuncira, R., Gonz lez-Delgado, D., Barajas-Ferreira, C., & Barajas-Solano, A. (2018). Technical-economic Prefeasibility Study of Astaxanthin Production System from H. pluvialis Microalgae in Colombia. Indian Journal of Science and Technology, 11(34), 1-8. https://doi.org/10.17485/ijst/2018/v11i34/122627; Mularczyk, M., Michalak, I., & Marycz, K. (2020). Astaxanthin and other Nutrients from Haematococcus pluvialis—Multifunctional Applications. Marine Drugs, 18(9), 459. https://doi.org/10.3390/md18090459; Mussagy, C. U., Kot, A., Dufossé, L., Gonçalves, C. N. D. P., Pereira, J. F. B., Santos-Ebinuma, V. C., Raghavan, V., & Pessoa, A. (2023). Microbial astaxanthin: from bioprocessing to the market recognition. Applied Microbiology and Biotechnology, 107(13), 4199-4215. https://doi.org/10.1007/s00253-023-12586-1; Ooms, M. D., Dinh, C. T., Sargent, E. H., & Sinton, D. (2016). Photon management for augmented photosynthesis. Nature Communications, 7(1), 12699. https://doi.org/10.1038/ncomms12699; Ota, S., Morita, A., Ohnuki, S., Hirata, A., Sekida, S., Okuda, K., Ohya, Y., & Kawano, S. (2018). Carotenoid dynamics and lipid droplet containing astaxanthin in response to light in the green alga Haematococcus pluvialis. Scientific Reports, 8(1), 5617-10. https://doi.org/10.1038/s41598-018-23854-w; Pang, N., Fu, X., Fernandez, J. S. M., & Chen, S. (2019). Multilevel heuristic ledregime for stimulating lipid and bioproducts biosynthesis in Haematococcus pluvialis under mixotrophic conditions. Bioresource Technology, 288, 121525. https://doi.org/10.1016/j.biortech.2019.121525; Pattanaik, A., Sukla, L. B., & Pradhan, D. (2018). Effect of ledLights on the Growth of Microalgae. Inglomayor, 14, 17-24. Pereira, S., & Otero, A. (2020). Haematococcus pluvialis bioprocess optimization: Effect of light quality, temperature and irradiance on growth, pigment content and photosynthetic response. Algal Research, 51, 102027. https://doi.org/10.1016/j.algal.2020.102027; Santos, B., da Conceição, D. P., Corrêa, D. O., Passos, M. F., Campos, M. P., Adamoski, D., . & Kava, V. M. (2022). Changes in gene expression and biochemical composition of Haematococcus pluvialis grown under different light colors. Journal of Applied Phycology, 34(2), 729-743. https://doi.org/10.1007/s10811-022-02696-0; Shah, M. M. R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products. Frontiers in Plant Science, 7, 531. https://doi.org/10.3389/fpls.2016.00531; Sun, J., Zan, J., & Zang, X. (2022). Research of Fluridone’s Effects on Growth and Pigment Accumulation of Haematococcus pluvialis Based on Transcriptome Sequencing. International Journal of Molecular Sciences, 23(6), 3122. https://doi.org/10.3390/ijms23063122; Sun, H., Kong, Q., Geng, Z., Duan, L., Yang, M., & Guan, B. (2015). Enhancement of cell biomass and cell activity of astaxanthin-rich Haematococcus pluvialis. Bioresource technology, 186, 67-73. https://doi.org/10.1016/j.biortech.2015.02.101; Tran, H. L., Lee, K. H., & Hong, C. H. (2015). Effects of ledirradiation on the growth and Astaxanthin Production of Haematococcus lacustris. Biosciences Biotechnology Research Asia, 12(2), 1167-1173. https://doi.org/10.13005/bbra/1769; Torres, T., & Kurmen, J. E. C. (2022). Modelos matemáticos y parámetros cinéticos relacionados con la producción de astaxantina en Haematococcus pluvialis. Revista Mutis, 12(1). https://doi.org/10.21789/22561498.1743; Viazau, Y. V., Goncharik, R. G., Kulikova, I. S., Kulikov, E. A., Vasilov, R. G., & Selishcheva, A. A. (2021). E/Z isomerization of astaxanthin and its monoesters in vitro under the exposure to light or heat and in overilluminated Haematococcus pluvialis cells. Bioresources and Bioprocessing, 8(1), 1-13. https://doi.org/10.1186/s40643-021-00410-5; Villaró, S., Ciardi, M., Morillas-España, A., Sánchez-Zurano, A., Acién-Fernández, G., & Lafarga, T. (2021). Microalgae Derived Astaxanthin: Research and Consumer Trends and Industrial Use as Food. Foods, 10(10), 2303. https://doi.org/10.3390/foods10102303; Waissman-Levy, N., Leu, S., Khozin-Goldberg, I., & Boussiba, S. (2019). Manipulation of trophic capacities in Haematococcus pluvialis enables low-light mediated growth on glucose and astaxanthin formation in the dark. Algal Research (Amsterdam), 40, 101497. https://doi.org/10.1016/j.algal.2019.101497; Wang, C., Wang, K., Ning, J., Luo, Q., Yang, Y., Huang, D., & Li, H. (2021). Transcription Factors From Haematococcus pluvialis Involved in the Regulation of Astaxanthin Biosynthesis Under High Light-Sodium Acetate Stress. Frontiers in Bioengineering and Biotechnology, 9, 650178. https://doi.org/10.3389/fbioe.2021.650178; Wang, X., Song, Y., Liu, B., Hang, W., Li, R., Cui, H., Li, R., & Jia, X. (2020). Enhancement of astaxanthin biosynthesis in Haematococcus pluvialis via inhibition of autophagy by 3-methyladenine under high light. Algal Research, 50, 101991. https://doi.org/10.1016/j.algal.2020.101991; Wang, X., Meng, C., Zhang, H., Xing, W., Cao, K., Zhu, B., Zhang, C., Sun, F., & Gao, Z. (2021). Transcriptomic and Proteomic Characterizations of the Molecular Response to Blue Light and Salicylic Acid in Haematococcus pluvialis. Marine Drugs, 20(1), 1. https://doi.org/10.3390/md20010001; Wei, Z., Sun, F., Meng, C., Xing, W., Zhu, X., Wang, C., Cao, K., Zhang, C., Zhu, B., Yao, T., & Gao, Z. (2022). Transcriptome Analysis of the Accumulation of Astaxanthin in Haematococcus pluvialis Treated with White and Blue Lights as well as Salicylic Acid. BioMed Research International, 2022, 1-19. https://doi.org/10.1155/2022/4827595; Xi, T., Kim, D. G., Roh, S. W., Choi, J. S., & Choi, Y. E. (2016). Enhancement of astaxanthin production using Haematococcus pluvialis with novel ledwavelength shift strategy. Applied microbiology and biotechnology, 100, 6231-6238. https://doi.org/10.1007/s00253-016-7301-6; Xu, Z., Baicheng, Z., Yiping, Z., Zhaoling, C., Wei, C., & Fan, O. (2002). A simple and low-cost airlift photobioreactor for microalgal mass culture. Biotechnology Letters, 24(21), 1767-1771. https://doi.org/10.1023/A:1020648919331; Yan, H., Ma, H., Li, Y., Zhao, L., Lin, J., Jia, Q., Hu, Q., & Han, D. (2022). Oxidative stress facilitates infection of the unicellular alga Haematococcus pluvialis by the fungus Paraphysoderma sedebokerense. Biotechnology for Biofuels and Bioproducts, 15(1), 56. https://doi.org/10.1186/s13068-022-02140-y; Zhang, W., Zhou, X., Zhang, Y., Cheng, P., Ma, R., Cheng, W., & Chu, H. (2018). Enhancing astaxanthin accumulation in Haematococcus pluvialis by coupledlight intensity and nitrogen starvation in column photobioreactors. Journal of Microbiology and Biotechnology, 28(12), 2019-2028. https://doi.org/10.4014/jmb.1807.07008; Zhao, K., Li, Y., Yan, H., Hu, Q., & Han, D. (2022). Regulation of Light Spectra on Cell Division of the Unicellular Green Alga Haematococcus pluvialis: Insights from Physiological and Lipidomic Analysis. Cells (Basel, Switzerland), 11(12), 1956. https://doi.org/10.3390/cells11121956

  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
  19. 19
    Academic Journal
  20. 20
    Academic Journal